

Improving the Fuel Efficiency of New & Existing Vessels Design & Operational Measures

Jan O. de Kat
Director of Energy Efficiency & Vessel Performance

Athens 24 April 2014

Agenda

- Introduction
- Fuel efficiency considerations
 - Vessel type, trade, operational profile
- Improving operational performance
 - Technical design features
 - Newbuilds and existing vessels
 - Operational measures
- Summary

Energy Efficiency: Key Issues

- High fuel cost
 - Increased from \$140 to \$600 per ton
- Global economy (volatile freight rates)
- Overcapacity of new tonnage
- Regulatory landscape
 - Ballast water treatment
 - ECA
 - EEDI, EEOI, SEEMP, MRV
- Many energy-saving technologies
- Eco ships
- Many stakeholders
- Financing

Fuel Efficient Vessel Operation

- Newbuilding
 - Energy efficient ships, yard spec., contract details
 - Design for operational profile, hull and machinery
 - Optimization, cost effective solutions
- Retrofit on existing fleet
 - Propulsion optimization, bow, propeller/ME etc.
 - Energy-saving devices
 - Machinery optimization for new operational profile
 - Increase cargo capacity

- Operational vessel performance
 - Technical
 - Operational optimization
- Environmental compliance
 - SEEMP, EEDI, MRV
 - SOx, NOx, ECA areas
 - Ballast water treatment

Energy Loss in Propulsion: Full Block Ship

- Propulsion top three energy losses:
 - Engine heat loss ~50%, hull resistance ~30%, propeller loss ~14%

	Large tanker or bulk carrier (K. Ouchi, ISSDC, 2009)							
	Diesel engine (heat/rotation)	Shaft (transmission efficiency)	Propeller (rotation/thrust)	Sea Margin (real sea effect)	Hull			
Efficiency	0.5	0.98	0.72	0.85				
Causes	Heat of exhaust gas & cooling water	Friction of bearing and seal	Momentum, viscosity and rotational flow	Wind, waves. And ship motion	Friction, pressure, wave making			
Energy loss	50%	1%	14%	5%	30%			

Mitigation of Energy Losses

Reduction of Energy Losses

- Waste heat recovery systems
- Improve engine thermal efficiency
 - Propeller, energysaving devices:
 PBCF; Mewis duct;
 contra-rotating
 propellers; etc.
 - Hull form optimization
 - Reduce skin friction resistance: LSE coating; air lubrication
 - Refine bow and stern

Example of Shipping: Tanker Types & Trades

- Simple product
 - < 10 different cargoes (mainly oil and fuel)
- Advanced product
 - < 20 cargoes (as above + chemicals, caustic soda)
- Parcel
 - 100s of cargoes
- Size and trade:
 - < 10k DWT</p>
 - 10k 20k DWT
 - > 20k DWT

Short sea, 75 cargoes/tank/year

More local trade, 10 cargoes/tank/year

Deep sea trade, 4 cargoes/tank/year

Energy Consumption as a Function of Operational Mode: Tankers

- Propulsion
 - 70 90% (highest % for simple product tankers)
- Cargo temperature control
 - 0 10% (lowest % for simple product tankers, highest for parcel tankers)
- Tank cleaning
 - 5 15% (highest % for parcel tankers, lower for product tankers)
- Loading and discharging
 - < 5% (high % for smaller tankers, lower for the larger vessels)</p>
- Hotel load
 - Approximatley 5%

Operational Profile: Examples for Tankers

Operational Modes Distribution (%)

Operational Profile: Examples Laden vs. Ballast

Sea Passage Distribution (%)

Example: Operational Profile

Joint distribution of draft and speed

Example: Tanker Operational Profile in ECA

Average ECA operation: 13.5% Maximum 17% ECA operation for one vessel.

Operational Profile vs. Design Conditions

Operational Profile

- Distribution of drafts, speeds and M.E. load
- Indication of original design conditions

Reducing Hull Resistance in Design

- Principal dimensions: design trends not in accordance with good naval architectural principles – room for improvement
 - E.g.: C_B should be in reverse proportion to Fn; but not so in practice

- Bulbous bow: reduce wave making resistance
 - Bulb normally designed for calm water, loaded draft, single speed
 - Should be designed for relevant range of operating conditions

Improving Propulsion Efficiency

- Improve the wake field
 - Provide uniform wake field to the propeller: refine hull shape
- Recover energy or reduce vortices downstream
- Consider interaction between propeller and rudder
- Use high efficiency propellers
 - Contracted Loaded Tip (CLT)
 propellers, Kappel propellers,
 New Profile Technology (NPT)
 propellers

Energy-saving Devices

- Selecting energy-saving device
- Determining the effectiveness of devices for range of drafts and speeds in calm water (note: what happens in seaway conditions?)
- Tailoring an energy-saving device to fit a specific ship
 - For example, how to optimize propeller/hull/rudder/ES device interaction?
- Verify sufficient structural strength of the devices, no excessive vibration

Energy-saving Concepts

Kawasaki **Rudder-bulb fins**

Mitsui OSK **Propeller** boss cap fins 7-15%

Modern contra rotating propellers

based on 20th ITTC (1999)

Wake-equalizing duct

Asymmetrical stern

Stern flap 5-12%

propellers

Gruthues spoilers

Stern tunnel

Mitsui integrated ducted propeller

Reaction fins Takekuma

Hitachi Zosen nozzle

Energy-saving Devices: Possible Combinations

Makeemalizing How Separation	-/				Sumiton Osen Novice p.	Pecter of Integral Opella.	St. swirt O. ded land	Rudge Jevig	Post swillster E	Assum Sator	Mudde Kric Rud.	Popelle (sta) Bers	Diverge 805 Culb	Grin Van Proposition	19h office Whole Gas	1000 00 PM	Controlled Pollog	Dured Ble Pirt PM	Properly Properly	Reports with F.	Contract Plate	Coded dating 6	Fire and Azir Opello	Air Can Roal Uting S	Micro Systemion Populs	renewatilles ms	Towing Ener	Plethor Kies 9	Minmill of Silver	liesodini Nesodini
Wake-equalizing, Flow Separation Alle	viati	ng D	evic	es																										
Grothues Spoilers							C	C	C	C	C	C	C		C	PC		C	C	C			C	C		C	C	C	C	
Schneekluth Ducts							C	C	C	C	C	C	C		C	PC		C	C	C			C	C		C	C	C	C	
Stern Tunnels	C	PC	PC	PC	PC		C	C	C	C	C	C	C		C	C		C	C	C			C	C		C	C	C	C	
Pre-swirl Devices																										_				
Pre-swirl Fins and Stators							C	C	C	C	C	C			C	PC	C	C	C				C	C		C	C	C	C	
Mitsui Integrated Ducted Propeller			Ш		Ш		C	C	C	C	C	C	C		C	PC		PC	PC				C	C	4	C	C	C	C	
Hitachi Zosen Nozzle				Щ	Ш		C	C	C	C	C	C	C	1	C	PC		C	C				C	C	4	C	C	C	C	
Sumitomo Integrated Lammeren Duc	ct						C	C	C	C	C	C	C	-	C	PC		PC	PC				C	C	_	C	C	C	C	_
Becker Mewis Duct							C	C	C	C	C	C	C		C	PC		PC	PC				C	C		C	C	C	C	
		st-sw					_	_	_	-			_	_		1					_	_		-	_	-	-	-		
	-	udder					0.		\vdash	C	C	C	_	-	C	PC	PC	C	C			-	C	C	4	C	C	C	C	
	_	ost-sv			100					C	C	C	_	-	C	PC	C	C	C		_		C	C	4	C	C	C	C	
		ssymi								C	C	C		-	C	PC	C	C	C		_		C	C	4	C	C	C	C	
		uddei										C	C	-	C	C	C	C	C	PC	-		C	C	4	C	C	C	C	
	Pr	opell	ler B	oss C	ap F	it (P	BCF))					\perp		C	C	C	C	C				C	C		C	C	C	C	

Device Compatibility

- Theoretically fully compatible
- Partially compatible and overall efficiency not fully additive

Divergent Propeller Caps					C	C	C	C	C	PC			C	C		C	C	C	C	
Grim Vane Whels					C			PC	PC		PC		C	C		C	C	C	C	
	High-efficiency Prop	elle	ers																	
	Large Diamter/Low R	RPM				C		PC	PC	C			C	C		C	C	C	C	
	Controllable Pitch Pi	rope	llers	(CPF	P)		C	C	C				C	C		C	C	C	C	
	Ducted Propellers							PC	PC	C	C		C	C		C	C	C	C	
	Propellers with End F	Plate	25								С		C	С		C	С	C	C	
	Kappel Propellers										C		C	C		C	C	C	C	
	Contra-rotating Prop	elle	rs								С		C	С		C	C	C	C	
y not	Podded and Azimuth	ing	Propi	ulsio	n								C	C		C	C	C	C	
,								Ski	n Fri	ctio	n Re	duct	ion							
								Ai	r Ca	vity S	Syste	ms				C	C	C	C	
								М	Micro Bubbles C C							C	C	C		

Hull Form Optimization: CFD

- Initial hull form design
 - Based on a parent ship and optimum dimensions, modify the hull (shape of sectional area curve, Cp, entrance, run, LCB, fairness of hull)
- Fore-body optimization
 - Bulbous bow and underwater fore-body part are the targets; can use potential flow based approach to minimize the wave resistance or CFD-RANS

- Aft-body optimization
 - Use CFD-RANS based approach to minimize the total resistance (mainly viscous pressure and friction resistances) and improve the wake quality as much as possible
 - Propeller selection, minimize average power
- Model test verification

Resistance & Propulsion: CFD Validation

ABS

CFD: Resistance & Propulsion (Validation)

CFD: Resistance & Propulsion (Practicality)

- An un-propelled 2,000,000 point grid requires about 8 hours running on 8 cores (propelled requires 50% to100% longer)
- Convergence can be improved by carefully managing transients (BCs and ramped ICs)
- Added bonus: improved accuracy -- average error reduced to 0.8% vs. -1.07% with impulse start

CFD: Propeller Optimization in Wake Field

Propeller/Hull/Rudder/ESD Interaction Case

CFD: Verify ESD Performance Energy Component Breakdown

					[%]
	Usable	Axial KE	Rotat	tional KE	Frictional
			normal	tangential	
without ESD	56.24	19.41	0.23	6.94	17.18
with ESD	57.32	18.09	-0.62	4.87	20.39

Machinery: Design for Energy Efficient Operation

- Minimize fuel consumption across a ship's operating profile
- Hull powering requirements
 - Speed and loading conditions
- Propulsor efficiency
- Alternative propulsion plant tradeoffs
- Main engine technology options
- Electrical plant requirements
 - Loading conditions and equipment
- Generator set sizing

Improve Engine Efficiency

- Increase engine efficiency
 - Technology: electronic control; turbocharger technology; longer stroke;
 spread fuel efficiency across wider operating load range
- Increase number of cylinders and derate
 - Lower fuel consumption
 - Higher initial cost; payback period
- Energy efficiency enhancement
 - Exhaust gas bypass (EGB)
 - Variable turbine area or turbine geometry
 - Sequential turbo-charging
 - Turbocharger cut-out
 - Two-stage turbo-charging

Part-load optimization to reduce SFOC at loads below 85% MCR or low-load optimization to reduce SFOC at loads below 70% MCR, at the expense of higher SFOC in the high-load range

Main Engine Selection

- Large diameter propeller and low rpm lead to savings
- Operating costs in terms of NPV

Machinery System Components Room for Energy Efficiency Improvements

Element	Features
Main engine optimization	Apply autotuning, derating, turbocharging technologies, e.g. Variable Geometry Turbine, T/C bypass, 2-stage T/C, T/C cutout
Machinery optimization: WHR	Waste heat recovery system for main engine based on operational profile and technical specifications.
Machinery optimization: PTI/PTO	Application of power take-in and power take-out technologies, also in conjunction with design for lower speed and ability to run vessel at higher catch-up speed using PTI and shaft generator.
Pump system optimization	Fuel efficiency improvement due to application of variable frequency drives (VFDs) for demand/load dependent control of e.g. main engine cooling pumps. High efficiency pumps.
Ventilation and HVAC optimization	Fuel efficiency improvements due to VFD fan control and duct design. HVAC system analysis.
Machinery optimization: ORC	Application of Organic Rankine Cycle technology for low level waste heat recovery from main engine cooling water.
Economizers	Improve efficiency by installing an economizer (boiler) to recover waste heat from auxiliary engine.

Operational Profile: A/E Fuel Consumption

- Example: series of tankers
- Aux. engine fuel consumption as a % of M.E. fuel consumption

Ratio of Auxiliary Engines' to Main Engine consumption (%)

Operational Performance of Existing Fleet

- Technical
 - Hull and propeller efficiency
 - M.E. efficiency
 - Electrical consumption
 - Electrical production
 - On the average merchant fleet of today – huge potential

- Operational
 - Voyage optimization
 - Planning
 - Conditions
 - Fleet utilization (EEOI)
 - Cargo carrried
 - Speed (slow steaming)
 - Fleet composition; pools, operators

Requires a structured process to improve

Monitoring – analysis – benchmarking - decision support

Fuel-savings: Hull & Propeller Maintenance

- Drydocking
 - Full blast spot blast
 - Paint systems, new technologies not always performing?
 - Evaluation of treatment
- In Operation
 - Trending of performance
 - Hull cleaning intervals, type of cleaning on different paint types
 - Propeller polish
 - Evaluation of treatment

Careful monitoring and analysis are a prerequisite

Fuel-savings: Main Engine Efficiency

Engine must be maintained for efficiency and to reduce

maintenance costs

Measure fuel and power

Trending of SFOC

Engine test

- High Pmax High SFOC
- Engine balance
- ISO correction for ambient conditions
- Slow steaming low load operation
- No easy catch
 - Continuous monitoring and follow-up required

ABS

Fuel-savings: Base Load – Production

- Minimize energy consumption
 - Turn off unnecessary lights, A/C, etc.
 - Change to EE bulbs
 - Proper maintenance of consumers
 - And a lot more

- "Classic" verify that auxiliaries are run at optimum load, i.e. avoid low load operation on several engines
- SFOC on auxiliary engines
- PTO, WHR options, are the crews using it optimally?
- Measuring fuel consumption for auxiliaries and energy production not always prioritized
- Base load monitoring and feedback required

Fuel-savings: Trim Optimization

- Tables of optimum trim as function of speed and displacement
 - Model tests
 - CFD calculations
 - Self-learning algorithms from full scale
- Verification? Absolute numbers are important.
- Loading of container vessels done by stowage, need to understand, link to loading computer
- Monitoring and follow-up required, optimum trim not only parameter

Vessel Performance: Voyage Planning

Considerations:

- Appropriate charter party clauses
- Communication of voyage conditions at an early stage, fast communication of ETA changes
- Speed profile optimization
- Just in time arrival

ABS Services: Energy Efficiency

- Services
 - Design indexing and benchmarking
 - Hull and propeller optimization
 - ESD evaluation
 - Techno-economic modeling
 - Specification review
 - Advisory of energy regulations – best management practices
 - EEDI verification

 Function: services used to assess the current energy efficiency of new or existing vessels and to determine both the technical and financial impact of investing in upgrades.

Design Benchmarking

- How energy efficient is a ship's design…
 - What is/are suitable metric(s) to benchmark a given design?
 - EEDI?
 - Will a low EEDI guarantee an energy efficient ship for the complete range of operational conditions? And will a ship with low EEDI be more energy efficient during operation than a ship with high EEDI?
 - How to achieve a comparison between different vessels on an equal basis?
 - How to take into account the operational profile?

OEP Services: Vessel Performance

- Services
 - Performance monitoring
 - Performance analysis
 - Performance optimization
 - Energy audits
 - SEEMP consultation

Function: services to evaluate the performance of a vessel, benchmark its performance against its original design and similar vessels, and to offer solutions based on fuel saving strategies, to bring about the optimization of performance

Summary

- There is significant potential to improve the energy efficiency of new and existing vessels
- Fuel efficient design requires a holistic approach: integrated hull, propeller and machinery systems optimized for operational profile
- Fuel efficient vessel operations require:
 - Monitoring system and a framework
 - The human factor communication, training
- ABS services:
 - Operational and Environmental Performance
 - Data management Nautical Systems
 - Training ABS Academy courses

www.eagle.org