Update on the CO2CRC Otway Project

Lincoln Paterson (CO2CRC/CSIRO)

Craig Dugan (Process Group)

12 August 2009

CO2CRC Otway Project

- The CO2CRC Otway Project is the country's first demonstration of the deep geological storage of carbon dioxide (CO₂), the most common greenhouse gas.
- The project initiated development of regulation and approval processes.
- The nearby Buttress reservoir provides the source of carbon dioxide.
- Injection commenced in March 2008. Since then over 60,000 tonnes has been injected into the Waarre C formation approximately 2 km deep.

Carbon dioxide density

Viscosity

Figure 2: CO₂ density and viscosity at subsurface conditions, surface temp. 15 C, 30 C/km and 10 MPa/km.

Ennis-King & Paterson 2002 SPE 77809

CO2CRC Otway Project

Buttress-Naylor system

Injection well site

CO2CRC Otway project: CO₂ mass fraction

(a) Carbon dioxide mass fraction 18 Sept: no cutaway.

(b) Carbon dioxide mass fraction 18 Sept: cutaway.

CO2CRC Otway project: CO₂ mass fraction

(a) Carbon dioxide mass fraction 31

Dec: no cutaway.

(b) Carbon dioxide mass fraction 31 Dec: cutaway.

CO2CRC Otway project: total fluid density

(a) Average fluid density: no cut-away.

(b) Average fluid density: Cutaway.

CO2CRC Otway project: pressure difference

(a) Pressure difference between 18 Sept and 25 Oct: no cutaway.

(b) Pressure difference between 18 Sept and 25 Oct: cutaway.

CO2CRC Otway project: tracers

(a) Tracers 18 Sept: no cutaway.

(b) Tracers 18 Sept: cutaway.

CO2CRC Otway project: tracers

(a) Tracers 31 Dec: no cutaway.

(b) Tracers 31 Dec: cutaway.

Buttress wellhead pressure

Amount injected

Injection rate

CRC-1 downhole gauges

CRC-1 downhole pressure

Models used in Class et al. 2009 comparison

Name of code/model	Applying institution	Participation in problem(s)	Discretisation	
			In space	In time
COORES	IFP	1.1, 1.2, 2.1, 2.2, 3.1	FV	Implicit
DuMux	Uni. Stuttgart	1.1	BOX	Implicit
ECLIPSE	Schlumberger, Heriot-Watt Uni.	1.1, 1.2, 2.1, 2.2, 3.1, 3.2	IFDM	Implicit
FEHM	LANL	1.1, 1.2	CVFE	Implicit
GEM	Heriot-Watt Uni.	3.1, 3.2	IFDM	Implicit
GPRS	Stanford Uni.	3.1, 3.2	FV	Implicit
IPARS-CO2	CSM Uni. Texas	1.1, 2.1, 2.2 3.1	Mix. FEM	Impl. pressure expl. conc.
MoReS	Shell	3.1, 3.2	IFDM	Implicit
MUFTE	Uni. Stuttgart	1.1, 1.2, 2.1 2.2, 3.1	BOX	Implicit
ROCKFLOW	BGR	1.1, 1.2	FE	Implicit
RTAFF2	BRGM	1.2	FEM	Implicit
ELSA	Uni. Bergen/Princeton	1.1		-
TOUGH2	CSIRO, BRGM, RWTH Aachen	1.1, 2.1, 2.2 3.1	IFDM	Implicit
VESA	Princeton Uni.	1.1, 3.1, 3.2	FD, vertic. averaged	Impl. pressure expl. interface

Residual capillary trapping

Figure 1. Schematic of the trail of residual CO₂ that is left behind because of snap-off as the plume migrates upward during the postinjection period.

Juanes et al. (2006) WRR

Residual oil trapping

Source: X-ray microtomographic image from Mark Knackstedt, ANU

Trapping mechanisms (IPCC Special Report)

- 1. Structural trapping
- 2. Residual trapping
- 3. Solubility trapping
- 4. Mineral trapping

Relative permeability hysteresis

Juanes et al. (2006) WRR

CO2CRC Otway Stage 2

Stage 2 design concept

Water test for 1d

CO₂ injection for 2 days

Production for 9 days

Water test for 1d

Stage 2 design simulations

Conclusions

- With over 60,000 tonnes injected, the CO2CRC Otway Project stage 1 has demonstrated carbon dioxide storage in Australia along with a wide spectrum of monitoring techniques.
- If successful the CO2CRC Otway Project stage 2 will be the first project worldwide to demonstrate residual trapping as the primary trapping mechanism.
- Experience for the project is applicable to proposed capture and storage demonstrations on a larger scale.

CO2CRC Participants

Supporting participants: Supporting participants: Department of Resources, Energy and Tourism CANSYD | Meiji University Process Group | University of Queensland | Newcastle University | U.S. Department of Energy | URS

Established & supported under the Australian Government's Cooperative Research Centres Program

