

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Geologic Factors Associated with Successful Shale Gas Plays

Gaffney, Cline & Associates

David A. Waldo


Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Presentation Outline

- World potential
- Comparison of conventional / unconventional exploration
- What changed?
- Elements of a successful play
- Geologic example
- What else matters?
- Conclusions

Worldwide Shale Gas Potential

EIA estimates there are 7,795 Tcf of Technically Recoverable Resources (TRR) shale gas

Resource Understanding and Technology

- Two most critical factors
 - Having a complete understanding of resource
 - Full utilization of technology

"By gaining an early understanding of a resource and then applying the appropriate modern technology in its exploitation maximum efficiency/profit can be realized"

So what do we need to understand about Shale Plays?

Conventional Gas Reservoirs

- Gas molecules are stored under pressure within rock pores
 - Gas is buoyant on water
 - It accumulates in structural and stratigraphic traps
- Gas-In-Place analysis is a simple volumetric calculation
- No significant gas molecule-reservoir rock interaction
- Gas stored by compression within specific pore volume is calculated using temperature, pressure & volume relationships
 - derived from fundamental gas laws
- Gas-In-Place is a direct function of
 - Effective rock porosity and gas saturation
 - Reservoir temperature
 - Reservoir pressure
 - Gas composition
- Typical conventional gas reservoir recovery ~ 60-90%

The Shale Reservoir (Unconventional)

- What is shale?
 - Shale defines a grain size; not minerology
- Shale plays are continuous type deposits
 - Unconventional reservoirs do not require a traps
- Gas in shale gas reservoirs is stored in:
 - Pore space (free gas)
 - Voids of natural fractures (NF)
 - Adsorbed to mineral surfaces
 - Absorbed to organic & mineral surfaces

The Shale Reservoir (Unconventional) - continued

- Hydrocarbons found in shales are:
 - Self-sourced
 - Generated from thermally mature organic content
 - Total organic content (TOC)
 - Vitronite reflectance (Ro)
- Shales must be fracture-stimulated to produce commercially
 - Maximum reservoir contact
 - An artificial reservoir is achieved by:
 - Horizontal wells
 - Multi-stage fracturing

Exploring for Conventional vs. Unconventional Hydrocarbons

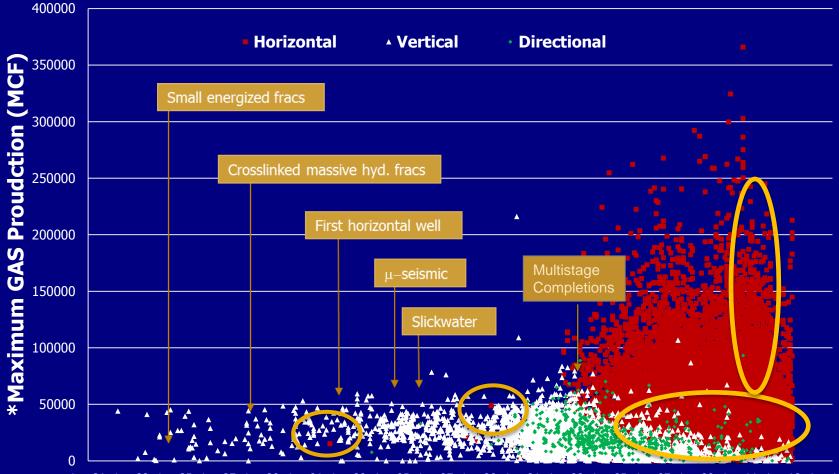
Conventional

- 3-35%
- 0.1 md to multi-darcy
- Migration
- Lateral/vertical
- 1 3+ km²

- Mapping
- Porosity
- Permeability
- Source Rocks
 Insitu
- Seals
- Drainage

- 1- 10 % (nano-pores)
- Nano-darcy
 - Not required
 - Dependant on horizontal drilling
 - 2 to 10 BCF/well

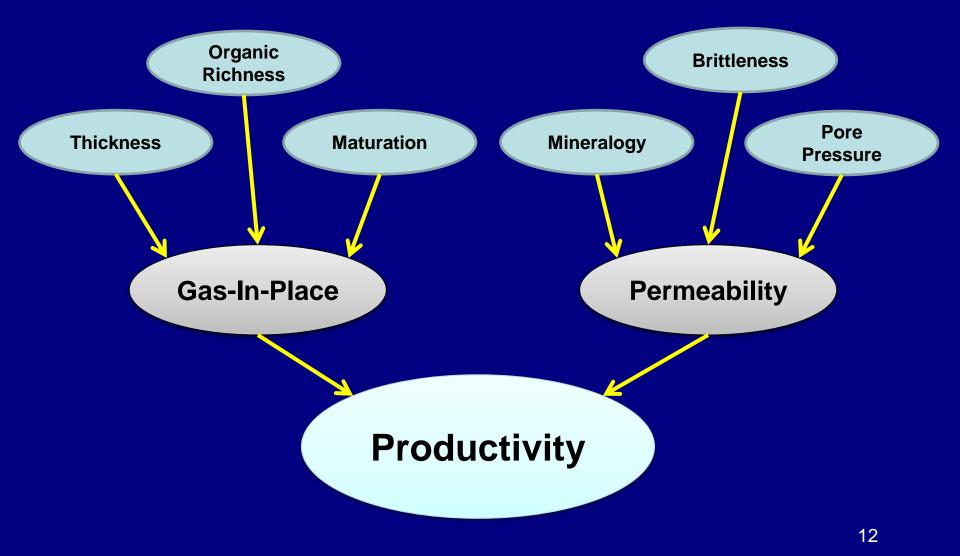
North Sea 20 to 70
 BCF/well


Productivity

Unconventional

So What Changed the Game?

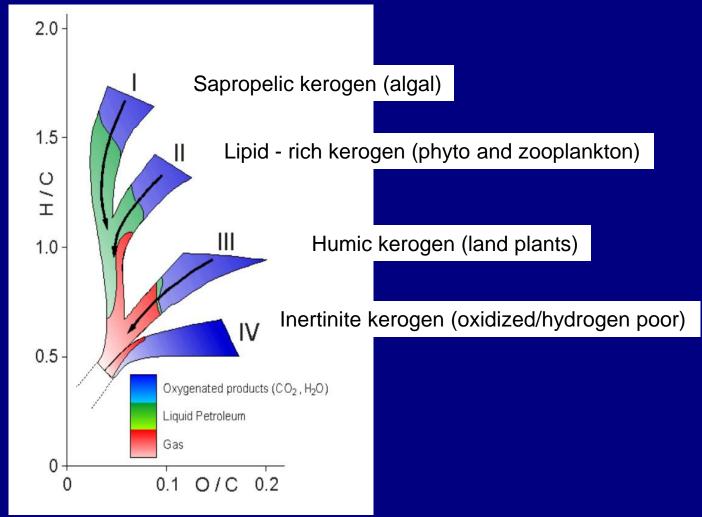
Horizontal Well with Multi-Stage Fracturing Base of Groundwater Surface Casing Cement Production Casing Not to Source: EnCana scale


Unconventional Development – Learning Curve Barnett Shale Development

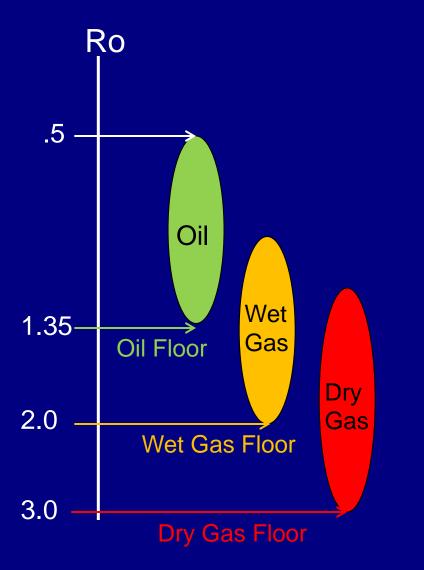
Jan-81 Jan-83 Jan-85 Jan-87 Jan-89 Jan-91 Jan-93 Jan-95 Jan-97 Jan-99 Jan-01 Jan-03 Jan-05 Jan-07 Jan-09 Jan-11 Jan-13 Jan-15

^{*} Individual well production during first 6 months

Elements for a Successful Shale Gas Play


So if shales are all different, what matters? Criteria for technically evaluating shale gas plays				
PARAMETER	OPTIMAL TARGET			
Source Rock Quality	TOC 2-5+% by weight Minimum 15-20 m thick Typically Type II/III Kerogen Porosity 3- 10%			
Source Maturity	Ro >1.4 for dry gas Ro 1.1-1.4 for wet gas Ro 0.6-1.1 for oil T Max 450+ Deg C			
Structural Complexity	Monocline <5 Degree dip Simple structural architecture Minimal faults, folds			

So if shales are all different, what matters? Criteria for technically evaluating shale gas plays...


PARAMETER	OPTIMAL TARGET
Clay content/ brittle index	<40% Vclay (XRD analysis), Direct measurement of brittle index required
Presence of aquifers	Separated from target intervals by ductile barriers
Geomechanics	Knowledge required for orientation of laterals
Pore Pressure	Knowledge required to select frac fluids and proppants

Land and Marine Kerogens Evolve Differently

Van Krevelen diagram

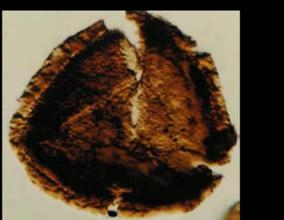
Thermal Maturity – Vitrinite Scalar (Ro)

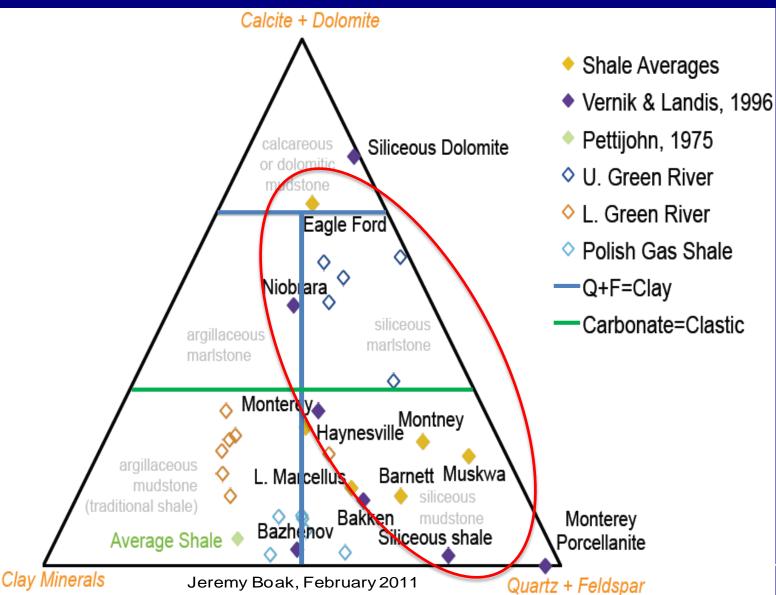
Oil/Gas Generation			
	0.2 – 0.5 Immature		Ind
	0.5 – 0.7 Early Mature Oil		ncreased
	0.7 – 1.0 Mature Oil		
	1.0-1.3 Late Mature Oil		burial dep
	1.3 -2.2 Main Gas		lepth
	2.2 – 3.0 Late Gas		
			16

Organic Matter Maturation Examples of Vitrinite Reflectivity

%Ro = 0.55

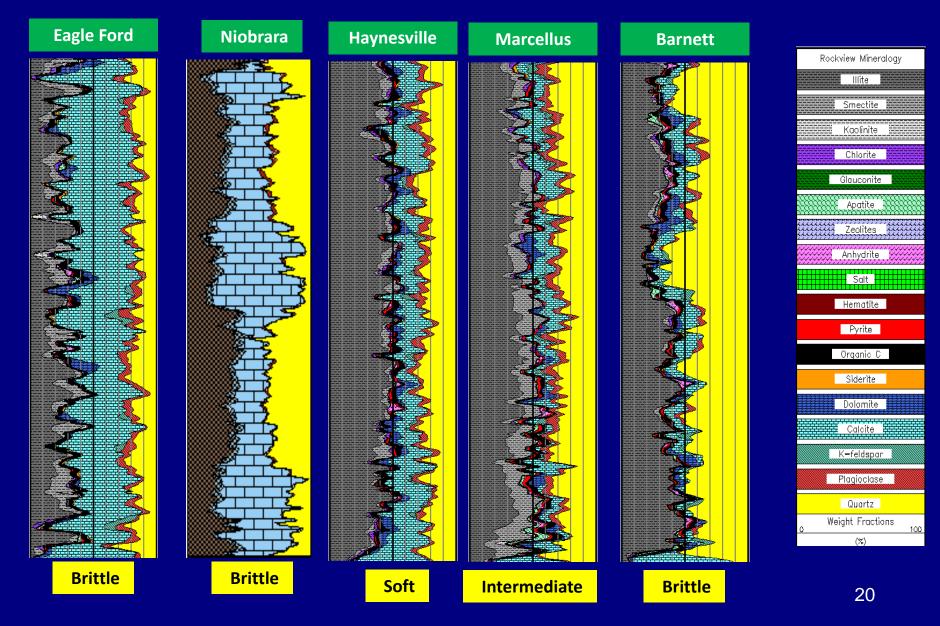
%Ro = 0.70


%Ro = 0.90


%Ro = 1.10

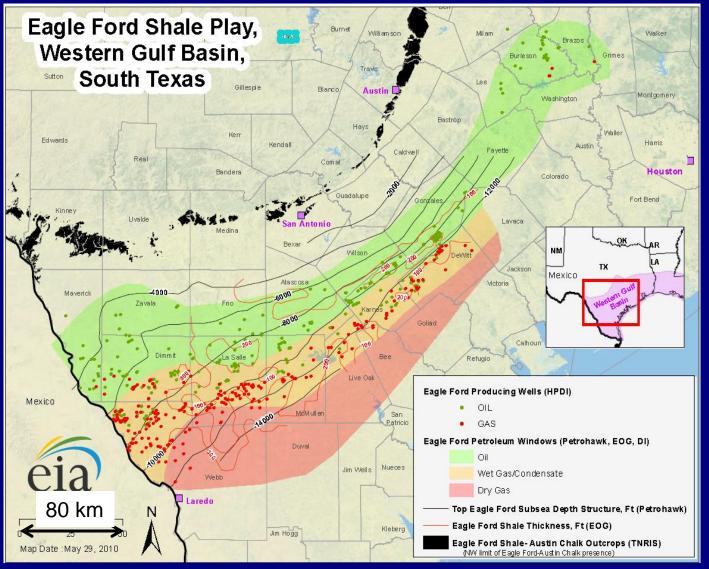
%Ro = 1.40

Inorganic Mineralogy Ternary diagram of selected shales

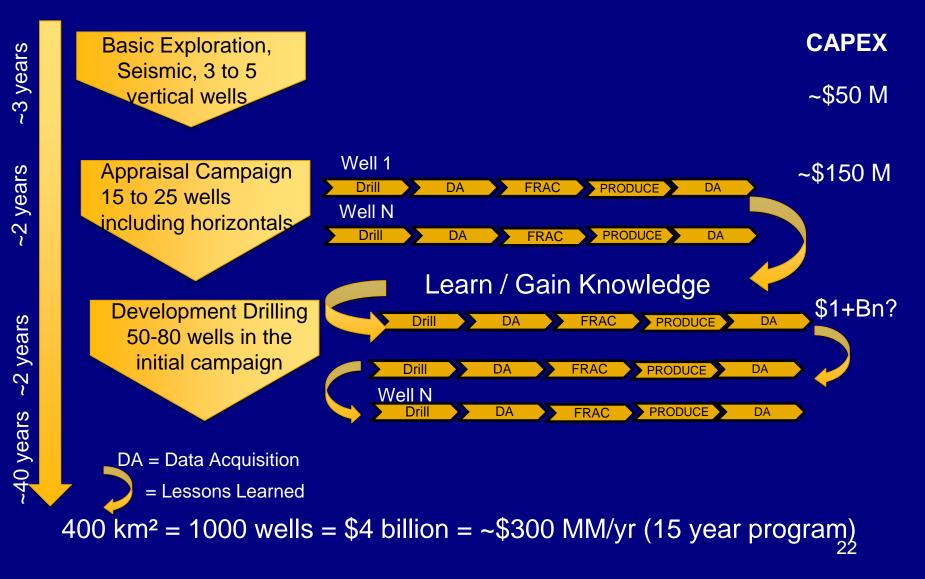


18

Comparison of Key Geologic Factors


Shale	Barnett	Eagle Ford	Marcellus
Basin	Ft. Worth	Maverick	Appalachian
Age	Miss	U. Cret	Dev
Area (kms²)	13,000	9,800	245,000
Depth (m)	1,900-2,500	1,200 - 4,500	1200 - 2,500
Gross Thickness (m)	30-180	90-145	15 -60
Quartz Content %	41	20	25
Carbonate Content %	13	67	15
Clay Content %	23	7.5	45
TOC %	3.0 - 7.5	2.0 - 6.5	3 - 12
Ro %	1.0 - 1.74	1.0 - 1.27	1.0 -2.5
Porosity %	4.0 - 9.0	3.4 - 14.6	10
Pressure Gradient (psi/m)	1.41 - 1.48	1.41 - 1.77	1.41 - 1.48
Original GIIP (TCF)	327	ND	1500
IP Rate MMCFD	2.5	7.0 & cond	3.5
Well Cost \$MM	2.8	7.5	3.5
Est. EUR/well (BCF)	2.4 - 3.5	~5	0.6 - 3.5

Lithologies Vary


Eagle Ford shale play

Not only are all shales different but hydrocarbons can also vary

Unconventional Plays Require Time & Investment

Example Development, \$1-2 Bn over 5-7 years for initial campaign

What Else Matters?

It takes more than the right geology to make a shale gas play work

Environment

- These are long term projects
 - Being a good neighbor is important
- Water
 - Each "frac" job requires millions of gallons of water
 - Produced water must be properly recycled / re-used

Proppant

- Many Tons of proppant are required for each well
- Logistics

What Else Matters? continued

Infrastructure

Both roads for exploitation activity and pipelines for egress

Manpower and Equipment

- Requires a large number of trained personnel and
- A large amount of very specialized equipment

Community Support

Long term project requires acceptance by community

Key Take-aways

Shale Gas in North Americas has caused a paradigm shift

- Large resource base
- Low geologic risk
- Technologically driven

Shale Gas is very different from conventional gas plays

- Lower geologic risk
- Requires different exploitation methods
- Production curves are very different
 - Shale Gas production tends to fall dramatically and then produce for tens of years

Key Take-aways

- Shale Gas plays are all different
 - Lithologic variations
 - Paleo-histories
 - Present environment
- Variations within a play
 - Many shale plays have "sweet spots"
 - Data mining is important in defining the most productive areas
- Evaluation techniques are evolving
- But one thing we know:

"SHALE GAS PLAYS ARE ALL DIFFERENT"

THANK YOU

Typical "Hydraulic Fracturing" treatment in South Texas

- Multiple wells being fracked simultaneously on location
- 4, 4, 5 stages
- 55,200 HHP
- 14.7MM gals fluid (56,000 m³)
- 5.5MM lbs prop (2.5 million kg)

Geologic Factors Associated with Successful Shale Gas Plays

David A. Waldo Gaffney, Cline & Associates

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl **D**istinguished Lecturer Program

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation :

Click on: <u>Section Evaluation</u>

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

