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Anatomy of an ACV 

• ACVs are truly 

Amphibious 

Craft that are 

capable of 

traveling over 

almost any type 

of surface. 

• Capability 

comes from ACV 

unique 

equipment. 
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Anatomy of an ACV 

  ACV unique 
equipment 
includes: 

 

• Skirt System 

• Lift System 

• Air Screw 
Propulsors 

• Bow Thrusters 
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Skirt Systems 

• Flexible Skirt Systems were first introduced to 

ACVs in 1961. 

 • Continued to evolve 

and mature over the 

next 20+ years. 

• Evolved into the 

typical Bag-Finger 

Skirt.  

• Peripheral bag for 

air distribution. 

• Flexible fingers 

attached to bag. 

• Cushion sub-

division. 
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Deep Skirt Project 

• Oct. 1995, CNO N853 

directs development of 

Enhancements  for 

Increasing LCAC 

Survivability  while 

conducting Shallow Water 

MCM Mission (SWMCM). 

• Jan. 1996, Coastal Systems 

Station is directed by PEO-

CLA, PMS-377 to initiate 

Deep Skirt Project. 
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Deep Skirt Design 

 
Principal Characteristics 

• 40% Increase in Cushion 

Height 

• Elimination of Longitudinal 

Cushion Divider 

• Double-Bubble Side Seal for 

Well-Deck Compatibility 

• Unique Back-to-Back Side 

Fingers for enhanced roll 

static stability 

Represented the “First” of a New Generation of Skirt Designs 
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Deep Skirt Design 

Deep Skirt design was subjected to extensive sub-scale 

test prior to committing to full-scale prototyping 
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Deep Skirt Design 

• SWMCM Mission was 

cancelled after the 

prototype was built! 

• Performance and 

durability testing of Deep 

Skirt showed: 

– Improved Ride Quality 

– Improved Payload 

Carrying Capability 

– Improved Speed/Sea 

State Performance 

 
Deep Skirt was Retained as a Craft Upgrade and is in Production 
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Not All Is Good 

• Material Delamination showed up after 100 operating 

hours on the prototype skirt. 

– Issue also showed up on the Canadian Coast Guard 

AP.1-88/200 and the Hoverspeed SR.N4 MKIII. 

– All three craft used the same natural rubber material. 

Suspected that Fatigue was the Primary Failure Mode 
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Not All Is Good 
• FEA analysis of an inflated finger 

indicated Stress Concentrations and 

areas of Large Deformations. 

  

Stress Map Deflection Map 
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Things Get Better 
• FEA analysis indicated that a 

modification of the Design & Lofting 

Process would correct this. 

  

Deflection Map 

before Modification 

Deflection Map 

after Modification 
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Second & Third Generation Designs 

• Lessons Learned were applied to the 

Finnish T-2000 Combat ACV (2nd Gen). 

– Modified Design/Lofting Process 

– 3-D Design Tools 
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Second & Third Generation Designs 

• 2nd Generation T-

2000 Skirt has 

440+ hours on 

original bow and 

side fingers. 

• Stern corner and 

stern fingers 

replaced after 

approximately 300 

hours. 



14 

Second & Third Generation Designs 

• 3rd Generation 

Skirt is being 

manufactured. 

• Model test 

data results 

indicate that 

this will be the 

best design so 

far. 

 

Believe that Additional Performance Improvements are Possible 
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Lift Fan Design 

• Historically, ACVs tended to use commercially 

available fans or a version of the successful 

HEBA-A or HEBA-B Fan Series. 

• Current and future high-density craft are 

requiring higher pressure, higher air-flow rate 

and increased efficiency. 

– Typically military craft rather than 

commercial craft. 
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Lift Fan Design 

• Systematic series fan tests have not been 

performed since the mid to late 60’s. 

– Many of these are documented in 

“Unpublished” Reports. 

• Results have been the primary design 

guide for: 

– Fan Aerodynamic Design  

– Volute Design 

– Installation Effects 
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Lift Fan Design 

• CDIM-SDD participated in a Science and 

Technology (S&T) effort directed at fan 

design. 

– ONR Sponsorship. 

– Directed at using Modern CFD Tools to 

develop lift fans that Improve on 

Performance and Efficiency achievable 

with current equipment. 

• Aerodynamic design drew on prior fan 

design experience at CDIM-SDD. 
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Typical CFD Results 

Volute Static Pressure 

Distribution 

 

Impeller Pressures and 

Velocity Vectors 
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Lift Fan Design 

• CFD tools allowed efficient and economical 
examination of the various fan design 
parameters. 

• Results indicated that: 

– Blade stall is Very Difficult To Avoid in 
heavily loaded fan designs. 

– Good fan performance can be achieved 
even with some stall present. 

– Volutes can be Much Smaller than 
previously thought without sacrificing fan 
performance. 
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Fan Model Test 
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Sub-Scale Model Tests Conducted in October 2003 

Test Results Generally Confirmed CFD Analysis Results 
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Ducted Propulsors 

• Ducted air-screw design has typically relied on 

Potential Flow Theory, Strip Analysis or, in 

some cases, Lifting Line Theory. 

• Designs are developed for free-stream 

conditions. 

– Ignores Installation Effects. 

• Full-scale trials experience indicates that these 

designs typically produce Significantly Less 

Thrust than expected. 
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Ducted Propulsors 

• CDIM-SDD participated in a Science and 

Technology (S&T) effort directed at 

ducted propulsor design. 

– ONR Sponsorship. 

– Directed at using Modern CFD Tools to 

develop designs that Improve on 

Performance and Efficiency achievable 

with current equipment. 

• Aerodynamic design considered the 

actual installed condition. 
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Tool Verification 

• LCAC propulsor was 

analyzed prior to 

starting the new 

design. 

• Checked against 

known performance. 

• Results compared 

favorably. 

 

LCAC CFX Computational Model 

CFX for LCAC at 25 knots (Midway Station 7’6”) 
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CFX Flow Model of New Design 
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TYPICAL CFD RESULTS 

Flow Field in Front of the 

Prop and Shroud 

Flow Field in Front of the 

Prop and Shroud 
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Propulsor Model in  

Glenn L. Martin Wind Tunnel 

• 1/6th Scale Propulsor Tests 

• CFD Simulated Wind Tunnel 

Tests were performed prior 

to actual physical testing. 
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Model Test Results 

• Model Generally Performed as Good or Better than CFD Predictions 

• Measured Ct agreed with CFD Predictions  5% 

• Measured Cq 10% less than CFD Predictions  

Results Generally Validated the Design Tool and Approach 
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Bow Thruster Nozzles 

• Bow Thrusters are used on many modern 

ACV designs. 

– Enhance Maneuverability 

– Augment Thrust from Main Propulsors 

– Provide Some Redundancy to Main Propulsors 
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Bow Thruster Nozzles 

• Typical Bow Thruster 

Nozzle 

– Easy to Manufacture 

– Aerodynamically 

Inefficient  
• Easy Bend versus Hard Bend 

– Large Over-Turning 

Moment on Bearing 
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Bow Thruster Nozzles 

• Aerodynamically 

Efficient Cascade 

• Significant Reduction 

in “Over-Turning” 

Moment on Bearing 

• Reduced Visual & 

Radar Signature 

• Complex to 

Manufacture 

 

Low-Profile Bow Thruster  

Full-Scale Trials Verified Aerodynamic Efficiency 
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Questions? 


