Big Data Content Organization, Discovery, and Management

Marjorie M.K. Hlava
President
Access Innovations, Inc.
Mhlava@accessinn.com
Outline

- Big Data
- New Government Initiative
- Content Organization
- Discovery (Search)
- Management
- Skills we bring
- Examples of what we can do
Why do we care about Big Data?

• Data is the new oil – we have to learn how to mine it! Qatar – European Commission Report
• $ 7 trillion economic value in 7 US sectors alone
• $90 B annually in sensitive devices
• An insurance firm with 5 terabytes of data on share drives pays $1.5 m per year
• New McKinsey 4th factor of production
• Land, Labor, Capital, + Data
The End of Science

The quest for knowledge used to begin with grand theories. Now it begins with massive amounts of data. Welcome to the Petabyte Age.
Big Data Born

• Google, eBay, LinkedIn, and Facebook were built around Big Data from the beginning.
• No need to reconcile or integrate Big Data with more traditional sources of data and the analytics performed upon them
• No merging Big Data technologies with their traditional IT infrastructures
• Big Data could stand alone, Big Data analytics could be the only focus of analytics
• Big Data technology architectures could be the only architecture.
Integrating Big Data

- Large, well-established orgs
- Must be integrated with everything else that’s going on in the company.
- Analytics on Big Data have to coexist with analytics on other types of data.
- Hadoop clusters have to do their work alongside IBM mainframes.
- Data scientists must somehow get along and work jointly with mere quantitative analysts.
What is Big Data?

- **Big Data** is a term applied to data sets whose size is beyond the ability of commonly used software tools to capture, manage, and process the data within a tolerable elapsed time. Big Data sizes are a constantly moving target currently ranging from a few dozen terabytes to many petabytes of data in a single data set. – Wikipedia, May 2011

- “Unstructured”

- Terabytes, petabytes, zettabytes

- Streaming
New kind of science?

The Fourth Paradigm: Data-Intensive Scientific Discovery

Presenting the first broad look at the rapidly emerging field of data-intensive science

Increasingly, scientific breakthroughs will be powered by advanced computing capabilities that help researchers manipulate and explore massive datasets.

The speed at which any given scientific discipline advances will depend on how well its researchers collaborate with one another, and with technologists, in areas of eScience such as databases, workflow management, visualization, and cloud computing technologies.

In *The Fourth Paradigm: Data-Intensive Scientific Discovery*, the collection of essays expands on the vision of pioneering computer scientist Jim Gray for a new, fourth paradigm of discovery based on data-intensive science and offers insights into how it can be fully realized.

Download
- Full text, low resolution (6 MB)
- Full text, high resolution (93 MB)
- By chapter and essay

Purchase from Amazon.com
- Paperback
- Kindle version

In the news
- Sailing on an Ocean of 0s and 1s (Scientific American)
New Special Collections

- Volume, Velocity, Variety
- Ability to deal overwhelmed
- More about methods than data
- Location aware data
- Life streaming
- Insurance claims
- Hubble telescope
- CERN Collections
- Flight data
Enabling reproducible, transparent research.
Unstructured data

- Means untagged or unformatted
- PDF
- Word files
- File shares
- News feeds
- News Data feeds
- Images
Bit of a misnomer

• All data has some structure and more structure possibilities
• PDF properties
• Word file properties
• File structures
Property tables

- PDF - property tables
- Word files – property tables
- Files shares – implied structure in file names
- News feeds – headers have metadata
- Hubbell telescope feeds
- Images
File structures
Structured data

• XML tagged data
What are the problems?

- Data infrastructure challenges
- “taking diverse and heterogeneous data sets and making them more homogeneous and usable”
- An opportunity?
- All that data – what can it tell us?
- Privacy
- Copyright
- Neurological impact
- Data collection methods
New Government Initiative

The Big Data Senior Steering Group (BDSSG) was formed to identify current Big Data research and development activities across the Federal government, offer opportunities for coordination, and identify what the goal of a national initiative in this area would look like. Subsequently, in March 2012, The White House Big Data R&D Initiative was launched and the BDSSG continues to work in four main areas to facilitate and further the goals of the Initiative.
The National Big Data R&D Initiative

• Fast-growing volume of digital data of digital data
• Advance state-of-the-art core technologies needed to collect, store, preserve, manage, analyze, and share huge quantities of data.
• Harness these technologies to accelerate the pace of discovery in science and engineering, strengthen our national security, and transform teaching and learning; and
• Expand the workforce needed to develop and use Big Data technologies.
Data to Knowledge to Action

• Advance supporting technologies
 • Big Data
 • Data analytics;

• Educate and expand the Big Data workforce

• Improve key outcomes in economic growth, job creation, education, health, energy, sustainability, public safety, advanced manufacturing, science and engineering, and global development
Data on Data

• January 22, 2013 - Data on Data: Presenting Stakeholder Alignment Data on the Cyberinfrastructure for Earth System Science

• Presentation and discussion with Professor Joel Cutcher-Gershenfeld. Professor Cutcher-Gershenfeld presented information on the NSF EarthCube initiative including stakeholder survey data (approximately 850 responses).
Who is involved?
Groups breakdown

- INTERAGENCY WORKING GROUPS
 - Cyber Security and Information Assurance
 - High End Computing
 - COMMUNITY OF PRACTICE (CoP)
 - Faster Administration of Science and Technology Education and Research

- COORDINATING GROUPS
 - Human Computer Interaction and Information Management
 - High Confidence Software and Systems
 - Large Scale Networking
 - Software Design and Productivity
 - Social, Economic, and Workforce Implications of IT
SENIOR STEERING GROUPS (SSGs)

- **Big Data**
- **Cyber Physical Systems**
- **Cyber Security and Information Assurance Research and Development**
- **Health Information Technology Research and Development**
- **Wireless Spectrum Research and Development**
- **SUBGROUP**
 - **Health Information Technology Innovation and Development Environments Subgroup**
- **TEAMS**
 - **Joint Engineering Team**
 - **Middleware and Grid Interagency Coordinating Team**
Content Organization

- Data on machines
 - Local
 - Cloud
 - Remote
 - Streaming

- Undifferentiated

- Unstructured

- Needs organization

- Type of database structure
 - RDBMS
 - Object oriented
RDBMS Connection

Taxonomy term table
Data feeds

- Library catalogs
- Locally held documents
- Public repositories
- Commercial data sources
- Agency data sources

INTERNET (public)

spiders

Filtered content

Search engine

Meta-Search Tool

TAXONOMY

Web portal
Metadata options

• Structure unstructured data
• Create metadata
• Where to put it?
• Store metadata with the records
 • HTML header
 • Properties tables
 • XML files
• Store metadata in a separate file
 • Database
 • Metadata repository
 • Search system
 • File structure
 • SharePoint application
 • Web interface
Information retrieval starts with a knowledge organization system

- Uncontrolled list
- Name authority file
- Synonym set / ring
- Controlled vocabulary
- Taxonomy
- Thesaurus
- Ontology
- Topic Map
- Semantic Network

Not complex - $

Highly complex - $$$$

LOTS OF OVERLAP!
Structure of controlled vocabularies

INCREASING COMPLEXITY / RICHNESS

- List of words
- Synonyms
- Taxonomy
- Thesaurus

Ambiguity control
- Synonym control
 - Hierarchical rel’s

Ambiguity control
- Synonym control
 - Associative rel’s
Taxonomy / thesaurus

- Main Term (MT) *
- Top Term (TT)
- Broader Terms (BT)
- Narrower Terms (NT)
- Narrower Term Instance
- Related Terms (RT)
 - See also (SA)
- Non-Preferred Term (NP)
 - Used for (UF), See (S)
- Scope Note (SN)
- History (H)

*a.k.a. subject term, heading, node, index term, keyword, category, descriptor, class

TAXONOMY
ONTOLOGY

THESAURUS
Taxonomies in Context

A taxonomy aspires to be:

• a correlation of the different functional, regional and (possibly) national languages used by a community of practice
• a support mechanism for navigation
• a support tool for search engines and knowledge maps
• an authority for tagging documents and other information objects
• a knowledge base in its own right

Courtesy of Lillian Gassie, Naval Postgraduate School, Monterey, CA
Where to use a taxonomy

- Link the taxonomy and indexing
- Always in sync with the industry
- Keep up to date with terminology
- Automatically index the old data
- Filter newsfeeds
- Search using the taxonomy
- File using the taxonomy
- Spell check using the taxonomy
- Link to translation system
- Catalog using the taxonomy
Value of a Taxonomy

- Improves organization & structure
- Facilitates navigation
- Facilitates knowledge discovery
- Reduces effort
- Saves time

“Taxonomies are better created by professional indexers or librarians than by domain experts.”

Courtesy of Lillian Gassie, Naval Postgraduate School, Monterey, CA
Taxonomies

- A well formed taxonomy is based on a thesaurus
- Provides a flexible platform for many views of the taxonomy
- Allows fast deployment
- Is the basis for a good
 - knowledge management system
 - search retrieval system
 - portal interface
A quick look behind the scenes

Database Management System
- Establish rules for term use
- Suggest indexing terms

Thesaurus tool
- Search thesaurus
- Validate term entry
- Block invalid terms
- Record candidates

Indexing tool
- Validate terms
- Add terms and rules
- Change terms and rules
- Delete terms and rules
Access Innovations, Inc. 12/11/2013

Taxonomy view

Thesaurus Term Record view
Suggested taxonomy descriptors

- Viruses
- Disease prevention
- Pharmaceutical drugs
- Microorganisms
- Personal health and hygiene
- Childhood (Age groups)
- Bacteria
- School learning and achievement
- Students
- Antibiotics
- Youth (Age groups)
- Animated photography
Workflow order

• Create the metadata structure
• Gather the locations of the records
• Index in place?
• Point to the data?
• Add metadata to the record?
• Store metadata in separate “table”?
• Use in full text?
• Use in search?
• Link databases and data sets with APIs
APIs and Web Calls

- Link data cross platforms
- Not federated search

Examples
- Was: Card catalog or OPACs to books on shelf
- Now: EBSCO host to Mendeley, Zotero, ResearchGate, Academic.edu, etc.
- Use an API or web call

Web calls
- Call to another web platform

APIs, written handshakes
- Z39.50 is one standard for libraries
Discovery (Search)

• Search
 • Free text / full text
 • Fielded / Faceted

• Parts of Search
 • Presentation layer
 • Caching
 • Inverted index
Kinds of search

- Keyword –
 - Autonomy / Verity
- Bayesian –
 - FAST
 - Lucene
- Faceted
 - Endeca
- Boolean
 - Dialog
- Ranking Algorithms
 - Google
Parts of search

- Query language
- Search technology
- Inverted index
- Ranking algorithms
- Other enhancements
FAST ESP and Data Harmony Architecture

Core Architectural Components

- Web Content
- Files, Documents
- Databases
- Email, Groupware
- Custom Applications

Web Crawler
File Traverser
Database Connector
Lotus Notes Connector
Custom Connector

Content API

Management API

Query API

Search Server
Query Processor

Filter Server
Index DB
Agent DB

Administrator's Dashboard

Query
Results
Alerts

Navigator & Win Query

Data Harmony Governance API
SLA search

Interpret search word “competencies” as taxonomy term: Professional competencies
Search “taxonomy” in XML descriptor field returns all documents in that category → 27
Search in original metadata → 1
Solution: Include descriptors with metadata!
Management

- Data management layers
- Curation
- Preservation
- Archiving
- Storage
- Choose tools wisely
- Data mashups
Go – No Go

• Reach 85% precision to launch for productivity - assisted
• Reach 85% for filtering or categorization
 • Sorting for production
• Level of effort to get to 85%
• Integration into the workflow is efficient
Learn to understand the parts

• Information infrastructure
• Information dynamics
• Tensions on data
• Design elements
• How and when to set the data framework
• Identifiers (taxonomies) Glue to hold data together
Services

• Core cross disciplines
• Combo of humans and machines
• What is open
• What needs a gatekeeper
• Store locally
• Store in cloud
• Some things people do better
Benchmarks

- 15 – 20% irrelevant returns / noise
- Amount of work needed to achieve 85% level
- How good is good enough?
 - Satisfice = satisfaction + suffice
 - How good is good enough?
 - How much error can you put up with?
- Hits, misses, noise
ROI Calculations

• Assume – 5000 term thesaurus
 • 1.5 synonyms per terms
 • 7500 terms total

• Assume 85% accuracy
 • Use assisted for indexing
 • Use automatically for filtering

• Assume $55 per hour for staff

• Assume 10000 records for test batch
Co-occurrence - Training sets

- Collect 20 items per thesaurus entry
 - Preferred and non-preferred terms
 - Find records – could be programmatic
 - Need to collect and review about 60 to get 20 appropriate ones
 - Review records – ensure they are correct
 - 3 minutes average per final selected record
 - = 1 hour per term entry
 - 1 minute to review a record (20 resulting records)
 - 7500 terms at one hour per term = 7500 hours
 - Estimated at 7500 hours $55 / hour = $412,500
Rulebuilding - rules

- 80% of rules built automatically
- $7500 \times 0.8 = 6000$
- 20% require complex rules
 - Average rule takes 5 minutes
 - (Actually MUCH faster using a rule building tool)
 - $5 \times 1500 = 7500$ minutes
 - 125 hours \times $55 = 6875
ROI - Segments

- Cost of auto system
- Cost of getting system ready
- Ongoing maintenance
- Increased efficiency
- Increased quality of retrieval
- Cost of legacy system maintenance
ROI – Co-occurrence

- Cost of auto system- $500,000 (could be less, but the one used for this study cost this amount)
- Cost of getting system ready
 - Programming support and integration
 - Estimated at 2 weeks programming $100 / hour = $8000
 - Training sets
 - Estimated at 7500 hours $55 / hour = $412,500
 - Possible need to re-run training set several times
- Ongoing maintenance
 - Estimated at 15% of purchase price for license = $75,000
 - Quarterly retraining to keep up with new terms –
 - Training sets for new terms 50 terms per quarter = 200 x $55=$11,000
- Increased efficiency
- Expected accuracy at 60%
- Increased quality of retrieval
- Cost of legacy system maintenance
ROI – Rules system

• Cost of auto system- $60,000
• Cost of getting system ready
 • Programming support and integration
 • Estimated at 2 weeks programming at $100 / hour = $8000
 • Rule building
 • Estimated at 125 hours at $55 / hour = $6850
 • Possible need to re run training set several times
• Ongoing maintenance
 • Estimated at 15% of purchase price for license = $9000
 • Rule building for new terms, 50 terms per quarter
 • 200 terms x .8 = 160 automatic
 • 40 at 5 minutes per term = 200 minutes /60 = 3.33 hours x $55 = $183
• Increased efficiency
• Expected accuracy at 60%
• Increased quality of retrieval
• Cost of legacy system maintenance
ROI - Rules

• Year one
 • $60,000 + $8,000 + $6,850 = $74,850

• Years thereafter
 • $9000 + $183 = $9183

• 85% accuracy
ROI – Co-occurrence

• Year one
 • $500,000 + $8,000 + $412,500 = $920,500

• Years thereafter
 • $75,000 + $11,000 = $86,000

• 60% accuracy
Summary on ROI

- Novelty detection requires inference techniques
- Is needed to discover new terms
- Controlled vocabulary / thesaurus can be more controlled and accurate approach
- Combination of the two would be best
 - Controlled – use rules
 - New terms - use inference
Fully integrated with MOSS

The Workflow

1. Gather source data
2. Tag and Create metadata
3. Put in database with tags
4. Build Search inverted index
5. Create user interface

Client taxonomy

- Client Data
- Full Text
- HTML, PDF, Data Feeds, etc.

Automatic Summarization

Machine Aided Indexer (M.A.I.™)

Inline Tagging

Metadata and Entity Extractor

Thesaurus Master

Database Repository

Search Software

Search Presentation Layer

Increases accuracy

Browse by Subject
Auto-completion

Broader Terms
Narrower Terms
Related Terms
Inline Tagging

Oil rises as U.S. stimulus hopes outweigh weak demand. **Oil prices** rose on Thursday as hopes that the White House would move quickly on an economic stimulus package outweighed flagging demand and rising **inventories** in the world's top **consumers**. U.S. **crude** settled 12 cents higher at $43.67 a barrel, after falling as low as $40.41 earlier. London Brent settled at $45.39 a barrel, up 37 cents. Earlier in the day, **crude prices** had dropped after a U.S. government report showed that **crude oil**, **gasoline** and distillate fuels rose last week as demand for fuels weakened again. The U.S. stock **market** pared early losses after a spokesman said President Obama's administration is committed to moving as quickly as possible on an economic stimulus plan. "**Crude** is still resilient, despite the big build you have seen in the EIA data. I have a feeling that there will soon be a rebound in the stock **market** and that will spill over to the **energy markets**," said Mark Waggoner, president of Excel **Futures** in Huntington Beach, **California**. "In the last week, I've seen **investor** confidence improving, with the new Obama administration now installed ... I feel that if this confidence continues, it will spill into more (consumer) buying and that will improve demand for **gasoline** and other **energy products**," he added. **Oil** fell in early **trade** after U.S. **energy** Information Administration data showed that **crude oil inventories** jumped 6.1 million barrels last week, well above expectations for a build of 1.4 million barrels.

MAIstroTermList

Term Name="Crude oil (Commodity markets)" NumberOfTimes="5"
Term Name="Petroleum resources" NumberOfTimes="3"
Term Name="Oil (Fuels)" NumberOfTimes="3"
Term Name="Energy resources (Commodity markets)" NumberOfTimes="3"
Term Name="Product inventories" NumberOfTimes="3"
Term Name="Gasoline" NumberOfTimes="2"
Term Name="Prices" NumberOfTimes="2"
Term Name="Commodity market prices" NumberOfTimes="2"
Term Name="Stock market" NumberOfTimes="2"
Term Name="California" NumberOfTimes="1"
Term Name="Futures (Investments)" NumberOfTimes="1"
Term Name="Commerce" NumberOfTimes="1"
Term Name="Money and banking" NumberOfTimes="1"

MAIstroTerm: Crude oil (Commodity markets)
MAIstroTerm: Petroleum resources
MAIstroTerm: Oil (Fuels)

Shows the exact point where the concept is mentioned
Mouse-over to view the term record
Statistical summary, showing the number of times each term is mentioned in the article
Semantic Process

Full text, HTML, PDF, data feeds

Automatic Summarization

Inline Tagging

Metadata Extractor

Apply terms Rules Base

Thesaurus Master

Client Taxonomy

Data Repository

Search Software

User Interface Web Portal
Database Plus Search Workflow

- Raw Full text data feeds
- Printed source materials
- Data Crawls on data sources
- Source data

XIS Creation
- XIS repository
- Add metadata
- Taxonomy terms
- MAI Concept Extractor
- MAI Rule Base
- Taxonomy Thesaurus
- Master Add metadata

Clean and enhance data

Load to Search
- SQL for ecommerce

Search data
- Search Harmony Display Search
Outline of Presentation

1 Define key terminology
2 Thesaurus tools
 • Features
 • Functions
3 Costs
 • Thesaurus construction
 • Thesaurus tools
4 Why & when?
The terms from the “outline”

1. construction costs
2. define features
3. functions
4. key of outline presentation terminology thesaurus tools when why
Complex inverted file index
Placement location

& - Stop
1 - Stop
2 - Stop
3 - Stop
4 - Stop
construction - L7, P2, SH
costs - L6, P1, H
define - L2, P1, H
features - L4, P1, SH
functions - L5, P1, SH

key - L2, P2, H
of - Stop
outline - L1, P1, T
presentation - L1, P3, T
terminology - L2, P3, H
thesaurus - (1) - L3, P1, H
(2) - L7, P1, SH
(3) - L8, P1, SH
tools - (1) - L3, P2, H
(2) - L8, P2, SH
when - L9, P3, H
why - L9, P1, H
Complex Search Farm

Query

Search Harmony Presentation Layer

Federators

Repository XIS (cache)

Deploy Hub

Cache Builders

Index Builders

Query Servers

Source Data

Cleanup, etc.
What happens at the search presentation layer?

- That is what librarians usually look at.
- What are the options coming?
- How can we encourage useful changes?
Semantic search options

- Autocompletion using controlled terms
- Full taxonomy view for Navigation and Browsing
- Related, Broader, and Narrower Terms
Predation by Bears Drives Senescence in Natural Populations of Salmon

Stephanie M. Carlson, Ray Hilborn, Andrew P. Hendry, Thomas P. Quinn

Published: Dec 12, 2007 • DOI: 10.1371/journal.pone.0001286

Abstract

Classic evolutionary theory predicts that populations experiencing higher rates of environmentally caused ("extrinsic") mortality should senesce more rapidly, but this theory usually neglects plausible relationships between an individual’s senescent condition and its susceptibility to extrinsic mortality. We tested for the evolutionary importance of this condition dependence by comparing senescence rates among natural populations of sockeye salmon (Oncorhynchus nerka) subject to varying degrees of predation by brown bears (Ursus arctos). We related senescence rates in six populations to (1) the overall rate of extrinsic mortality, and (2) the degree of condition dependence in this mortality. Senescence rates were determined by modeling the mortality of individually-tagged breeding salmon at each site. The overall rate of extrinsic mortality was estimated as the long-term average of the annual percentage of salmon killed by bears. The degree of condition dependence was estimated as the extent to which bears killed salmon that exhibited varying degrees of senescence. We found that the degree of condition dependence in extrinsic mortality was very important in driving senescence: populations where bears selectively killed fish showing advanced senescence were those that senesced least rapidly. The overall rate of extrinsic mortality also contributed to among-population variation in senescence but to a lesser extent. Condition-dependent susceptibility to extrinsic mortality should be incorporated more often into theoretical models and should be explicitly tested in natural populations.

Figures
Predation by Bears Drives Senescence in Natural Populations of Salmon

Stephanie M. Carlson, Ray Hilborn, Andrew P. Hendry, Thomas P. Quinn

Published: Dec 12, 2007 DOI: 10.1371/journal.pone.0001266
Data linked and served by metadata

- Other Journal Articles on Topic A
- Journal Article on Topic A
- Author Networks
 Social Networking
- CME Activity on Topic A
- Upcoming Conference on Topic A
- Job Posting for Expert on Topic A
- Grant Available for Researchers Working on Topic A
- Podcast Interview with Researchers Working on Topic A

Based on an image by Helen Atkins
Alcohol, Folate, Methionine, and Risk of Incident Breast Cancer in the American Cancer Society Cancer Prevention Study II Nutrition Cohort
Heather Spencer Feigelson¹, Carolyn R. Jonas, Andreas S. Robertson, Marjorie L. McCullough, Michael J. Thun and Eugenia E. Calle

Department of Epidemiology and Surveillance Research, American Cancer Society, National Home Office, Atlanta, Georgia 30329-4251

Recent studies suggest that the increased risk of breast cancer associated with alcohol consumption may be reduced by adequate folate intake. We examined this question among 66,561 postmenopausal women in the American Cancer Society Cancer Prevention Study II Nutrition Cohort.
All data up-posted to the top level
This is a radial graph of “plosthés”. The number of records for which each index term occurs is reflected by circle sizes.

Visualize your tagged data
Semantic Hierarchy

to

drawable tree
Related Terms ➔ semantic web
Synonyms ➔ search foundation
Load to a visualization program such as Prefuse
Data Mashups

• Drawing together information from several sources
• Overlay on additional surfaces – like maps
• Fun distribution of data
• Cornell School of Ornithology
 • Migration patterns
 • YouTube
 • Citizen Science
Scientific social networking based on metadata

- Idea has been here - Who is citing who like
 - ISI does it with references
 - AIP’s UniPHY does it using semantics
- Expand your options using
 - good metadata and descriptors

Map who is working in the field and where

See the authors connections
Authors at a Place
Future?

- Document systems replaced
- New infrastructure
- Institutional repositories not good long term for Big Data
- Need to operate at scale
- Integrated, ecosystem to infrastructure
- Replace customized human mediated
 - With interpretive layer – computer assisted
- Links to data
- Open data / supplemental data
- Too much is not enough!
Differentiation

- Not by size of collection
- By the services they offer
- More services more competitive
- Spreadsheet science
 - Go down hall and ask
- Big Data
 - Too many people to ask
 - Lose provenance
 - Hard to differentiate the layers
New ways of doing things

- People, data usage
- Preservation and discovery
- Publishers’ content, not format
- Visualization of Big Data sets
- Reproducibility of research
- Shared knowledge
- Open peer review
 - Researcher.org
 - Galaxy zoo
 - Zooniverse
 - 900,000 citizen scientists
 - Wikipedia
Few have witnessed what you're about to see
Experience a privileged glimpse of the distant universe as observed by the SDSS, the Hubble Space Telescope, and UKIRT

We are trying something new! Come help us understand a very specific type of galaxy and experience science from start to end. Take part

Classify Galaxies
To understand how galaxies formed we need your help to classify them according to their shapes. If you're quick, you may even be the first person to see the galaxies you're asked to classify.

Begin Classifying
Skills we bring

• Librarians
 • Weeding
 • Redefining collections
 • Collection development

• Skills to apply to Big Data
 • Vocabulary development
 • Search expertise
 • Reference ability

• What to throw away

• What to keep for discoverability

• Need metadata to preserve
 • Better discoverability
 • Easier preservation
 • Keep the data provenance

Better discoverability
Easier preservation
Keep the data provenance
We covered

- Big Data – What is it?
- New Government Initiative
- Content organization
- Discovery (Search)
- Management
- Skills we bring
- Examples of what we can do
Who are we?

- Access Innovations –
 - Semantic Enrichment Services Provider
 - We change search to find!
- Creator of Data Harmony tools
- More than 600 taxonomies created
- More than 2000 engagements
- Financed by Sweat, Persistence, and Good Cash Flow Management
- Accurate, on time, under budget!
Thank you

- Marjorie Hlava
 - mhlava@accessinn.com
- +1-505-998-0800
- Access Innovations/Data Harmony/Access Integrity
- Taxodiary.com (blog)
- Taxobank.org (reference tool for taxonomists)