Permeability in the Eye of the Beholder

Martin Kennedy

FESAus and SPE

Lecture Tour 2009

Contents

- Definitions
- Fundamentals
- Measurements
- Estimation
- Reconciliation

Definitions

Characteristics

- Permeability
 - Dimensions L²
 - -10^{-14} to $10^{+>7}$ mD
 - Tensor (Anisotropic)
 - Resistivity, acoustic properties
 - Dominated by largest pores

- Porosity
 - Dimensionless
 - -0 to 0.5
 - Scalar (Isotropic)
 - density, neutron capture
 - All pores contribute equally

Permeability and Fluid Flow

Porosity-Permeability (Capillary Bundles)

Permeability-Porosity

Fracture Permeability

$$Q = \underline{\Delta p.h.w^3}$$
 Flow through a slot $12\Delta l.\mu$

$$= \frac{kA\Delta p}{\Delta l.\mu}$$

permeability equation

$$k = \frac{h.w^3}{12A}$$

$$kif = \frac{w^2}{12}$$

Intrinsic permeability of a fracture

Permeability Controls in Real Rocks

Measurement

- Fluid has to move...
 - Laboratory
 - Test (including WFT)
- Uncertainty and Errors.
 - Measurement.
 - Geological.
- Scale.
 - Probe <1cm</p>
 - Plug 5cm
 - Whole Core 10 20cm
 - WFT
 - DST 10⁵ cm
 - EWT 10⁶ cm

Laboratory

$$Q = \frac{k.L.\Delta P}{A.\eta}$$

η is viscosity of the fluid used for the measurement

<u>Uncertainty Issues</u>

Simple Geometry

A, L – high accuracy

 η – known for simple fluids

Q – cc/min can be difficult to measure

P – high accuracy but normally low.

Wireline Formation Testers.

The tools are primarily designed to measure formation pressure. Permeability is actually mobility (permeability/viscosity)

Typical flow-rate 5-50cm3/min.

0.05 - 0.5 BOPD (100 - 1000scf/d). (through a single 1cm diameter hole)

Estimation Methods

- LOG BASED
 - Empirical Correlation.
 - Field Specific (probably based on core)
 - $K = k(\emptyset, Swir)$
- CUTTINGS BASED
 - Image Analysis of Pore System.
 - Rock Typing.
 - Model the Pore System.

Estimation: the pitfalls

Available core data is used to generate a porosity-permeability transform. This is applied to log porosity in un-cored intervals.

IT WILL NOT REPRODUCE THE FULL VARIABILITY

Relationships between Properties.

Porosity and Permeability

Saturation and Permeability

Published Porosity, Swir - Permeability Relationships (Used to produce the NMR log Permeability)

Often quite robust but they can only be used above the Transition Zone (unless you have an NMR log).

Grain Size Relations

The Shell models were developed in the GOM so buyer beware. The BP/ARCO models are more general but do need a good knowledge of grain size, sorting, cementation/consolidation.

Interpretation

- Why don't my Test Perms match the Core?
- What?
 - Scale (plug, log, layer)
 - Ambient/overburden.
 - Effective/Absolute
 - Air/Brine
- Why?
 - Net/Pay definition.
 - Well In-flow prediction.
 - Reservoir Modeling.
 - Fluid Distribution Modelling.

What Permeability?

Rock: Overburden Correction

Fluid: Klinkenberg Correction

These corrections are normally important for low permeabilities (<1mD). For High Permeabilities we are getting into Hair Splitting Territory (>100mD).

Heterogeneity and Anisotropy

- Scale Dependence aka "My Perms don't match!"
 - May be due to measurement error(s) or...
 - May indicate heterogeniety.
- Heterogeniety can be quantified using some old –unfashionable- methods..
 - Cv
 - Lorenz Coefficient
 - Dykstra-Parsons
- It Determines how the Core Data Should be Averaged.

Matching Core to DST Results (Choice of Average)

WELL	DST		Core			Probe		
	H/m	K/mD	ŀ	< /mD	Cv	K	(/mD	Cv
			arith	geom		arith	geom	
19	8	83	77	8.4	3.2	96	38	1.2
22	3.5	190	750	300	1	380	160	0.9
23	9	490	240	49	1.8	310	85	1.3

Shi-Yi Zheng et al (AAPG Bull 84 p1929 (2000) HWU

Matching Core to DST Results (Sampling)

WELL	DST		Core				Probe			
	H/m	K/mD		K /mD	plugs	Cv	K	/mD	samples	Cv
			arith	geom			arith	geom		
19	8	83	77	8.4	28	3.2	96	38	180	1.2
22	3.5	190	750	300	11	1	380	160	39	0.9
23	9	490	240	49	31	1.8	310	85	150	1.3

Matching Test and Core: Indications of Heterogeniety

Core Arith: 200mD Core Geom: 50mD TEST: 60mD

Core Arith: 1000mD Core Geom: 700mD TEST: 1100mD

Heterogeniety Measures

An Example: Dolomite Oil Field

Large Oil Field Producing Below Bubble Point

Issues
STOIIP (porosity, N/G)
Production Profile.
Water Flood Behaviour.
Perforation Strategy.

Permeability Prediction

Silurian Shallow Inland Sea.

Dolomite Reservoir: Description Based on Core Plugs

Net Average Poro = 10pu N = 71 plugs 58 with k>1mD

But is this representative?

Lorenz Coefficient 0.5

Reservoir Rock

Pure Dolomite

3 phases of dolomitisation.

3 Porosity Types: Micro-crystalline Inter-granular Vuggy (or Leached)

3 depositional settings Supratidal - micro-xt Intertidal - intergranular/Vuggy Sub-tidal - intergranular/Vuggy

Dolomite Reservoir: Description Based on Whole Core

Net Average Poro = 4.3 pu N = 179 plugs 166 with k>1mD

Lorenz Coefficient = 0.89

Campos Basin: Test and Core Permeability
Test Permeability consistently higher than Core (3 wells, 14 DSTs).

Note: This is Unusual in that the core data has not been averaged

Campos Basin Field kDST>kcore because...

Most Core Data comes from Facies 2, Muddy Sand. The 'H' in kH is too small.

Connectivity and Permeability.

Sand connectivity for 2D and 3D realisations. After M. D. Jackson (et al) AAPG Bull 89(4) p507-528

Moving from 2D to 3D

Conclusion

- Permeability is not just another property curve.
 - It has units and dimensions and is directional.
- It cannot be measured as a continuous curve.
 - Imposes a limit on accuracy.
 - Probe permeameter is as close as we get.
- Different scale measurements need not agree.
 - Depends on averaging applied to the finer scaled data.
 - Disagreements may actually be telling us about the reservoir.

Post-script: North Sea Chalk

1 um