Maximization of the Net Present Value of In Situ Oil Sands Projects

SPE Calgary Petroleum Economics Special Interest Group

Craig Frenette, P.Eng., CFA, Cenovus Energy Inc.
Majid Saeedi, P.Eng., Penn West Petroleum Ltd.
Justin Henke, E.I.T., University of Calgary
September 10, 2014
Disclaimer

• This presentation is based on workflows created for an SPE paper\(^1\), and does not necessarily reflect the views and planning processes of Cenovus Energy Inc. or Penn West Petroleum Ltd.
Introduction

- Background
- Development of Integrated Model
Overview

• Maximization of Net Present Value
• Integrated Production Models
 • Definition
 • Sub-Surface Model
 • Surface Model
 • Economic Model
• Case Study
• Summary
Maximization of NPV
Maximization of NPV

• Development of a resource should be planned to maximize NPV

• Relatively simple to maximize the NPV of a single well under primary production:

\[
Net\ Present\ Value = \sum_{t=1}^{n} \frac{C_t}{(1 + r)^t}
\]

\[
C_t = (Product\ Volume \times Received\ Product\ Price)_t - Royalties_t - Operating\ Costs_t - Capital\ Investment_t - Abandonment\ /\ Reclamation\ Costs_t
\]

• Thermal heavy oil projects not as simple...
Maximization of NPV of Thermal Project

• Maximization of NPV is complicated:
 • Capital intensive CPF sets project level constraints on steam injection as well as oil, water, gas production rates
 • Surface network provides additional constraints
 • Wells with high production rates that rapidly decline (in the case of CSS) and need be scheduled along with others to receive steam
 • Varying well production performance
 • Operational performance
Maximization of NPV of Thermal Project

• “What is the optimal CPF size?”
• “How many phases should the CPF have?”
• “What is the optimal pad and well development schedule?”
• Construction of an Integrated Production Model (IPM) or Fully Integrated Stochastic Asset Model (FISAM) is required to solve these problems
Integrated Production Models
IPM

Sub-Surface Model
- Numerical or analytical reservoir model
- Well configuration and operating conditions
- Generation of injection and production forecasts for type wells

Surface Model
- CPF capacity
- Schedule of pads and wells
- Creation of a field level production forecast

Economic Model
- Price forecasts
- CPF and well capital costs
- Operating costs
- Royalty parameters
- Other economic assumptions

Start → Output Results

www.cenovus.com
IPM with Optimization

Sub-Surface Model
- Numerical or analytical reservoir model
- Selection of well configuration and operating conditions
- Generation of injection and production forecasts for type wells
- Adjust sub-surface model parameters
- Adjust surface model parameters

Surface Model
- Selection of CPF capacity
- Scheduling of pads and wells
- Creation of a field level production forecast

Economic Model
- Generation of a capital profile based on CPF size and pad/well schedule
- Calculation of project royalties, operating costs, prices, and cash flows
- Calculation of NPV and other economic metrics

Start

Current NPV greater than previous iteration?
- Yes
 - Output Results
- No

Maximum iterations reached?
- Yes
 - Stop
- No

Stop
FISAM with Optimization
Reserves Aggregation

- Another benefit to a FISAM approach is that it can be used to aggregate the results of individual well probabilistic forecasts into a field level probabilistic forecast.

- This statistical aggregation may produce a more accurate estimate of a P90/P10 field level production forecast compared with arithmetic aggregation.
 - However, dependency (correlation) among parameters must be considered for this method to have a valid basis.
 - Ex: If one well in a field produces at a P90 rate, do all the wells produce at a P90 rate? How about year over year?
Sub-Surface Model
Sub-Surface Model

• **CSS**
 • Widely used thermal recovery method of heavy oil
 • Three phases
 • Steam Injection: 10-60 days
 • Soaking: 3-30 days
 • Production: 90-730 days

Typical CSS Process\(^{(2)}\)
Sub-Surface Model

- Two models were constructed
- One model uses Arps’ decline equations:

Table 1 - Summary of Decline Model Parameters

<table>
<thead>
<tr>
<th>Decline Model Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Steam Slug Size</td>
<td>12,000 m²</td>
</tr>
<tr>
<td>Steam Rate</td>
<td>240 m³/d</td>
</tr>
<tr>
<td>Steam Slug Increase per Cycle</td>
<td>22%</td>
</tr>
<tr>
<td>First Cycle Peak Rate</td>
<td>119 m³/d (750 BBL/D)</td>
</tr>
<tr>
<td>Peak Rate Decline per Cycle</td>
<td>9%</td>
</tr>
<tr>
<td>Cycle Decline Rate</td>
<td>96%</td>
</tr>
<tr>
<td>Cycle b-value</td>
<td>0.5</td>
</tr>
<tr>
<td>Cumulative Oil Production</td>
<td>97.8 e³m³ (615 MBBL)</td>
</tr>
<tr>
<td>Water-to-Steam Ratio</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Graphs:
- Oil Rate
- Steam Rate
- Cumulative Steam-to-Oil Ratio (CSOR)
- Recovery Factor (RF) vs. Pore Volume Injected (PVI)
Sub-Surface Model

- Other model uses an analytical HCSS model (Saripalli, 2013)
 - Radial heat transfer model + Joshi’s horizontal well inflow model
Surface Model
Surface Model

- Surface model is used to adjust the size of the CPF (oil, steam, and water capacity) as well as the development schedule of the pads/wells at the same time to determine an economic optimal combination.

- In this example we used a single phase approach to development, but the model also works with multiple phases of plant development.
Surface Model

• CSS monthly production profile is volatile:
CPF Constraints

• Two approaches considered:
 • Adjust the sub-surface model at every time step to maximize CPF usage via adjusting steam rate, duration, etc.
 • Relax the CPF constraints either by allowing > 100% of capacity or changing the constraint itself.

• Approach used in the paper was to change the CPF constraint itself by ignoring a percentile of upper data points:

 Central Processing Facility Oil Capacity – P_{85} of Plateau Oil Rate

• The percentile of data to ignore needs to be tuned to the model
Economic Model
Economic Model

• Price Deck
• Royalty Calculations
• Capital Costs
• Operating Costs
• Calculation of NPV
Price Deck

• Bitumen field price is used for economic calculations

• Bitumen field price = Blend Price (WCS) – Diluent Price (Condensate)
 • Adjusted for density of produced bitumen, blend, and diluent
 • Offsets for FX, marketing and transportation, quality, etc.

• Natural gas price is based off AECO with transportation fees added
Royalty Calculations

- Alberta Oil Sands Royalty regime modelled
- Sliding scale based on WTI in $CAD/BBL
- Gross revenue rate is in affect prior to project payout
- Net revenue rate is in affect after project payout
 - Net Revenue = Gross Revenue – Opex – Capex – Other Allowances

<table>
<thead>
<tr>
<th>Price WTI C$/bbl</th>
<th>Royalty Rate on Gross Revenue</th>
<th>Royalty Rate on Net Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below C$55</td>
<td>1.00%</td>
<td>25.00%</td>
</tr>
<tr>
<td>C$55</td>
<td>1.00%</td>
<td>25.00%</td>
</tr>
<tr>
<td>C$60</td>
<td>1.62%</td>
<td>26.15%</td>
</tr>
<tr>
<td>C$65</td>
<td>2.23%</td>
<td>27.31%</td>
</tr>
<tr>
<td>C$70</td>
<td>2.85%</td>
<td>28.46%</td>
</tr>
<tr>
<td>C$75</td>
<td>3.46%</td>
<td>29.62%</td>
</tr>
<tr>
<td>C$80</td>
<td>4.08%</td>
<td>30.77%</td>
</tr>
<tr>
<td>C$85</td>
<td>4.69%</td>
<td>31.92%</td>
</tr>
<tr>
<td>C$90</td>
<td>5.31%</td>
<td>33.08%</td>
</tr>
<tr>
<td>C$95</td>
<td>5.92%</td>
<td>34.23%</td>
</tr>
<tr>
<td>C$100</td>
<td>6.54%</td>
<td>35.38%</td>
</tr>
<tr>
<td>C$105</td>
<td>7.15%</td>
<td>36.54%</td>
</tr>
<tr>
<td>C$110</td>
<td>7.77%</td>
<td>37.69%</td>
</tr>
<tr>
<td>C$115</td>
<td>8.38%</td>
<td>38.85%</td>
</tr>
<tr>
<td>C$120</td>
<td>9.00%</td>
<td>40.00%</td>
</tr>
<tr>
<td>Above C$125</td>
<td>9.00%</td>
<td>40.00%</td>
</tr>
</tbody>
</table>

Alberta Oil Sands Royalty Rates\(^{(8)}\)
Capital Costs

• Along with price, and production rate (SOR), capital costs are one of the primary influences of thermal project NPV
 • Particularly important to the calculation as substantial capital is spent upfront, prior to revenue commencing

• Initial (growth) plant capital is modelled with a capital intensity ($/BBL/D) value

• Well and pad capital (growth and sustaining) is scheduled based off of first steam date

• Abandonment and reclamation capital is also estimated and scheduled
Operating Costs

- Modelled using both a fixed (cost per month) and variable (cost per barrel of oil, water, or steam) component

- Fuel gas cost is calculated using a gas-to-steam ratio (function of steam generator efficiency, steam quality, etc.)
 - Alberta CO$_2$ taxes are also modelled off of fuel gas consumption
Calculation of NPV

- Straightforward calculation at this point as all inputs have been defined:

\[
Net \, Present \, Value = \sum_{t=1}^{n} \frac{C_t}{(1 + r)^t}
\]

\[C_t = (Product \, Volume \times Received \, Product \, Price)_t - Royalties_t - Operating \, Costs_t - Capital \, Investment_t - Abandonment / Reclamation \, Costs_t\]

- Taxes were not incorporated into the model at this point but is a planned future addition

- Other metrics: IRR, PIR, payout period, supply cost, etc.
Case Study – Peace River CSS Project

• 75 HCSS wells with lengths between 1,200 m to 1,400 m and 75 m inter-well spacing:

<table>
<thead>
<tr>
<th>Reservoir Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Pay (m)</td>
<td>14.4</td>
</tr>
<tr>
<td>Average Depth to Top of Bluesky (m)</td>
<td>673</td>
</tr>
<tr>
<td>Formation temperature, °C</td>
<td>23</td>
</tr>
<tr>
<td>Initial reservoir pressure (kPa)</td>
<td>4570</td>
</tr>
<tr>
<td>Estimated reservoir pressure at beginning of steam injection (kPa)</td>
<td>3,000</td>
</tr>
<tr>
<td>Average permeability (mD)</td>
<td>50-5,000</td>
</tr>
<tr>
<td>Average porosity (fraction)</td>
<td>0.27</td>
</tr>
<tr>
<td>Average bitumen saturation (fraction)</td>
<td>0.78</td>
</tr>
<tr>
<td>Dead oil viscosity (cSt)</td>
<td>~10,000</td>
</tr>
<tr>
<td>Live oil viscosity (cP)</td>
<td>~4,000</td>
</tr>
<tr>
<td>Solution GOR(m³/m³)</td>
<td>12</td>
</tr>
</tbody>
</table>
Case Study – Peace River CSS Project

- 500 NPV optimization iterations
- CPF capacity decreased from 11,000 BBL/D oil to 9,000 BBL/D oil
- Well/pad development schedule adjusted for 5 years at CPF peak production
Case Study – Peace River CSS Project

Before NPV Optimization

After NPV Optimization
Case Study – Peace River CSS Project

- Stochastic simulation (1,000 trials) on decline model:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Distribution Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCS-WTI Discount</td>
<td>20%</td>
<td>2%</td>
<td>Lognormal</td>
</tr>
<tr>
<td>CSS Decline Model Initial Rate</td>
<td>119 m³/d (750 BBL/D)</td>
<td>11.9 m³/d (75 BBL/D)</td>
<td>Lognormal</td>
</tr>
<tr>
<td>CPF Capital Intensity</td>
<td>$220,150/m³/d ($35,000/BBL/D)</td>
<td>$22,015/m³/d ($3,500/BBL/D)</td>
<td>Lognormal</td>
</tr>
</tbody>
</table>

Table 3 - Input Variable Distribution Data Used – Decline Model
Case Study – Peace River CSS Project

- Stochastic simulation (500 trials) on analytical model:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Distribution Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir Temperature</td>
<td>22 °C</td>
<td>2.2 °C</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Viscosity Constant, A (Andrade, 1930)</td>
<td>2.97e-5</td>
<td>2.97e-6</td>
<td>Lognormal</td>
</tr>
<tr>
<td>USD/CAD Exchange Rate</td>
<td>0.95</td>
<td>0.1</td>
<td>Lognormal</td>
</tr>
</tbody>
</table>

Table 4 - Input Variable Distribution Data Used – Analytical Model
Summary
Summary

• We have developed a FISAM with optimization for thermal heavy oil projects

• Optimization (deterministic or stochastic) features are useful for early scoping of projects and competitor evaluations

• Stochastic simulation is useful for generating a range of NPV, oil rates, and other results for project/business planning

• Business decisions can incorporate a range of results rather than only a base case plan with a few sensitivities
Summary

- Working with distributions from Geology through to Business Planning may reduce errors in aggregation of values

- Plots of NPV vs. Standard Deviation of NPV of various projects would allow for efficient frontier to be constructed for corporate portfolio management

- Model workflow can be used for other processes, such as SAGD
References

