

Air Cushion Vehicle (ACV) Developments in the U.S

Presented

to the

Joint SNAME SD-5/HIS Dinner Meeting

by

Brian Forstell

Director of R&D
CDI Marine Co.
Systems Development Division

9 June 2005

Anatomy of an ACV

- ACVs are truly Amphibious Craft that are capable of traveling over almost any type of surface.
- Capability
 comes from ACV
 unique
 equipment.

Anatomy of an ACV

ACV unique equipment includes:

- Skirt System
- Lift System
- Air Screw Propulsors
- Bow Thrusters

Skirt Systems

Flexible Skirt Systems were first introduced to

ACVs in 1961.

- Continued to evolve and mature over the next 20+ years.
- Evolved into the typical Bag-Finger Skirt.
 - Peripheral bag for air distribution.
 - Flexible fingers attached to bag.
 - Cushion subdivision.

Deep Skirt Project

- Oct. 1995, CNO N853
 directs development of
 <u>Enhancements for</u>
 <u>Increasing LCAC</u>
 <u>Survivability</u> while
 conducting Shallow Water
 MCM Mission (SWMCM).
- Jan. 1996, Coastal Systems Station is directed by PEO-CLA, PMS-377 to initiate Deep Skirt Project.

Deep Skirt Design

Principal Characteristics

- 40% Increase in Cushion Height
- Elimination of Longitudinal Cushion Divider
- <u>Double-Bubble Side Seal</u> for Well-Deck Compatibility
- Unique Back-to-Back Side Fingers for enhanced roll static stability

Represented the "First" of a New Generation of Skirt Designs

Deep Skirt Design

Deep Skirt design was subjected to extensive sub-scale test prior to committing to full-scale prototyping

Deep Skirt Design

- SWMCM Mission was cancelled after the prototype was built!
- Performance and durability testing of Deep Skirt showed:
 - Improved Ride Quality
 - Improved Payload Carrying Capability
 - Improved Speed/SeaState Performance

Deep Skirt was Retained as a Craft Upgrade and is in Production

Not All Is Good

- Material Delamination showed up after 100 operating hours on the prototype skirt.
 - Issue also showed up on the Canadian Coast Guard AP.1-88/200 and the Hoverspeed SR.N4 MKIII.
 - All three craft used the same natural rubber material.

Suspected that Fatigue was the Primary Failure Mode

Not All Is Good

 FEA analysis of an inflated finger indicated Stress Concentrations and areas of Large Deformations.

Deflection Map

solutions at work

Things Get Better

 FEA analysis indicated that a modification of the Design & Lofting Process would correct this.

Deflection Map before Modification

Deflection Map after Modification

Second & Third Generation Designs

- Lessons Learned were applied to the Finnish T-2000 Combat ACV (2nd Gen).
 - Modified Design/Lofting Process
 - 3-D Design Tools

Second & Third Generation Designs

 2nd Generation T-2000 Skirt has 440+ hours on original bow and side fingers.

 Stern corner and stern fingers replaced after approximately 300 hours.

Second & Third Generation Designs

- 3rd Generation Skirt is being manufactured.
- Model test data results indicate that this will be the best design so far.

Believe that Additional Performance Improvements are Possible

- Historically, ACVs tended to use commercially available fans or a version of the successful HEBA-A or HEBA-B Fan Series.
- Current and future high-density craft are requiring higher pressure, higher air-flow rate and increased efficiency.
 - Typically military craft rather than commercial craft.

- Systematic series fan tests have not been performed since the mid to late 60's.
 - Many of these are documented in "Unpublished" Reports.
- Results have been the primary design guide for:
 - Fan Aerodynamic Design
 - Volute Design
 - Installation Effects

- CDIM-SDD participated in a Science and Technology (S&T) effort directed at fan design.
 - ONR Sponsorship.
 - Directed at using <u>Modern CFD Tools</u> to develop lift fans that <u>Improve on</u> <u>Performance and Efficiency</u> achievable with current equipment.
- Aerodynamic design drew on prior fan design experience at CDIM-SDD.

Volute Static Pressure Distribution

Impeller Pressures and Velocity Vectors

- CFD tools allowed efficient and economical examination of the various fan design parameters.
- Results indicated that:
 - Blade stall is Very Difficult To Avoid in heavily loaded fan designs.
 - Good fan performance can be achieved even with some stall present.
 - Volutes can be Much Smaller than previously thought without sacrificing fan performance.

Fan Model Test

Sub-Scale Model Tests Conducted in October 2003

Test Results Generally Confirmed CFD Analysis Results

Ducted Propulsors

- Ducted air-screw design has typically relied on Potential Flow Theory, Strip Analysis or, in some cases, Lifting Line Theory.
- Designs are developed for free-stream conditions.
 - Ignores Installation Effects.
- Full-scale trials experience indicates that these designs typically produce Significantly Less Thrust than expected.

Ducted Propulsors

- CDIM-SDD participated in a Science and Technology (S&T) effort directed at ducted propulsor design.
 - ONR Sponsorship.
 - Directed at using <u>Modern CFD Tools</u> to develop designs that <u>Improve on</u> <u>Performance and Efficiency</u> achievable with current equipment.
- Aerodynamic design considered the actual installed condition.

Tool Verification

LCAC CFX Computational Model

- LCAC propulsor was analyzed prior to starting the new design.
 - Checked against known performance.
 - Results compared favorably.

CFX for LCAC at 25 knots (Midway Station 7'6")

CFX Flow Model of New Design

TYPICAL CFD RESULTS

Flow Field in Front of the Prop and Shroud

Flow Field in Front of the Prop and Shroud

Propulsor Model in Glenn L. Martin Wind Tunnel

- 1/6th Scale Propulsor Tests
 - CFD Simulated Wind Tunnel Tests were performed prior to actual physical testing.

Model Test Results

- Model Generally Performed as Good or Better than CFD Predictions
 - Measured Ct agreed with CFD Predictions ± 5%
 - Measured Cq ≈10% less than CFD Predictions

Results Generally Validated the Design Tool and Approach

Bow Thruster Nozzles

- Bow Thrusters are used on many modern ACV designs.
 - Enhance Maneuverability
 - Augment Thrust from Main Propulsors
 - Provide Some Redundancy to Main Propulsors

Bow Thruster Nozzles

- Typical Bow Thruster Nozzle
 - Easy to Manufacture
 - Aerodynamically Inefficient
 - Easy Bend versus Hard Bend
 - Large Over-Turning
 Moment on Bearing

Bow Thruster Nozzles

Low-Profile Bow Thruster

- Aerodynamically Efficient Cascade
- Significant Reduction in "Over-Turning" Moment on Bearing
- Reduced Visual & Radar Signature
- Complex to Manufacture

Full-Scale Trials Verified Aerodynamic Efficiency

Questions?

