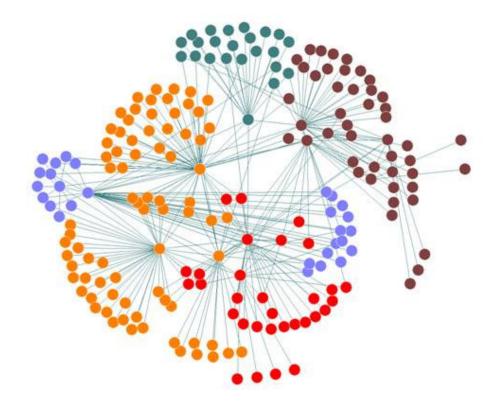
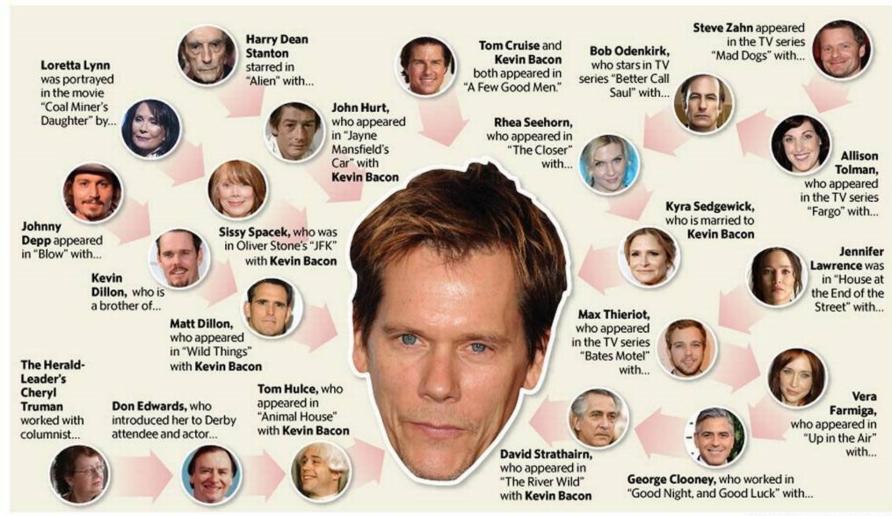
Analyzing Research Collaborations Using Social Network Analysis

Nathan L. Vanderford, PhD, MBA

Assistant Professor | Department of Toxicology and Cancer Biology
Assistant Director for Research | Markey Cancer Center
Director of Administration | Center for Cancer and Metabolism (COBRE)
Director | Appalachian Career Training in Oncology (ACTION) Program




Social Network Analysis

Social network analysis (SNA) is the process of investigating social structures through the use of networks and graph theory.

"Six Degrees of Separation"

CHRIS WARE cware@herald-leader.com

Theory of "Six Degrees of Separation"

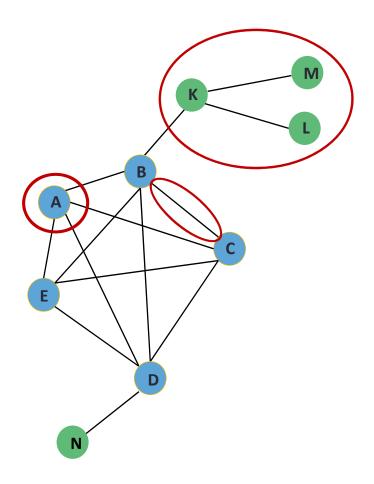
Theory to Practice: Your "Six Degrees of Separation"

- Form groups of 2-3.
- Map out your connections in six degrees or less!

Theory to Practice: What are the Benefits of Your Professional Connections?

Theory to Practice: What are the Benefits of Your Professional Connections?

- Networking
- Information
- Friendships
- Job opportunities


Social Network Analysis

- Social network analysis (SNA) is the process of investigating social structures through the use of networks and graph theory.
- SNA can be used to understand and evaluate the complex dynamics of team science/scientific collaborations.

Network Characteristics

- Actor/node
 - Individual actors, people, or things within the network
- Lines/edges/ties
 - i.e. Relationships or interactions between actors/nodes
- Communities
 - —Groups of actors/nodes

Network Characteristics

- Scientists tend to collaborate with others most like them, a phenomenon called <u>homophily</u> in the field of social network science.
- Forming collaborative ties with those who are different than you, termed <u>heterophily</u> or diversity, results in:
 - Solving complex problems
 - Producing transformative science, like patent development & driving policy change
 - Publication in journals with high impact factors
 - Higher citation rates

Evaluating Team Science Using SNA

- We conducted a case study using SNA to evaluate team science/collaborations over time among Markey Cancer Center (MCC) scientists.
- Analysis of co-authorships on 1,047 publications between 2007-2014.

Markey Cancer Center

MCC

Programs

Cancer Cell Biology and Signaling (CS)

Cancer Prevention and Control (CP)

Drug Discovery, Delivery and Translational Therapeutics (DT)

Genomic Instability, Epigenetics and Metabolism (GEM)

- NCI designated cancer center (2013, 2018)
- 120 members
 - From 8 Colleges and28 Departments

Core Facilities

Biostatistics and Bioinformatics (BB)

Biospecimen Procurement and Translational Pathology (BPTP)

Cancer Research Informatics (CRI)

Flow Cytometry and Cell Sorting (FCCS)

Redox Metabolism (RM)

- \$41.9M total cancer research funding
- ~200 publications/year

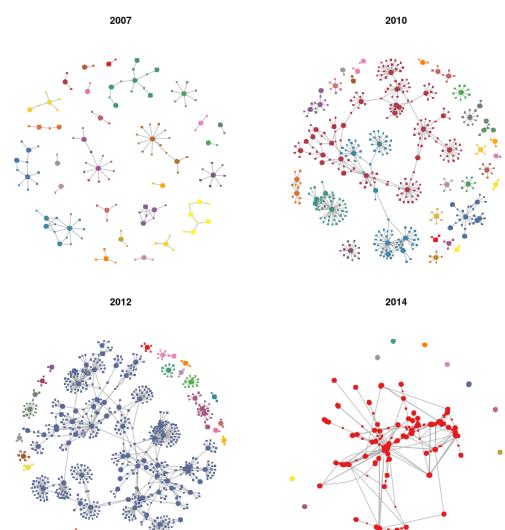
Characteristics of MCC Member Co-Authorship Networks, 2007 - 2014

Year	# Articles	# Authors	Number of Components	Mean Degree	Centralization	Modularity
2007	103	46	27	1.79	0.062	0.93
2008	193	54	28	1.96	0.069	0.92
2009	305	62	29	2.13	0.060	0.92
2010	412	74	29	2.26	0.072	0.91
2011	546	83	21	2.41	0.074	0.90
2012	676	90	21	2.55	0.074	0.88
2013	857	98	13	2.59	0.065	0.87
2014	1047	106	11	2.66	0.057	0.86

Mean degree of the network:

Average number of authors that an author collaborates with.

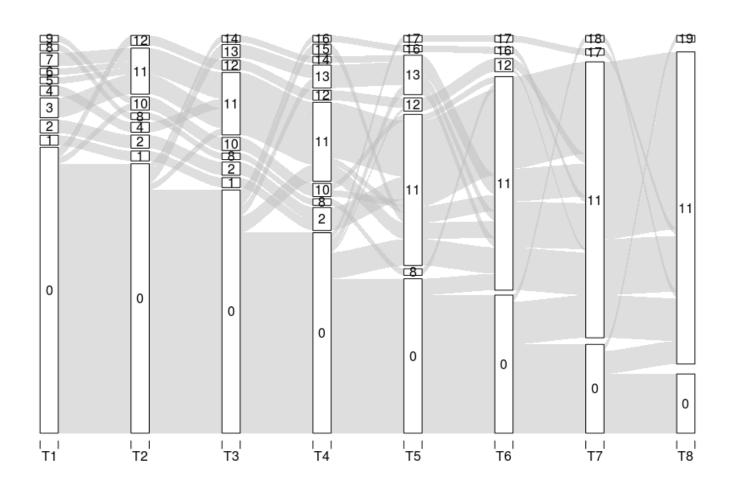
Degree centralization:


How much of the co-authorship in this network is concentrated in just a few members.

Modularity:

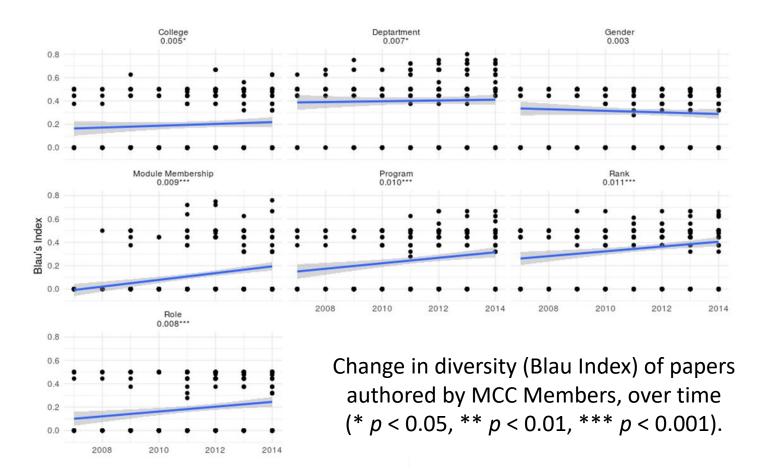
Degree to which researchers co-author with other researchers in their "dense group" versus people outside of their dense group.

MCC Member Co-Authorship Network Clusters


Large Circles = Author nodes

Smaller Squares = Article nodes

A tie between an author node and an article node indicates that an author was listed as an author on that article.



MCC Co-Authorship Community Changes Over Time

Change in Diversity of MCC Co-Authorships

Conclusions

- Interdisciplinary collaborations (heterophily) increased
 - More collaboration occurred across programs, roles, ranks, departments, colleges, and informal co-authorship communities over the 8-year time period.
- Some level of homophily is driving the formation of new coauthorship ties.
 - i.e. in the same department, in the same research program
 - The effect of same research program decreased over time as interprogrammatic co-authorship ties grew.
- The greatest increase in diversity occurred in diversity of program, reflecting the success of programs in place to improve this interdisciplinary research.
- Decrease in diversity for gender indicated authors collaborated more within their same gender over time.
- SNA is a robust method for measuring team science.

Theory to Practice: What are Some Benefits of Research Collaborations?

7

Theory to Practice: What are Some Benefits of Research Collaborations?

- Increasing the "impact" of research
- Enhancing productivity
- Increasing publications
- Increasing grant funding

Theory to Practice: What Can We Do to Increase Research Collaborations?

Š

Theory to Practice: What Can We Do to Increase Research Collaborations?

- Pilot grants
- Tenure and promotion criteria
- Interdisciplinary working groups

Collaborators

Jesse M. Fagan, PhD, MA

University of New Mexico Anderson School of Management

Katherine S. Eddens, PhD, MPH

Indiana University Network
Science Institute

Jennifer Dolly, CCRP

University of Kentucky Markey Cancer Center

Heidi Weiss, PhD

University of Kentucky Markey Cancer Center and Department of Surgery

Justin S. Levens

University of Kentucky Markey Cancer Center

Questions?

