

Waste Heat Recovery in Marine Propulsion Systems

SNAME, Athens/Greece, February 2014 <u>Dr. Ioannis Vlaskos</u>, Peter Feulner, Dr. Constantine Michos

Contents

- Introduction
- Mechanical Turbocompounding
- Electrical Turbocompounding
- Hybrid System
- Organic Rankine Cycle (ORC)
- Stirling Engine
- Ericsson Engine
- Thermo-Electric Generator (TEG)
- Comparison of technologies

Contents

Introduction (Ricardo / HRS)

- Mechanical Turbocompounding
- Electrical Turbocompounding
- Hybrid System
- Organic Rankine Cycle (ORC)
- Stirling Engine
- Ericsson Engine
- Thermo-Electric Generator (TEG)
- Comparison of technologies

SNAME 2014

Engines

Software

Vehicle Systems

Hybrid & Electric Systems

Performance Products

Strategic Consulting

Driveline & Transmission Systems

Intelligent Transportation Systems

Our Strategy

Market Sectors provide domain expertise and ensure relevance, Product Groups provide deep content technology and delivery via world class global engineering teams

Project Management Research & Development Powertrain Vehicle Electrical & Electronics Computer Aided Engineering Test & Development Facilities

PRODUCT

MARKET SECTOR

Marine

Clean Energy & Power Generation

Rail

Defenc

Agricultural & Industrial Vehicles

Commercial Vehicles

Germany

Motorcycles & Personal Transportation

High Performance Vehicles & Motorsport

Czech Republic

China

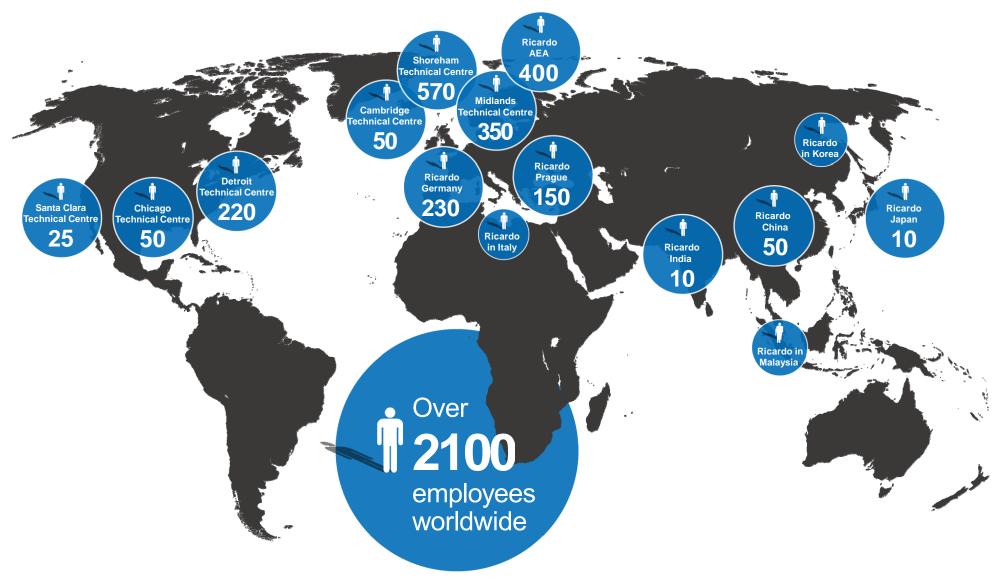
Japan

Passenger Car

Government

United States

United Kingdom


February 2014

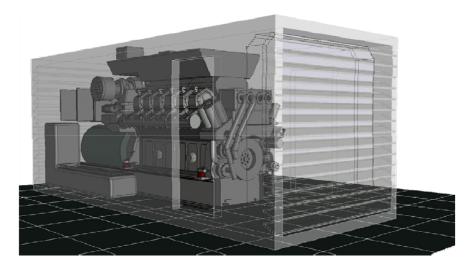
GEOGRAPHY

Where we are

Our Heritage

More than 90 years of successful project delivery across multiple market sectors

Delivering excellence through innovation and technology



Cost effective solutions CO₂ reduction Product performance enhancements Skills and capability transfer

New High Speed Diesel Engine Family - ~4.5L/Cyl for V12 / 16 / 20 Stationary and Off-Highway Applications in Development

Situation and Objective

- Fast delivery of conceptual design in ~3 months with team of 25 engineers for basic decisions (bore, stroke, V-angle)
- Fast track programme for commercialisation of single market segment
 - 3D-design and analysis, drawings and supplier interaction to enable parts in time for
 - Concept design frozen and detailed design ongoing
- Platform development progressing in parallel

Approach

- Global project team (>25 people) centred at Ricardo Schwäbisch Gmünd involved with customer in various work streams
 - Design
 - Controls
 - Combustion & Emissions
 - Analysis
 - Reliability

Value to Customer

- Ricardo offers great experience with many recent clean sheet engine design programmes for Large Diesel, Gas and DualFuel Engines
- Time to Market significantly reduced compared with typical OEM development duration
 - Experienced staff with broad background
 - Flexibility of team vs. Work stream needs
- Comprehensive learning from global extensive Onand Off-Highway experience brought into programme

Our Clients

We have experience working with leading companies across a number of demanding market sectors

Engines

Engineering solutions of all types of engines from concept to production incorporating the very latest in technological innovations. Design, Test & Validation, and Low-Volume Manufacture.

Experienced delivery of all engine types

Motorcycle and Scooter

Passenger Motorsport **Car Diesel** and High and Gasoline Performance

HEV and Waste Heat Recovery

Research and Advanced **Off Highway On Highway Heavy Duty Heavy Duty** Diesel Diesel

Alternative Large **Fuels** Marine and Industrial

Bespoke Military and **UAV engines**

Targeted Solutions for the Global Industry

- Multi sector technology road maps for emissions & efficiency
- Minimum cost CO2 reduction
- Upgrades for performance, emissions, efficiency and cost
- Turnkey project delivery combining innovative technical and business solutions
- High value low volume engine design, development and manufacture
- Objective and subjective NVH development for all engine types and applications

Capability

- Design and development of all types of gasoline, diesel, biofuel and gas engines
- Global competence for on & off highway engines up to 560kW
- Global expert teams specialise in specific engine types
 - Large Engines
 - **Motorcycles**
- Production calibration including OBD and homologation
- Control algorithm development
- Warranty and cost reduction
- Forensic services and failure analysis

- **TVCS** -Twin Vortex Combustion System for minimum diesel particulate and DPF deletion
- SGDI Spray-guided gasoline combustion technology for diesel equivalent efficiency
- High efficiency lean & EGR boosted DI
- Waste heat recovery systems for all engine applications
- High efficiency aftertreatment
- Novel concepts and new high efficiency combustion cycles
- Innovative piston technology for reduced cost, weight & friction

Driveline & Transmission Systems

Global 'One-Stop' Capability from Concept to Production for Transmission and Driveline Systems. Design, Prototype, Test & Validation, and Low-Volume Manufacture.

Experienced delivery of all transmission and driveline types Image: state of the sta

Targeted Solutions for the Global Industry

- Increased efficiency and reduced emissions / CO₂
- Compressed timescales through modular solutions and pre-developed IP
- Cost and weight reduction
- Integrated powertrain solutions
- Technology 'roadmapping'

'One-Stop' Capability

- Global delivery
- Mechanical, hydraulics, electronics and software
- In-house prototype manufacture and assembly
- Low volume production supply
- Full in-house test capabilities
- Hybridised and EV transmissions
- Benchmarking / target setting
- Advanced toolsets for geartrain design and shift quality
- Brand attribute development
- Productionisation

- Modular DCT, AT, AMT and CVT control software and algorithms
- Flywheel-based energy capture and storage systems
- Advanced actuation and dry clutch solutions for efficiency, cost and performance
- Hydraulic module design and development
- Reliability and efficiency enhancing sub-system technologies for wind-turbines
- Torque vectoring and AWD

Vehicle Systems

Powertrain

technologies in the guickest possible time and at lowest cost.

Experienced delivery of vehicle systems

The optimum use of digital tools to deliver high guality vehicles using the latest available

Vehicle Design

Complete

Structures Systems Integration

Integration (incl crash)

Lightweight

Systems (incl HEV/EV) Development

Thermal

Chassis and Vehicle Attribute Suspension Design Optimisation

Enerav **Recovery** / Optimisation Prototype Complex Vehicle **Systems** Build Analysis

Targeted Solutions for the Global Industry

Electrical

- Synergistic systems integration approach enabling cost, weight and fuel consumption optimised development
- Fast-track product development processes using a structured quality gateway approach
- Flexible and collaborative approach providing tailored, innovative and imaginative solutions on a global basis
- Technology transfer, training, and on site engineering support

Capability

- Full vehicle programme delivery capability on a global basis
- Powertrain integration
- Electrical systems integration
- Chassis and suspension
- Lightweight structures
- Thermal systems development
- Vehicle attribute optimisation (NVH, Crash, Vehicle Dynamics)
- Vehicle packaging and DMU
- Defence and special vehicle design, development & build
- **Development /validation testing**
- Prototype build

- Complex systems modelling including Total Vehicle Fuel Economy approach
- Meeting aggressive CO₂ targets through innovative vehicle and future transport solutions
- Active and critical safety systems
- Energy recovery and machine optimisation through the integration of hybrid, EV and flywheel technologies
- Use of advanced materials, composites and lightweight structures

Hybrid and Electric Systems

Unparalleled experience and expertise in vehicle hybridization, electrification, and the deployment of next-generation energy management and storage solutions

Targeted Solutions for the Global Industry

- Reducing the cost and weight of energy storage
- Compressed development times
- Battery system development
 Centre of Excellence
- Complex programme management and delivery
- In-depth research of consumer attitudes and predicted behaviours based on the mass roll-out of plug-in vehicles

Capability

- World-class HEV development resources and facilities
- Solutions for the entire HEV product life-cycle
- Business case evaluation
- Safety critical design and control strategy development
- Design and simulation
- NVH
- Power electronics and emachines
- Range extended EVs
- Systems integration
- Thermal systems

- R&D for future hybrid and electric vehicle efficiency improvement
- Next-generation energy management and storage
- Charging station development expertise including smart metering and power distribution strategy development
- Solutions for latest legislation, regulation and safety

Intelligent Transportation Systems

Connected vehicle solutions that improve safety and performance, lower emissions, increase availability and lower the operating costs of mobile assets

Experienced delivery of intelligent transportation systems

Telematics & Fleet Management

Remote Infotainment Monitoring & and Connected **Prognostics**

Coaching Vehicle

Vehicle Control and **Mechatronics**

Total Vehicle Prototyping Fuel & Production Economy Engineering

Safetv Critical Software

Integrated **Autonomous H/EV Energy** Vehicle Management **Systems**

Targeted Solutions for the Global Industry

- Mobile asset performance optimisation
- Reduced emissions
- Increased safety
- Increased convenience
- **Efficient logistics**
- Integration of vehicles with infrastructure
- Technology trend mapping and cost reduction studies

Capability

Driver

- Design and prototype development through to production
- Systems architecture, production engineering, and standardization
- Implementing connected vehicle hardware and services
- Wireless connectivity
- V2I and V2V safety and and mobility applications development
- Neural networks based prognostics systems design

- Remote monitoring and prognostics
- Driver assistance systems
- Advanced vehicle control systems
 - Intelligent grade negotiation
 - Automatic acceleration and braking
 - Energy-efficient heating and cooling
 - Dynamic route guidance
- Connected vehicle technologies

Industry

Tutorials and documentation

to large stationary/marine

Targeted Solutions for the Global

powertrain engineers, for

Proven accuracy, functionality

Applicable to any powertrain

system, from small two-stroke

Software designed by

powertrain engineers

and value

Diesel

- Global footprint of local sales and support staff
- Multi-language support

Capability

Fast concept and layout studies - rapidly test ideas and focus development

Component and system analysis of powertrains and vehicles

- Component analysis refine designs, predict performance and reduce reliance on early physical testing
- Connect components for detailed system analysis - test interactions and focus expensive physical testing on critical issues
- Robust and accurate physics solvers, specifically developed for current and future powertrain technologies

Advanced Product Offerings

- Native CAD import
- Native coupling to Matlab/Simulink
- Industry leading physical solvers for powertrain NVH, durability and combustion
- Patent-pending realtime engine models using WAVE-RT
- Specialized spray and combustion models for direct injected engines
- All tools migrating to a common user interface

2

Mechanical Dynamics Solutions for predicting durability, fatigue, NVH and performance

development from concept to delivery.

Ricardo Software

A portfolio of innovative analysis solutions enabling engineers to accelerate powertrain

Fluid Dynamics Solutions for predicting

performance and emissions

Strategic Consulting

Ricardo offers a comprehensive portfolio of proven management consulting services covering the whole vehicle lifecycle:

Quality and Warranty Management

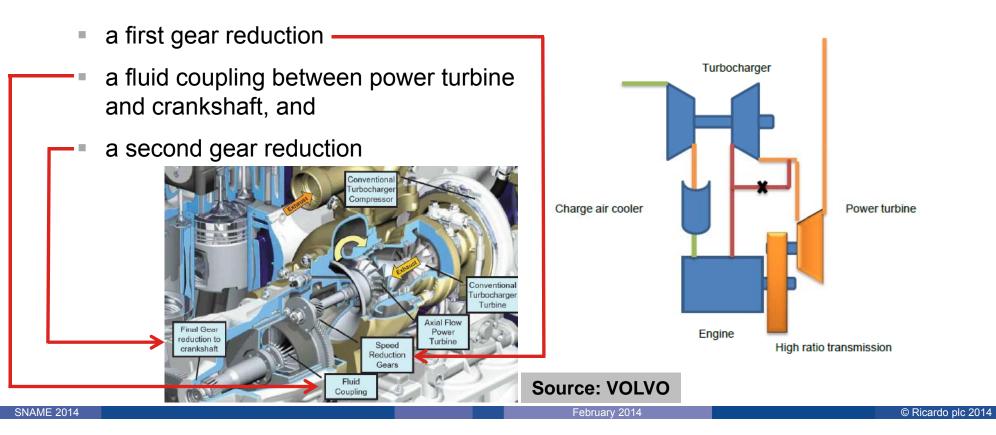
Introduction HRS

- We will concern ourselves here with combustion engines like Diesel-engines, gasturbines etc. and the options of converting the heat they can not convert (predominantly the exhaust gas heat) into additional useful work*
- There are a number of physical effects that can be utilised for this
 - Thermodynamic this embraces cycles (and the respective machines) that can be combined with advantage to the cycle of the primary engine
 - Chemical these options convert exhaust heat plus available substances (e.g. Diesel-fuel and water) into a new fuel of higher energy content
 - Electro-chemical and electronic there are physical effects like the Seebeck-Effect and the properties of fast ion-conductors (e.g. BASE), which generate electricity directly from a heat flux over a temperature difference
- Following is a wide overview of these technological options, a quantitative assessment is made of some candidates in order to generate a more detailed impression of the Situation on board ships and ways to adapt WHR plant to that

Contents

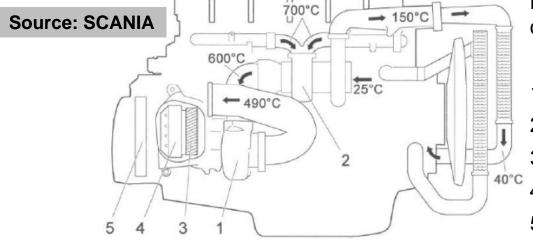
• Introduction

• Mechanical Turbocompounding


- Electrical Turbocompounding
- Hybrid System
- Organic Rankine Cycle (ORC)
- Stirling Engine
- Ericsson Engine
- Thermo-Electric Generator (TEG)
- Comparison of technologies

Operating concept

19

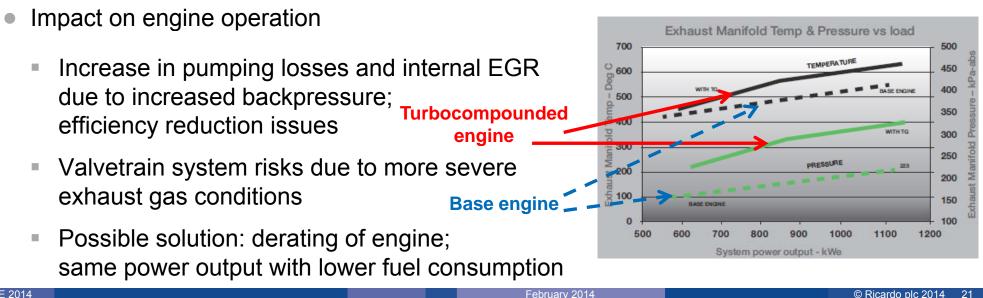

- Power turbine installed after T/C turbine
- Pressure difference across power turbine used to convert exhaust gas heat energy to mechanical work
- Energy converted to shaft power and fed into the engine via a transmission mechanism, including:

Current status of development/implementation

• Commercial system installation in truck engines

<image>

Example of gas temperature distribution in the system


- 1: Power turbine
- 2: T/C turbine
- 3: First gear reduction
- 4: Fluid coupling
- 5: Second gear reduction

Limiting factors

- High gear ratios, in combination with high power turbine rotational speeds, make gearbox construction very complex; torsional vibrasions issues
- Additional cooling of exhaust gases reduces aftertreatment systems effectiveness
- Control issues due to complexity
- Impact on T/C operation
 - Need for T/C rematching/optimization advanced T/C development due to increase in exhaust manifold pressures (up to ~1 bar) and temperatures (up to ~70 K)

Overall system performance improvement

- BSFC improvement ~ 3% at steady-state full load conditions
- Minimal to negative impact on BSFC at some points, especially at low loads
- Narrow speed range engine with turbocompounding coupled to a CVT with 95% efficiency: fuel efficiency improvement ~ 5%

Contents

- Introduction
- Mechanical Turbocompounding

Electrical Turbocompounding

- Hybrid System
- Organic Rankine Cycle (ORC)
- Stirling Engine
- Ericsson Engine
- Thermo-Electric Generator (TEG)
- Comparison of technologies

Operating concept

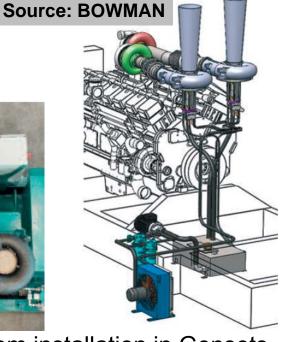
- Turbogenerator
 - Power turbine, with permanent magnet generator on the same shaft, installed after T/C turbine
 - Power Electronics Module for: a) converting generated electrical energy into grid standard AC current, and b) controlling turbine speed
- E-Turbo
 - Electrical machine placed onto T/C shaft
 - Recovered turbine power higher than consumed compressor power net power used for electricity generation
 - T/C shaft can be motored for boost increase and transient performance improvement

Current status of development/implementation

Net/Battery

 (\neg)

HPWastegate


T-Generator

P Wastegate

Turbogenerator

Source: BOWMAN

- Commercial system installation in Gensets
 - Fixed geometry turbine for better efficiency at full load
 - Variable geometry turbine for increasing part load and part speed output
 - Due to turbine operation at very low pressure ratios, where the efficiency of the conventional turbines is unacceptably low, extensive design and development effort for new highly efficient turbine geometries is still needed
- Potentiality for incorporation in advanced turbocharging architectures

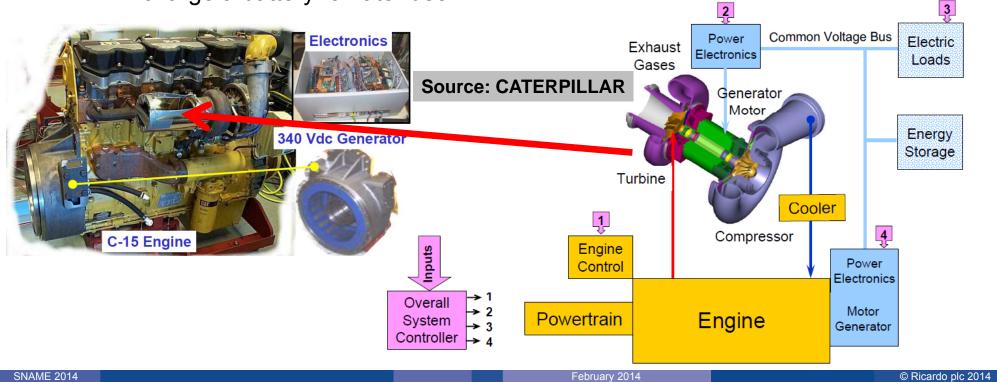
2

ntercooler

HP-C Bypass

ntercoole

Current status of development/implementation (cont'd)


26

- E-Turbo
 - Generated electrical energy can be used to:
 - drive a crankshaft motor
 - drive ancillaries
 - charge a battery for later use

MET Hybrid turbocharger

Source: Mitsubishi

Pros & Cons

- Turbogenerator
 - Pros
 - Potentially effective operation over a broad range of speeds and loads due to turbine decoupling from engine
 - Isolated coupling; improved transient performance and emissions
 - Simple addition to existing platforms
 - Cons
 - Operational constraint due to electric machine efficient performance only at an optimum speed over the entire engine speed range

Pros & Cons (cont'd)

- E-Turbo
 - Pros
 - Very small package
 - Shaft can be motored to control boost and improve transient performance and emissions
 - Cons
 - Relatively low energy recovery possibilities due to compressor power demands
 - Durability challenges of electric machine due to high exhaust gas temperatures

Overall system performance improvement

- Turbogenerator
 - BSFC improvement ~ 7% with T/C rematching/optimization
 - High-duty cycle steady state operation for maximum benefit
- E-Turbo
 - BSFC improvement ~ 5% on a cycle basis; ~ 9-10% with high efficiency T/C components at full load conditions

Contents

- Introduction
- Mechanical Turbocompounding
- Electrical Turbocompounding

Hybrid System

- Organic Rankine Cycle (ORC)
- Stirling Engine
- Ericsson Engine
- Thermo-Electric Generator (TEG)
- Comparison of technologies

General power concept & arrangements

Emergency

Diesel generators

generator

Switchboard

Reduction gear with overspeed

> Exh. gas turbine

clutch

Steam

turbine

HP

Reduction

gearbox

Source: MAN B&W

Generator.

LP

HP

Exhaust gas receiver

Main engine

Superheated

steam

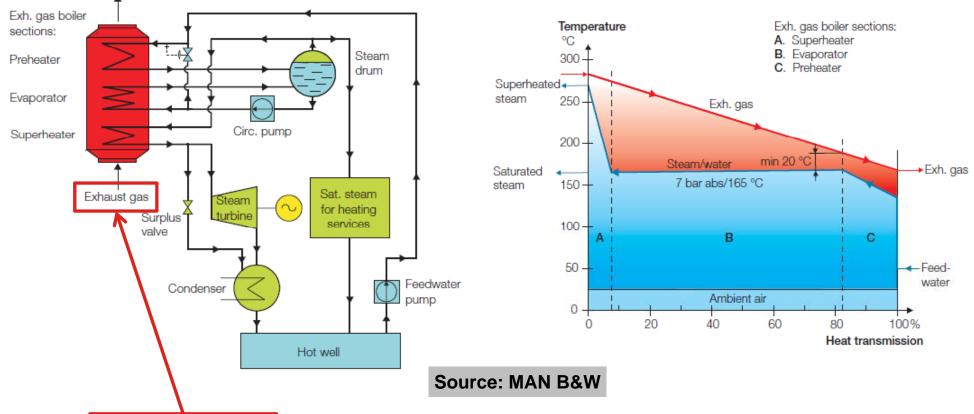
AC alternator

- Based on water-steam Rankine cycle
- Components
 - Exhaust gas boiler
 - Steam turbine
 - Exhaust gas turbine
 - Generator (common for both turbines)
- Exhaust gas bypasses T/Cs (load>50% SMCR)
 - => amount of air reduced
 - => exhaust gas temperature after
 - T/Cs and bypass increased
 - => steam production from boiler increased
- Arrangements
 - PTG Power Turbine Generator: Stand-alone power turbine
 - STG Steam Turbine Generator: Stand-alone, single- or dual-pressure steam turbine

chargers

Shaft motor/ generator

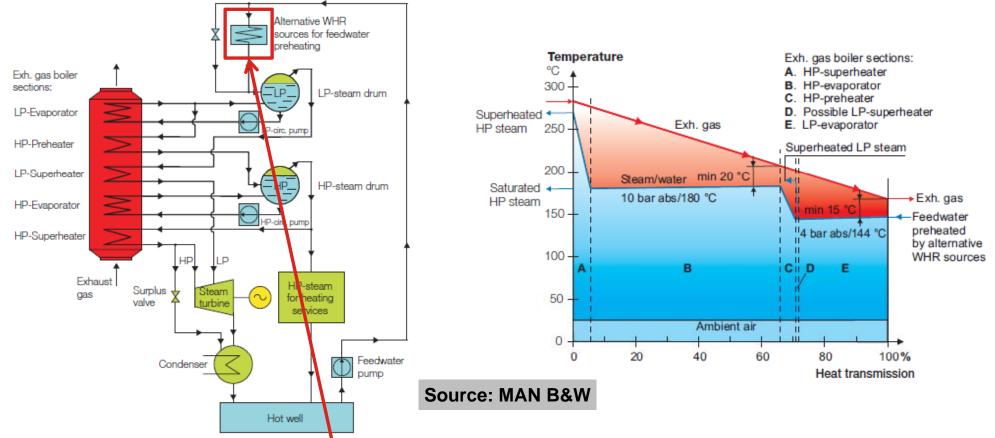
 ST-PT - Steam Turbine-Power Turbine Generator: Power turbine and single- or dual-pressure steam turbine


Exh. gas boiler

Steam for

heating

Heat recovery potential from single-pressure Rankine cycle



- Only exhaust gas heat is utilized
- No jacket water heat or scavenge air heat is utilized

Heat recovery potential from dual-pressure Rankine cycle

- LP preheater cannot be included at the last section of the boiler due to possibility for sulphur oxides condensation on preheater tubes
- Instead, jacket water heat or scavenge air heat is utilized for LP water preheating
- This way, exhaust gas heat exclusively available for increased steam production

Gain from hybrid systems – Dependency on main engine size

 ST-PT single-pressure system Engine power Max. relative power production 8-10% fuel consumption reduction 20,000 kW 6.5% 80.000 kW 8.5 % ST-PT dual-pressure system (data for 85% SMCR) 9-11% fuel consumption reduction Rule of thumb Engine power System ST-PT > 25,000 kW < 25.000 kW PTG or STG < 15.000 kW PTG or ORC Possible annual savings of fuel costs mill. USD/year Electric power production of TES kW Electric power production relative to the main engine power output 7.000-% Normal service : 85% SMCR in 280 days/year 1.2 Dual press. 13 Main engine 12K98ME/MC Fuel consumption : 0.17 kg/kWh SMCR = 68,640 kW at 94 r/min 12 6,000 Fuel price : 160 USD/t Single press. Dual press. 11 ISO amb. cond. 1.0 -ISO ambient reference conditions 10 5,000 Single press. 9 0.8 -8 4,000-7 0.6Steam turbine Steam turbine 3,000-6 5 0.4 2,000 4 3 0.2 1,000 2 1 0 Source: MAN B&W 0 20,000 40,000 60,000 80,000 kW 50 60 70 8Ò 90 100 % SMCR Main engine shaft power Size of main engine, SMCR power

Contents

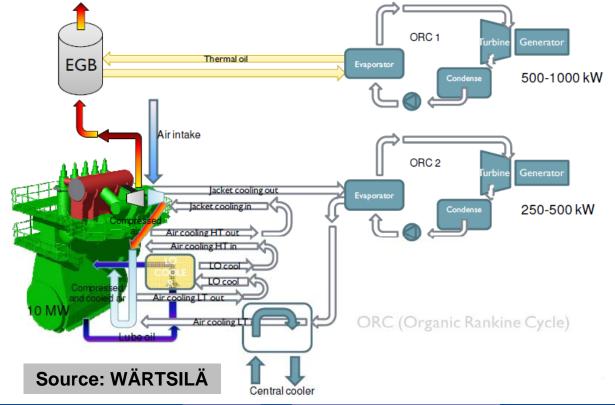
- Introduction
- Mechanical Turbocompounding
- Electrical Turbocompounding
- Hybrid System

Organic Rankine Cycle (ORC)

- Stirling Engine
- Ericsson Engine
- Thermo-Electric Generator (TEG)
- Comparison of technologies

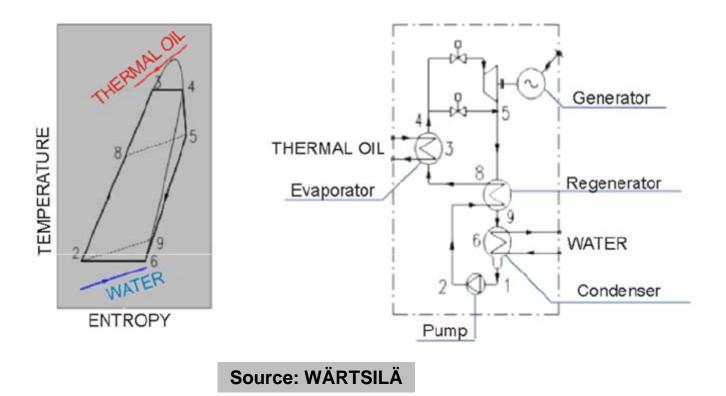
Clausius – Rankine cycle machines in application

- The steam engine that drove the industrial revolution has found its definitive embodiment in large scale (GW) power station employing water as their working fluid and multi stage axial (Parsons) turbines as expanders
- The case for waste conversion is more complicated
- Organic working fluids are of some interest
- After application in large scale electricity production, geothermal/biomass applications, ORC systems are currently developed for:
 - Genset applications
 - Marine applications


using heat sources such as: exhaust gas and cooling circuit of IC engine and gas turbine exhaust gas

 Ricardo is involved in the development of ORC systems for automotive applications and also for those new applications

Cycle configuration


- Based on Rankine cycle with organic working fluids
- Dependence on availability of heat sources (e.g. exhaust gas, jacket cooling water, lube oil, charge air)
- Flexibility of system architecture in case of more than one heat sources, e.g. boilers in series, in parallel, in two individual circuits

Organic Rankine Cycle (ORC) Cycle configuration (cont'd)

- System configuration for exhaust gas heat utilization
 - Intermediate thermal oil used since organic fluid is kept only in the primary cycle
 - Regenerator used for cycle efficiency increase

Heat exchangers design issues

- Typical **minimum** pinch points for heat exchangers' design:
 - Evaporators & recuperators : 10 °C
 - Air-cooled condensers: 35 °C
 - Water-cooled condensers: 3 °C
- Mediums with high **critical temperature**
 - Lower temperature difference with heat source at the evaporator reduction in heat transfer irreversibilities
 - Higher mass flow rates and therefore larger and more expensive evaporator
 - Therefore, a compromise must be made for the decision of the evaporation temperature

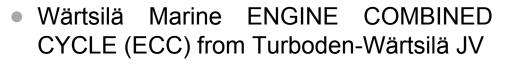
Boundary conditions for marine applications

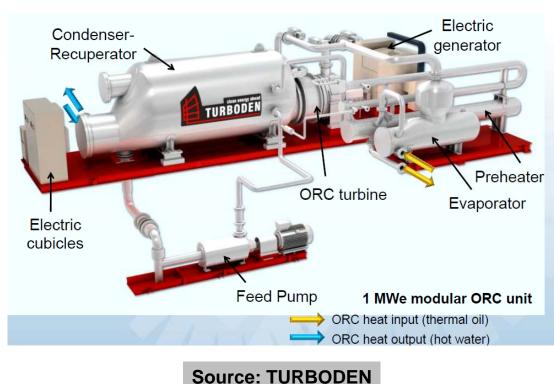
- Exhaust gas input temperature : 250 300 °C (2-S) / 300 350 °C (4-S)
- Exhaust gas output temperature : > 160 °C

(for avoiding sulphur acid condensation - dependent on fuel sulphur content)

- Jacket cooling water temperature: 85 °C
- Lubricating oil temperature : 60 °C
- HT charge air temperature : 100 °C (value for 2-S)
- LT charge air temperature : 40 °C (value for 2-S)
- Condensation temperature : 30 °C

(sea water cooling of condenser; $T_{cond} \approx T_{sea} + 5 \circ C$)

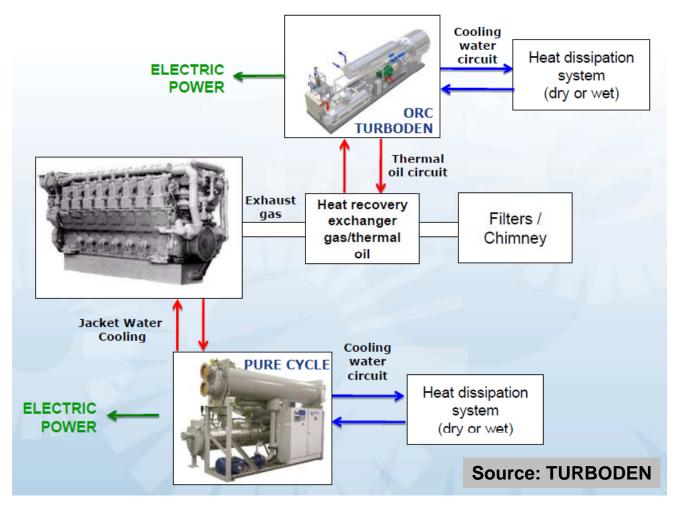

Currently existing marine ORC applications – OPCON MARINE


- ORC Powerbox from OPCON MARINE for medium-sized and large ships
 - Useable heat sources: scavenging air coolers (FW-cooling water), waste steam, jacket cooling (HT-system), thermal oil system
 - Installed in a 75,000 gross tonnage MV
 - Main engine: 2-S MAN B&W 8S60ME-C8, constant-pressure turbocharging system, 19,040 kW @ 105 rpm
 - Useable heat source: jacket cooling water
 - Up to 500 kW additional power

Currently <u>available (not yet applied)</u> marine ORC applications – Turboden-Wärtsilä

- Heat source: exhaust heat (300 < T (°C) < 500)
- Up to 10% additional power

- PURECYCLE power system from Turboden
 - Heat source: jacket cooling water (91 < T (°C) < 149)
 - Up to 3% additional power


Source: TURBODEN

Currently <u>available (not yet applied)</u> marine ORC applications – Turboden-Wärtsilä (cont'd)

- Possibility for combined operation of ECC and POWERCYCLE
 - Minimum thermal power input 2.5 MWth for Turboden ORC system application

General criteria for working fluid selection

- Typical fluids that can be used in ORC applications:
 - Halocarbons
 - CFC (Chloro-Fluoro-Carbon)
 - HCFC (Hydro-Chloro-Fluoro-Carbon)
 - HFC (Hydro-Fluoro-Carbon)
 - Hydrocarbons (e.g. ethane, propane, butane, ethylene, propylene, toluene)
 - Alcohols (e.g. methanol, ethanol)
 - Inorganic fluids (e.g. ammonia, water, carbon dioxide)
- No optimal working fluid exists specifically for ORC applications
- Criteria can be divided into 4 general categories:
 - Usage requirements
 - Thermodynamic requirements
 - Legislative requirements
 - Safety requirements

Usage requirements for working fluid selection

Freezing point T	T_freeze < -50 ℃	Avoid freezing at very low ambient
		temperatures
Evaporation T temperature	T_evap > T_ext_max ≈ 50 °C	Avoid evaporation at very high ambient temperatures
Condensation (a) temperature	@ p_cond, 60 °C < T_cond < 90 °C	At very high ambient temperatures, avoid heat transfer from ambient to working fluid
Exhaust gas T temperature	T_exh_min > 150 °C	Avoid sulphur acid condensation
	P_evap < 30 bar P_evap < P_crit	Avoid exceeding strength limit of materials Avoid working fluid degradation
Condensation pressure P	P_cond ≥ 1.2 bar	Avoid ait infiltration in condenser
Slope of saturation P vapor curve	Positive or isentropic curve	Avoid droplets creation in expander
Vapor density H	High vapor density	Avoid high volume rates, leading in high pressure losses in HXs and increased expander sizes
Viscosity L	Low viscosity	Achieve high heat transfer coefficients and low pressure losses
Thermal conductivity H	High thermal conductivity	Achieve high heat transfer rates in HXs

Thermodynamic requirements for working fluid selection

Process	Target in therm. properties	Characteristic on T-s diagram
Preheating - Evaporation - Superheating	c _p as low as possible L _{evap} as low as possible	Isoenthalpy curves as far as possible Saturation curves as close as possible
Expansion		Isoenthalpy curves as close & orizontal as possible
Vapor cooling - Condensation	c _p as low as possible L _{evap} as low as possible	Isoenthalpy curves as far as possible Saturation curves as close as possible

Legislative requirements for working fluid selection

Environmental issue	Working fluids affected	Legislation
Ozone Depletion Potential (ODP)	 CFCs banned since 2010 HCFC to be banned gradually until 2020 (99.5% of reference amount) 	Montreal Protocol
Global Warming Potential (GWP)	 HFCs are listed (not banned) GHG emissions reduced to 8% of 1990 value until 2012 	Kyoto Protocol Regulation No. 842/2006 of EU

Industrial		GWP for 100-year time horizon		
designation or common name	Chemical formula	Second assessment report (SAR)	4 th assessment report (AR4)	
HFC-23	CHF3	11,700	14,800	
HFC-32	CH ₂ F ₂	650	675	
HFC-41	CH ₃ F ₂	150	92	
HFC-125	CHF ₂ CF ₃	2,800	3,500	
HFC-134	CHF2CHF2	1000	1,100	
HFC-134a	CH ₂ FCF ₃	1,300	1,430	
HFC-143	CH ₂ FCHF ₂	300	353	
HFC-143a	CH ₃ CF ₃	3,800	4,470	
HFC-152	CH ₂ FCH ₂ F		53	
HFC-152a	CH ₃ CHF ₂	140	124	
HFC-161	CH ₃ CH ₂ F		12	
HFC-227ea	CF3CHFCF3	2,900	3,220	
HFC-236cb	CH2FCF2CF3		1,340	
HFC-236ea	CHF2CHFCF3		1,370	
HFC-236fa	CF3CH2CF3	6,300	9,810	
HFC-245ca	CH2FCF2CHF2	560	693	

• Next generation low GWP fluorinated fluids:

HFOs (Hydro-Fluoro-Olefins)

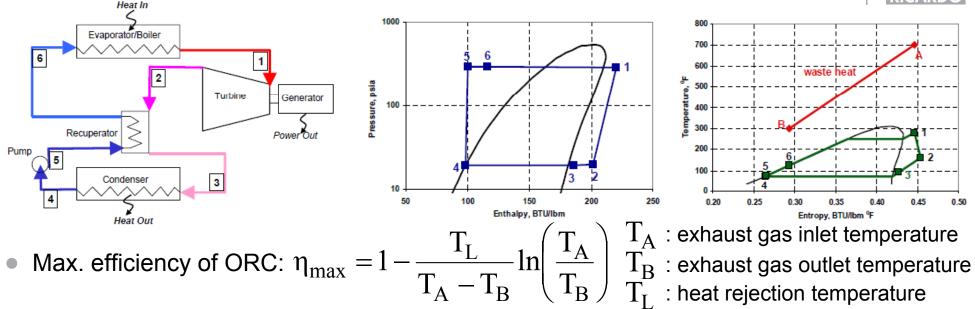
e.g. HFO-1235yf (2,3,3,3-tetrafluoropropene)

Safety requirements for working fluid selection

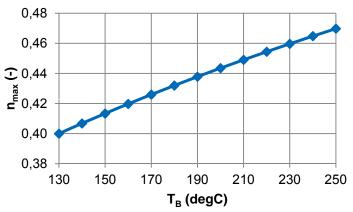
- Two main safety issues:
 - Flammability
 - Toxicity
- Applicable standard for working fluid categorization
 - NFPA 704 standard (NFPA = National Fire Protection Association)

💠 NFPA Rating Explanation Guide 🔶					
RATING NUMBER	HEALTH Hazard	FLAMMABILITY Hazard	INSTABILITY Hazard	RATING SYMBOL	SPECIAL HAZARD
4	Can be lethal	Will vaporize and readily burn at normal temperatures	May explode at normal temperatures and pressures	ALK	Alkaline
3	Can cause serious or permanent injury	Can be ignited under almost all ambient temperatures	May explode at high temperature or shock	ACID	Acidic
2	Can cause temporary incapacitiation or residual injury	Must be heated or high ambient temperature to burn	Violent chemical change at high temperatures or pressures	OX	Oxidizing
1	Can cause significant irritation	Must be preheated before ignition can	Normally stable. High temperatures make unstable	*	Radioactive Reacts violently or
-				₩	explosively with water
0	No hazard	Will not burn	Stable	₩ox	Reacts violently or explosively with water and exidizing

Organic Rankine Cycle (ORC)


Performance criteria - Approach for working fluid selection

- ORC thermal efficiency for various working mediums
 - Heat source cooled down from 370 °C to 150 °C (exhaust gas case)
 - Evaporator saturation pressure equal to 95% of critical pressure
- Condenser saturation temperature: 22 °C 0.35 Ideal recuperated cycle 0.30 Ideal non-recuperated cycle Thermal efficiency 0.25 0.20 0.15 Actual recuperated cycle 0.10 Actual non-recuperated cycle HFC245fa HFC236fa HFC134a HCFC123 **CFC113** CFC114 0.05 CFC11 0.00 200 250 300 350 400 450 Critical temperature, degr F
 - Both recuperated and non-recuperated cycles
 - Both ideal (no component losses) and non-ideal (turbine efficiency: 80%, pump efficiency: 40%, piping pressure losses: 2%) cases
 - Selected medium the one that gives the max. ORC thermal efficiency

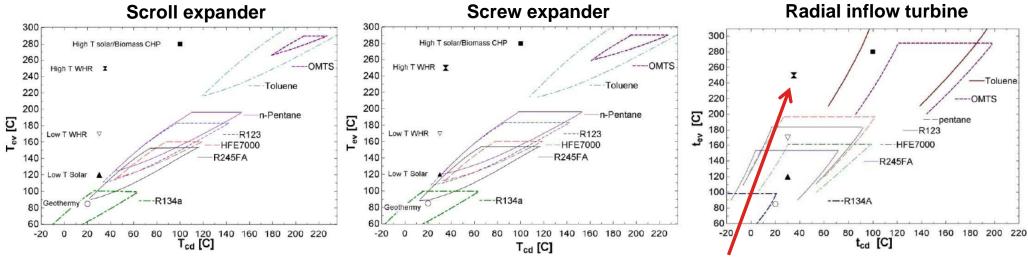


Maximum power output vs maximum efficiency

• Max. efficiency increases as T_R increases, i.e. less power output produced

 In ORC applications, target is max. power output and not max. ORC efficiency; therefore, exhaust gas outlet temperature should be as low as possible

The operating map approach for working fluid selection



- Working medium selection closely linked to operating conditions (ORC application) and expansion machine
- Method based on limitations (boundary conditions) of expansion machines, based on previous experience:
 - Scroll & screw expanders:
 - min. & max. volumetric flow rates
 - max. pressure ratio
 - isentropic efficiency
 - Turboexpanders:
 - max. wheel tip speed
 - min. & max. turbine specific rotational speed
 - max. Mach number at nozzle exit and at rotor exit
 - max. turbine rotational speed

The operating map approach for working fluid selection (cont'd)

 For each expander, its limitations are used to construct an operating map including various organic working fluids on a (evaporating temperature) – (condensing temperature) diagram

Limits of fluid curves

Turboexpander has wider capabilities compared to the positive displacement expanders since only one application is outside the defined maps

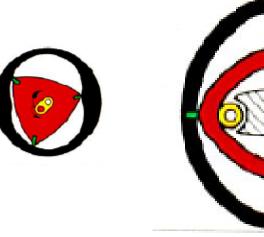
Curve	Limit (scroll-screw expander / turbine expander)
Left	Under-expansion losses / max. Mach number at nozzle exit or min. turbine specific rotational speed
Right	Volume coefficient / max. turbine specific rotational speed
Upper	Critical temperature of fluid / Critical temperature of fluid

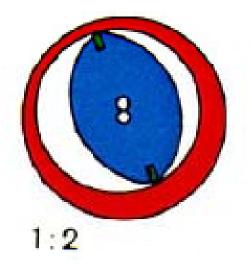
Expander technology

- Choice of expansion machine critical for Rankine cycle based WHR system success
- Two main categories under which a number of basic operating principles can be classified:
 - Positive displacements machines
 - Reciprocating piston machines
 - plunger piston
 - crosshead
 - Rotary 'piston' machines
 - vane-type
 - Wankel-type
 - scroll-type
 - screw-type (Lysholm)
 - Continuous flow machines
 - Turbines (reaction or pressure type)
 - radial
 - axial

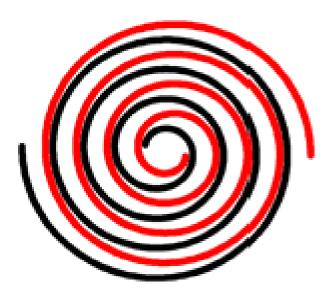
- <u>Reciprocating piston</u>
 - Similar to combustion engine
 - Alternatives:
 - plunger
 - crosshead
 - controlled valves
 - automatic (reed) valves
 - Challenges:
 - package
 - lubrication
 - vibration
 - wear

- Rotary 'piston' vane-type
 - Single acting (left) or double acting (right)



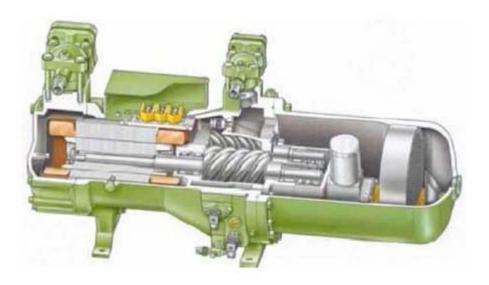

- Main issues:
 - sealing
 - lubrication

- Rotary 'piston' Wankel-type
 - Implemented both as air compressor and combustion engine
 - Potentially only rotating parts
 - Two-stroke versions (right) preferable

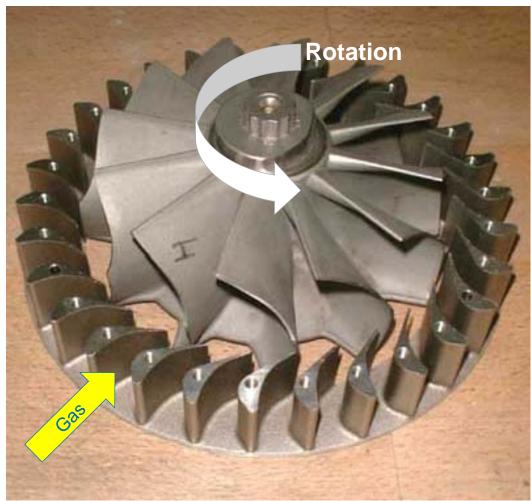


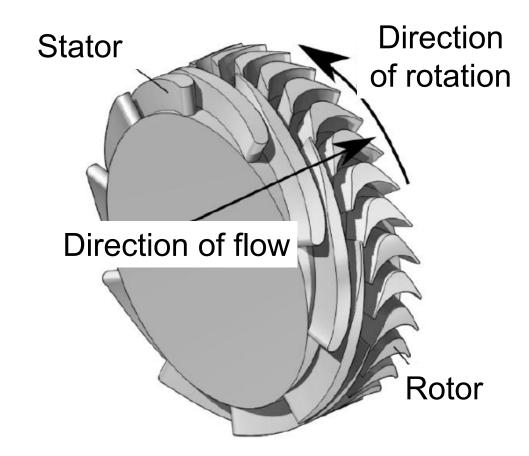
Sealing issue

- Rotary 'piston' scroll-type
 - Only low pressure ratio possible hence, low temperature ratio
 - Low efficiency



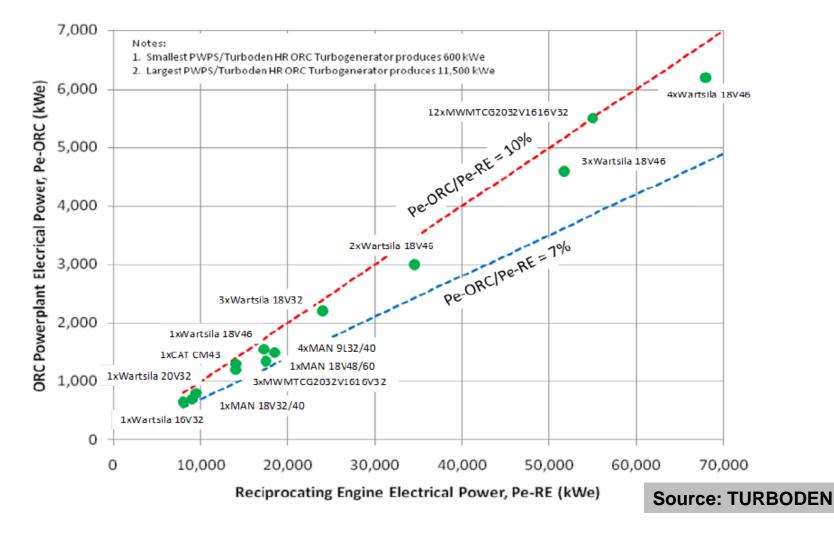
- Rotary 'piston' screw-type (Lysholm)
 - Implemented mainly as (silent) air compressor
 - Sealing oil issue



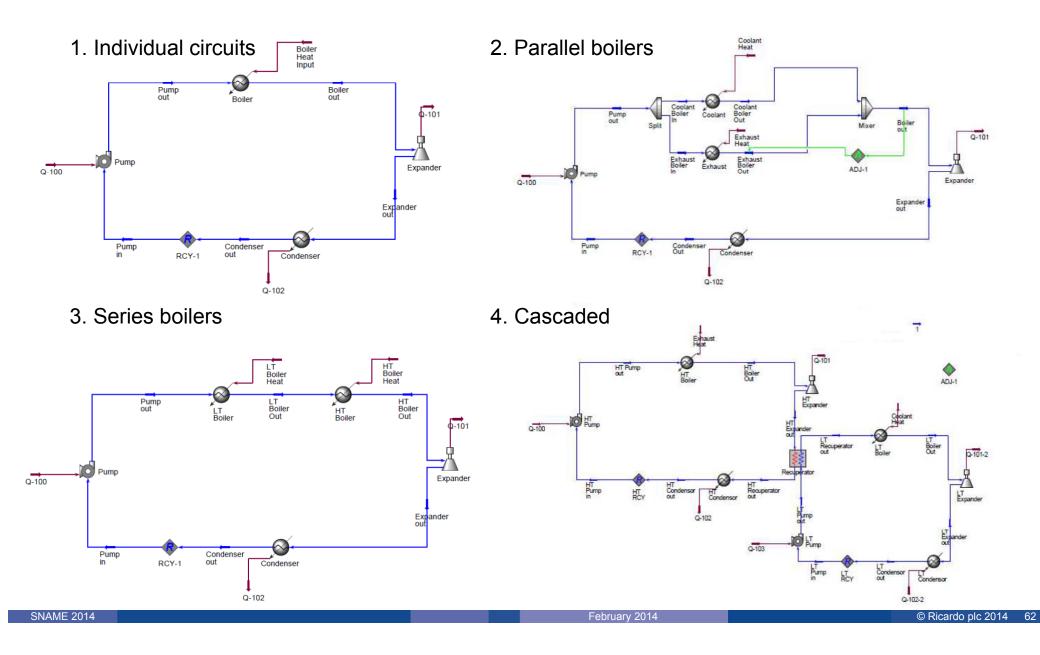


- Radial turbine
 - Back-pressure (non-condensing)
 - Single stage

- Axial turbine
 - Reaction type (Laval, p = const.)
 - Single stage



Turboden's experience in ORC projects with various engine manufacturers



• Non-marine applications

A case study - Assessment for a 1.5 MW marine engine - Exhaust gas and engine coolant as heat sources

A case study - Assessment for a 1.5 MW marine engine - Exhaust gas and engine coolant as heat sources (cont'd)

Architecture	Power savings (%)		
	Ammonia	Ethanol	R245fa
1a. Individual Coolant Circuit	6.2	6.9	6.1
1b. Individual Exhaust Circuit	5.2	4.5	5.5
1c. Sum of Individual Circuits	11.4	11.4	11.6
2. Parallel Boilers	9.9	10.8	9.6
3. Series Boilers	10.6	11.3	10.0
4. Cascaded	11.4	11.4	12.0

Exhaust gas potential from 2-S and 4-S marine diesel engines

Parameter	2-S	4-S
Exhaust gas temp.	250-300 °C	300-350 °C
Exhaust gas flow	7.4 kg/kWh	6.2 kg/kWh

• ~ 25% more exhaust gas heat from 4-S engines

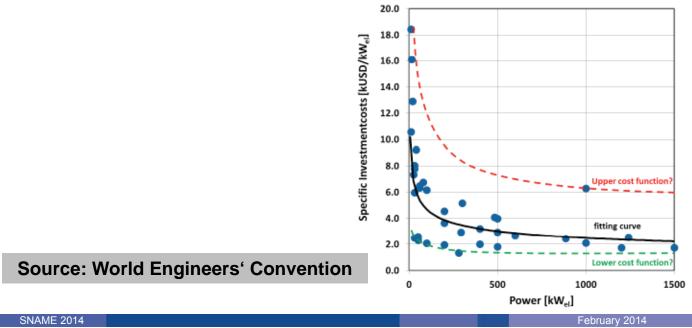
(assuming an exhaust gas outlet temperature of 180 °C)

Source: WÄRTSILÄ

Organic Rankine Cycle (ORC)

- Expected efficiency increase
 - Exhaust gas as a heat source: mechanical energy 13% @ 150 °C of input heat
 - Jacket cooling water as a heat source: mechanical energy 7% @ 90 °C of input heat

Source: WÄRTSILÄ


Cost function of ORC systems

• Investment costs by manufacturer (2011) Source: Economic Implementation...

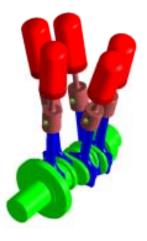
Manufacturer	Product Line	Size Range (kW)	Min. temp. (°C)	Cost per kW (\$)
Infinity	Infinity Turbine ORC Power	10 kW - 280 kW	80	2260
Ormat	Ormat Energy Converter	250 kW - 20 MW	90	1800 - 2000
United Technologies	Pure Cycle	280 kW	75	2857
Electratherm	Green Machine	50 kW	205 (gas) / 90 (water)	2530

• Compiled investment costs by manufacturers as a function of module size (2011)

Contents

- Introduction
- Mechanical Turbocompounding
- Electrical Turbocompounding
- Hybrid System
- Organic Rankine Cycle (ORC)

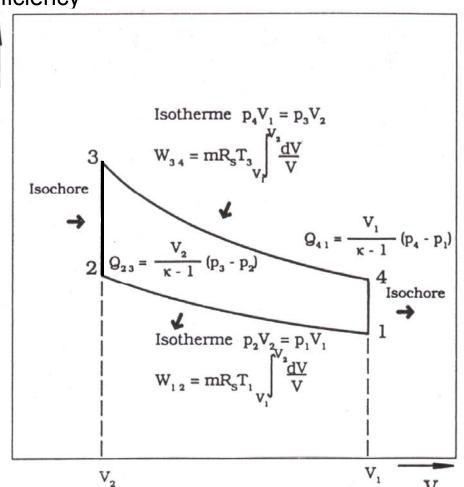
• Stirling Engine


- Ericsson Engine
- Thermo-Electric Generator (TEG)
- Comparison of technologies

Ricardo has worked on concepts that use Stirling engines to recover waste heat across a range of applications

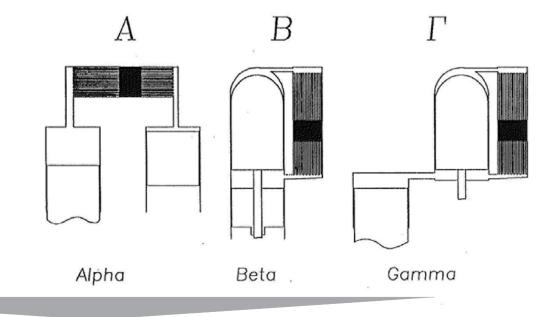
- Ricardo's experience with Stirling engines spans many applications:
 - Micro-CHP: Stirling engines which recover waste heat from domestic boilers to generate electricity and increase the efficiency of the system as a whole
 - Solar Concentrators: Harvesting of solar power using a mirror to focus radiation on the Stirling engine
 - IC engine exhaust heat: Design of a bespoke system for a marine application
 - Industrial waste heat: Investigation of the use of Stirling engines to make better use of waste heat in "clean energy" applications
- Ricardo has 30+ years of experience with Stirling-Engines of all sizes
 - from concept to industrialisation

Thermodynamics



 The Ideal Cycle (Textbook Cycle), as a result of perfect regeneration yields Carnot-Efficiency

p.


- It does however *not* reflect the reality inside a machine *at all*
 - State changes of the working fluid are exercised on the whole of the working fluid
 - Fluid flow and finite heat transfe are not considered
 - Regeneration is just assumed

Hence it becomes clear that the Textbook Cycle is not appropriate as a tool for conceiving engine hardware

Stirling Cycle practical considerations – forming the workspaces

- It is obviously not achieveable to heat and cool the working fluid in one cylinder
- Hence 2 spaces are formed by piston(s) & displacers
- These are connected by the heat exchangers

Work-system aka Gas-circuit

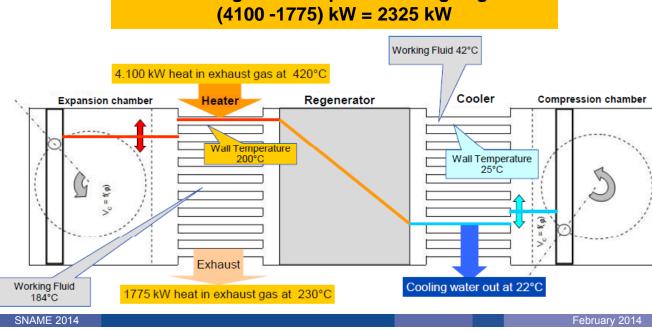
The fluid contained in the two working spaces and the (3) heat exchangers forms one (gaseous) body undergoing the changes of state (of the cycle) and thereby converting heat to work

Cycle simulation and real engines

- I propose to stop here and consider for a moment what goes on in a real Engine and how we can measure and/or predict it
 - Compression and Expansion are continuous and happen in all connected volumes simultaneously (save for a little lag due to flow friction)
 - Fluid flow happens continuously and reverses twice per revolution
 - Fluid flow is correlated with heat transfer in all 3 exchangers (e.g. via Nußelt No. correlations)
 - The Heater (source) and Gas-cooler (sink) are not changing their temperature (and its distribution) with cycle frequency (engine operation in steady state) – i.e. the outside flow regime and heat transfer is quite constant while the inside is varying with cycle frequency
 - The regenerator is having a heat transfer rate in and out at cycle frequency of up to 10 times the shaft power i.e. on a 50 kW engine the regenerator is receiving and emitting ~ 500 kW of heat with a sign change at a frequency of 25 Hz

These considerations might make it sufficiently clear that nothing short of a cycle simulation coupled with steady state calculation of flow and heat transfer on the outside are called for – if a robust design tool is expected – also that intuition and trial and error are treacherous options carrying inacceptable development risks

Stirling Engine


1-D simulation of Stirling engine

- Cyclic process modelling
- Engine configuration & operating conditions
 - 16 double acting alpha-type pistons
 - piston phase angle 90 °CA
 - high pressure (~ 200 bar)

- Requirements
 - limitation of exhaust gas back pressure
 - optimization of exhaust gas temp. drop
- Consideration of losses from
 - fluid friction
 - imperfect heat transmission

	Stirling engine re	sults
	Working fluid high temp.	184 °C
	Working fluid low temp.	42 °C
er	Shaft power	440 kW
	Speed	600 rpm
	Total displacement	72 lt
	Overall efficiency	0.18
1	Mechanical efficiency	0.86
	Carnot factor	0.31
	Figure of merit	0.68
ļ		© Ricardo plc 2014 72

Exhaust gas heat input to Stirling engine

Stirling Engine

1-D simulation of Stirling engine (cont'd)

RICARDO

- Option for performance improvement
 - Incorporation of a thermal oil circuit as a heat carrier between exhaust gas and working fluid for temperature difference decrease during heat transfer process
 - Reduction in heat transfer irreversibilities

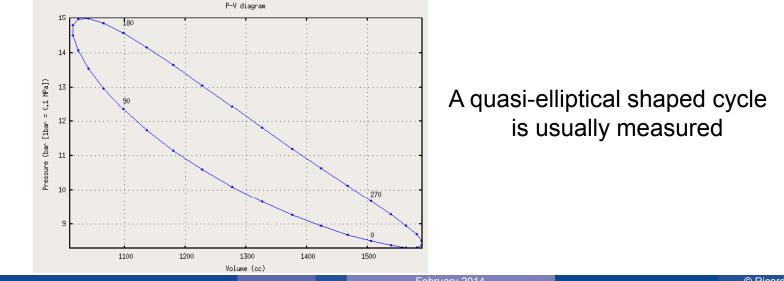
Stirling engine results		p-V Diagram	
Working fluid high temp.	248 °C (+64 °C)		
Working fluid low temp.	42 °C	+ 64°C cycle temperature	
Shaft power	740 kW		
Speed	600 rpm	₽ 0.5 -	
Total displacement	72 lt		
Overall efficiency	0.27	Base line	
Mechanical efficiency	0.91	see prev. sl.	
Carnot factor	0.395		
Figure of merit	0.77	0 0.5 V	

Stirling Engine

Pros and Cons

- Pros
 - Higher ideal thermal efficiency than Diesel and Otto engines due to heat transfer under constant temperatures; efficiency same as the Carnot cycle
 - Regenerator effect; thermal efficiency increase due to 'recirculation' of internal heat that would otherwise pass through the engine irreversibly
 - No pumping losses from gas exchange during the cycle
 - No valves, intake and exhaust pipes; less maintenance
 - Smooth torque delivery
 - Silent operation

Stirling Engine Pros and Cons (cont'd)



- Cons
 - Sealing problems due to operation at high in-cylinder pressures
 - High temperature difference needed for high thermal efficiency; high thermal stresses
 - Need for working fluids with high heat conductivity and low molecular mass for fast heat transfer rates, e.g. hydrogen or helium; issues of low availability of 'fuel'
 - Efficient operation only at a narrow range of speed and power; 'thermal lag' associated with increase of heat input for increase of power or speed makes transient operation inefficient
 - High production costs of heat exchangers due to need for very large heat transfer areas
 - High production costs of regenerator due to expensive materials to withstand corrosion and deformation under high heat transfer rates and pressures
 - Regenerator design compromise: as high as possible heat transfer area .vs. as low as possible volume

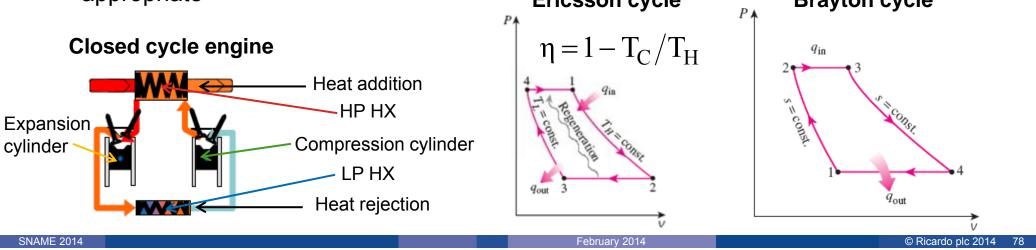
Main reasons for non-ideal Stirling cycle (cont'd)

- (not discontinuous-ideal) power Sinusoidal piston motion; non-const. volume regeneration
- Dead space volume existence; volume of gas not taking part in the cycle (in regenerator, in heat exchangers, clearances, interconnecting ducts)
- Pressure drop across regenerator and heat exchangers
- Heat losses; e.g. from displacer to ambient and between hot and cold cylinder spaces for beta-type engines
- Mechanical friction; in bearings, seals and piston rings

Contents

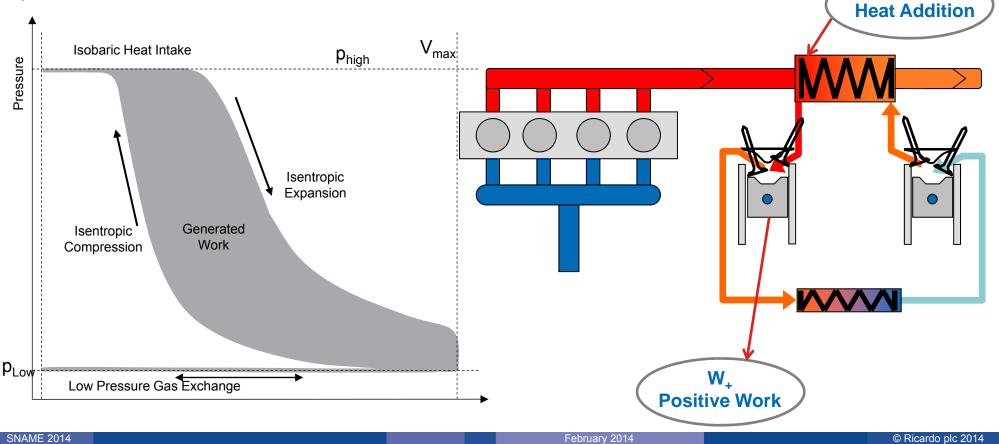
- Introduction
- Mechanical Turbocompounding
- Electrical Turbocompounding
- Hybrid System
- Organic Rankine Cycle (ORC)
- Stirling Engine

• Ericsson Engine

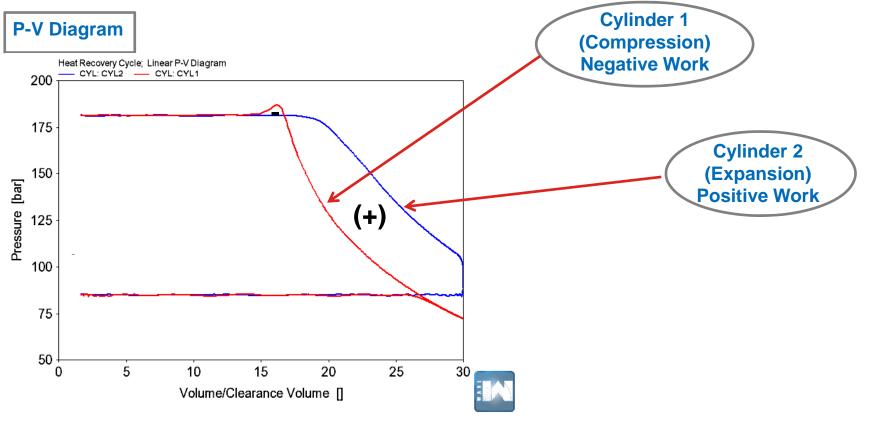

- Thermo-Electric Generator (TEG)
- Comparison of technologies

Ericsson Engine

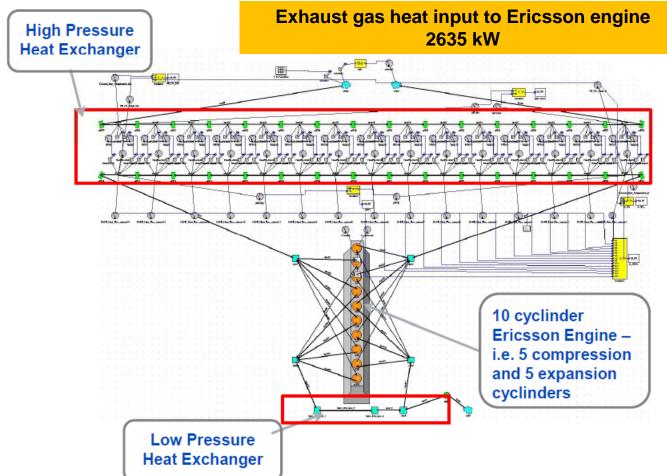
Operating principle


- Thermodynamic cycle can be followed by both **open** and **closed** cycle piston engines
- Ideal cycle made up of two isothermal (compression expansion) and two isobaric (heat addition - heat rejection) processes; ideal cycle efficiency equal to Carnot efficiency
- Compression & expansion take place in two isolated from each other (through intake and exhaust valves) cylinders
- Heat transfer from heat source and to heat sink takes place outside of the cylinders in dedicated HXs
- Lack of heat exchange surfaces in the cylinders makes isothermal processes impossible; rather isentropic processes occur, therefore Brayton (Joule) cycle more appropriate
 Ericsson cycle
 Brayton cycle

Ericsson Heat Recovery Concept


The motivation for trying the Ericsson engine was driven by the consideration, that the Ericsson heater is not dead volume as the Stirling heater. Therefore there is more freedom for dimensioning and design for finding the optimum between exhaust gas back pressure and heat transferred to the bottoming cycle. In the Ericsson cycle, work is done by the expansion of hot air, to which heat is added previously in a heat exchanger at constant high pressure – it was decided to analyse a variant where the low-pressure cold tract also operates at elevated pressure

System Characteristic


 The Ericsson Engine in the model utilizes the heat energy in the exhaust gas of the main IC engine and converts it into mechanical energy Work is done in compressing the air in the 1st cylinder and work is produced by the system during the expansion stroke in the 2nd cylinder. Heat is rejected by the system through the Low Pressure Heat Exchanger after expansion.

1-D simulation of Ericsson engine

- First step: Optimization of most influencing parameters on engine performance (stroke, compression ratio, speed)
- Second step: Performance assessment

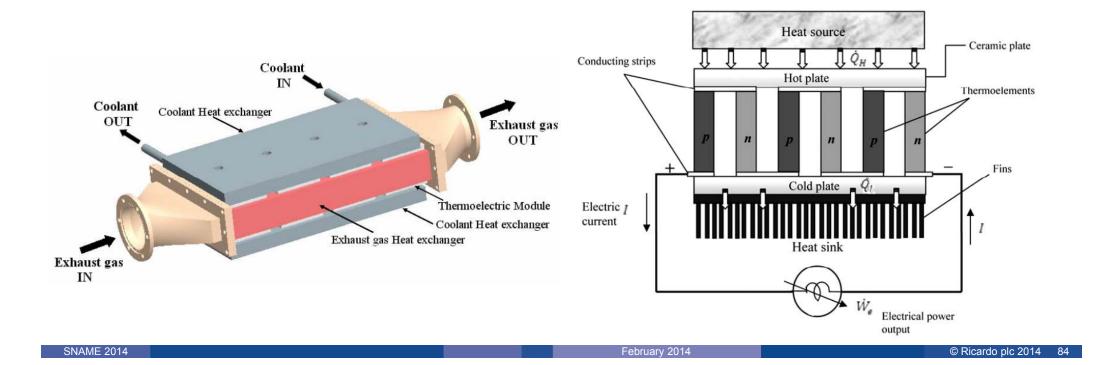
Ericsson engine results				
280 °C				
50 °C				
302 kW				
787 rpm				
12 lt				
0.12				
0.79				
0.416				
0.36				

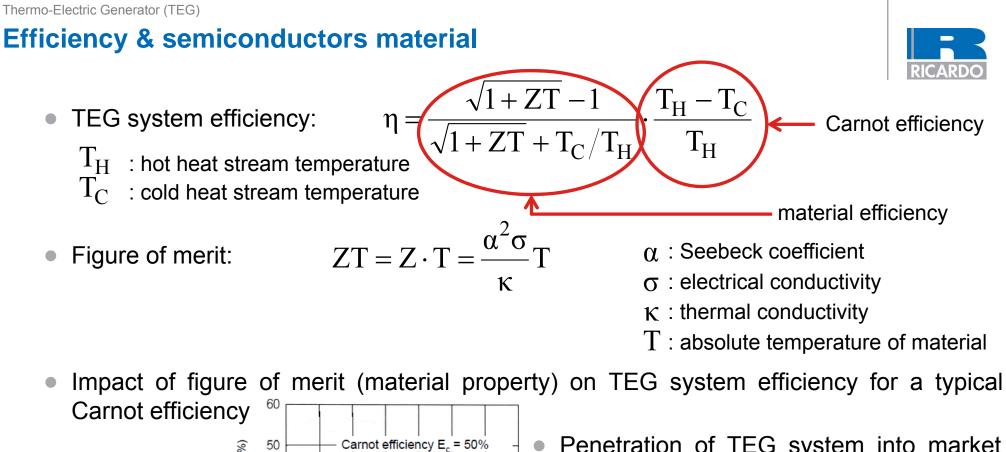
Pros and Cons

- Pros
 - HXs not clearance (dead) volumes, like in Stirling engines
 - High cycle temperatures; high Carnot factor
 - Lower operating pressures than in Stirling engines
 - Higher power density than Stirling engines
- Cons
 - High internal cycle losses, e.g. gas exchange losses; low thermal efficiency

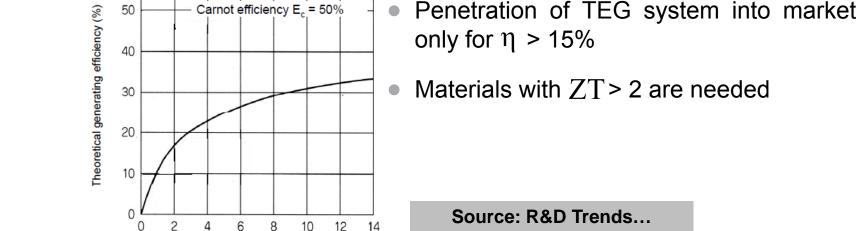
Contents

- Introduction
- Mechanical Turbocompounding
- Electrical Turbocompounding
- Hybrid System
- Organic Rankine Cycle (ORC)
- Stirling Engine
- Ericsson Engine


Thermo-Electric Generator (TEG)

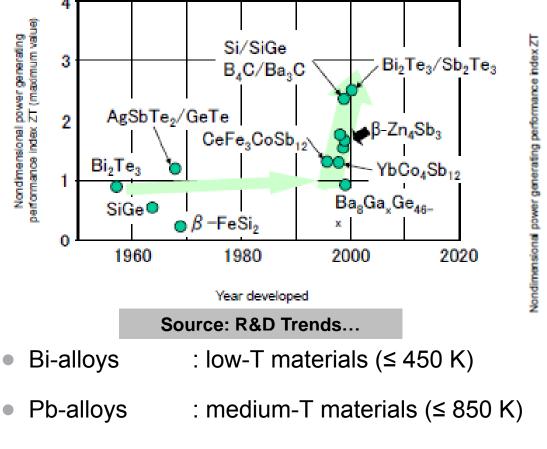

• Comparison of technologies

Operating principle


- Temperature difference between heat source and heat sink produces a voltage across the semiconductors – Seebeck effect
- From 1st Law of Thermodynamics, heat provided by heat source minus heat rejected to heat sink equals the electrical power output
- Semiconductors: thermally connected in parallel; electrically connected in series

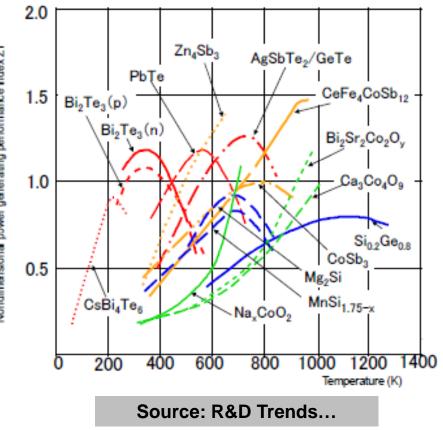
Nondimensional power generating

performance index ZT



© Ricardo plc 2014 85

Current status of performance



History of figure of merit development for main semiconductor materials

• SiGe-alloys : high-T materials (\leq 1300 K)

Figure of merit dependence on temperature for main semiconductor materials

Characteristics

- Semiconductors weak and prone to mechanical failure due to thermal cycling
- Need for higher robustness at high temperatures; need for higher efficiency across all temperatures
- Different exhaust gas temperature profiles (e.g. automotive vs marine applications) demand use of alternate materials
- Efficiency greatly dependent on semiconductors (e.g. Bi₂Te₃ and SiGe) properties
- High heat source temperatures needed make application meaningful only for exhaust gas heat utilization
- Low conversion efficiency: ~ 5%
- Better efficiency achieved using an intermediate oil circuit, due to better heat transfer between exhaust gas and oil than between exhaust gas and TEG – achievement of favorably constant temperature gradient

Comparison Ericsson/Rankine/Strling

- There is an overwhelming multitude of options for converting exhaust gas (and coolant) heat to work – if usefull applications for heating and cooling were included this would further expand
- The favourites in the vehicle industry, ORC and thermoelectricity, do not clearly win the thermodynamic stakes when ample low temperature heat sinks are available

	HP Ericsson	Rankine	Stirling
Power	302 kW	332 kW	440 kW
Efficiency	0,130	0,137	0,180

- While the comparatively little researched and understood Ericsson is close behind the Rankine, with water as the working fluid, which is currently a hot subject for the truck industry – the Stirling engine seems to be a potential favourite
- The challenge is to make it or get it made it can be assumed that the development of an appropriate machine would cost no less than the development of, e.g., the assumed 5 MW main engine

Contents

- Introduction
- Mechanical Turbocompounding
- Electrical Turbocompounding
- Hybrid System
- Organic Rankine Cycle (ORC)
- Stirling Engine
- Ericsson Engine
- Thermo-Electric Generator (TEG)
- Comparison of technologies

Comparative features

WHR technology	BSFC improvement	
Mech. Turbocompounding	~ 3%	
Turbogenerators	~ 7%	
E-Turbo	~ 5%	
Hybrid System	~ 10%	
ORC	~ 7-9%	
Stirling Engine	~ 10%	
Ericsson Engine	~ 7%	
TEG	~ 2.5%	

Thank you for your Attention!