T206: Developing Large-Scale, Collaborative Grants

Julie Benson & Pips Veazey
University of Alaska

Who are we?

JULIE BENSON

- PROGRAM ADMINISTRATOR FOR ALASKA INBRE
- PROBLEM-SOLVER I LIKE TO FIX THINGS!
- COMPLETER NOT A COMPETER
- MOTHER, SINGER, VOLUNTEER ADDICT

Pips Veazey

Alaska NSF EPSCoR Oceanographer Sailor, skier Mother Researcher

Who Are You?

- 1. Pull out your phone.
- 2. Using your web browser, visit www.kahoot.it
- 3. Enter the Game Pin on the Screen

Learning Objectives

- Learning Objective 1: Define team science, collaboration, and interdisciplinary research.
- Learning Objective 2: Understand large applications and your role in them.
- Learning Objective 3: Understand the increased emphasis on team science in funding agencies.

What is a large-scale, competitive grant?

Characterized by integrated and strategic research team visions that leverage collaborative partnerships.

Examples: NIH U- & P- awards, NSF EPSCoR, STC, ERC, etc.

TICTOC for Large Proposal Management

- Team
- Institutional Support
- Communication & Competencies
- Time
- Organization
- Collaboration Agreement

WHAT IS TEAM SCIENCE?

A collaborative effort to address a scientific challenge that leverages the strengths and expertise of professionals trained in different fields.

National Research Council. 2015. Enhancing the Effectiveness of **Team Science**. Washington, DC: The National Academies Press. https://doi.org/10.17226/19007.

WHY TEAM SCIENCE?

"...society's problems do not fit neatly into the University's departmental grid, nor are they rapidly divisible into subproblems...interdisciplinary research teams can readily respond to multi-discipline, problem-oriented research and public service opportunities."

Remick, F. (2000). Barriers to Organized Interdisciplinary Research in a University Environment, in The Interdisciplinary Imperative: Interactive Research And Education, Still An Elusive Goal In Academia (Writers Club Press).

COLLABORATIVE SCIENCE IS INCREASING

Wuchty S, Jones BF, and Uzzi B. The increasing dominance of teams in the production of knowledge. (2007). Science, 316(5827), 1036-9.

TRENDS IN AUTHORSHIP

National Research Council. 2015. Enhancing the Effectiveness of **Team Science**. Washington, DC: The National Academies Press. https://doi.org/10.17226/19007.

WHY SHOULD WE EMBRACE TEAM SCIENCE?

INTER-DISCIPLINARY RESEARCH

Demands more than just complementarity

- Team members combine or juxtapose concepts and methods from different disciplines
- Overarching goal is systematic integration of information, data, techniques, tools, perspectives, concepts, and/or theories from two or more disciplines or bodies of specialized knowledge

GOAL: to advance fundamental understanding or to solve problems whose solutions are beyond the scope of a single discipline or field of research practice.

YOU SHOULD BE SCARED

"...the most [significant] barrier to successful translational research: the inability to create and sustain dynamic and innovative interdisciplinary research teams."

FEATURES OF TEAM COMPLEXITY

KEY FEATURES	LOW COMPLEXITY	HIGH COMPLEXITY
Size	Small (2)	Mega (1000s)
Task Interdependence	Low	High
Boundaries	Stable	Fluid
Goal Alignment	Aligned	Divergent or Misaligned
Integration	Unidisciplinary	Transdisciplinary
Diversity	Homogeneous	Heterogeneous
Proximity	Co-located	Geographically Distributed

National Research Council. 2015. Enhancing the Effectiveness of **Team Science**. Washington, DC: The National Academies Press. https://doi.org/10.17226/19007.

1. Project Management

- A. Knowing
- **B.** Doing

2. Shared Leadership

- A. Organizational Management
- **B.** Organizational

3. Personal Competence

- A. Team Management
- **B. Self-management**
- C. Self-awareness

4. Social Competence

- A. Relationship Management
- **B. Social Awareness**

5. Communication

- A. Internal to team
- B. External to team

CAPITALIZING ON TEAM SCIENCE RESEARCH

- How do we minimize the risks involved with team science?
- What can we do to set expectations?
- Who is responsible for supporting collaboration?
- What does authorship look like on our team?
- Is my team prepared to share data?

TICTOC for Large Proposal Management

- Team
- Institutional Support
- Communication & Compentencies
- Time
- Organization
- Collaboration Agreement

TEAM

- 1. Scientific Expertise
- 2. Budget
- 3. All the other stuff (letters of support, biosketch/CV, research environment, human subjects components, etc)

Institutional Support

Communication & Competencies

Communication

- Internal
- External

Competencies

- Social awareness
- Personal awareness

TIME

Sample Timeline for Large Applications

- Month 1 Review the announcement, conduct a limited solicitation call and determine the PI. Consider team members to support the application submission. Utilize experts when available and appropriate.
- Month 2- Discuss institutional support and ICR distribution. Work with institutional leadership to ensure strategic integration and program coordination.
- Month 3 Identify core leaders and writing team. Conceptualize the application & identify partnerships.
 Outline overall project including cores/project areas with an identified naming convention and layout, solicit A&R requests if allowable. Begin budget discussions.
- Month 4 Contact partners and draft letters of support. F/U with core leaders for core plan/outline. Select A&R application and ask for details. Provide a draft budget to the core leads.
- Month 5 Each core will submit a rough outline to the team for review & edits. Identify a consultant if using and engage them in the process.
- Month 6 Submit drafts of all sections to external reviewers for scientific relevance & impact. Continue to refine the application while waiting for reviewer comments.
- Month 7 Finalize and integrate reviewer comments. Obtain final letters of support. Finalize budget. Review all components for consistency, errors, and other coordination elements.
- Month 8 Provide copies to grants office (AOR), VPR/institutional leadership for final review/approval.
 Continue to review and refine.
- Month 9 SUBMISSION!

Organization

"The way one starts largely determines how one will continue. Get it wrong here and it is likely that the project will go wrong."

(Morris, 1994)

Collaboration Agreement

FACILITATING TEAM SCIENCE: DATA MANAGEMENT PLAN AS EXAMPLE

PREPARING FOR TEAM SCIENCE: TOOLS

NIH Field Guide's Scientific "Prenuptial Agreement"

- Begin to develop trust
- Lay the foundation for the continued relationship
- Explicitly and precisely state goals of the project
- Describe how each of the collaborators will contribute
- Delineate how to handle communications, data sharing, etc.
- Address administrative aspects of the collaboration
- Provide an opportunity to reflect on potential conflicts of interest

PREPARING FOR TEAM SCIENCE: TOOLS

COLLABORATION PLAN

Detailed plan that describes multi level ways the group will plan for and support effective collaboration

Bennett, L. M., Gadlin, H., & Levine-Finley, S. (2010). Collaboration & Team Science: A Field Guide. Bethesda, MD: National Institutes of Health

EMERGING ROLES FOR TEAM SCIENCE

- FACILITATOR
- INTERDISCIPLINARY EXECUTIVE SCIENTIST
- INTEGRATION EXPERT

FACILITATING TEAM SCIENCE: SHARED MENTAL MODELS

team members' overlapping mental representation of key elements of the team's task environment

WHAT'S NEXT?

- Data visualization for collaborative science to promote codevelopment of ideas and shared mental models
- Team spaces for data-driven dialogue around complex problems
- Expansion of integration and team science roles
- Science of Team Science 2020 Duke University
- INSciTS www.inscits.org

TEAM SCIENCE FOR PROPOSAL DEVELOPMENT

- Currently Team Science activities are focused on post-award project management
- Most large projects are a constant drumbeat of implementation and delivery:
 - Planning: Strategic planning, Logic Models, Output Timelines
 - Evaluation: Reverse Site Visits, Site Visits, External evaluation
- The time to plan for team science is when the proposal is being written:
 - Don't wait until the award to figure out how things are going to work and who
 is going to do what

"Cooperative work is a social art and has to be practiced with patience."

Questions? Want to talk?

Julie Benson

jcbenson@Alaska.edu

907-474-1104

Pips Veazey

adveazey@Alaska.edu

907-474-5989

