Clinical Practice Guideline Webinar – Immunotherapy for the Treatment of Lymphoma

Monday, January 25, 2021
5 – 6 p.m. EST

Jointly provided by Postgraduate Institute for Medicine and the Society for Immunotherapy of Cancer

This webinar is supported, in part, by independent medical education grant funding from Amgen, AstraZeneca Pharmaceuticals LP, Celgene Corporation and Merck & Co., Inc.
Webinar Agenda

5:00 – 5:05 p.m. ET Overview: Welcome and Introductions

5:05 – 5:45 p.m. ET Presentation and discussion of guideline content

5:45 – 5:55 p.m. ET Question and Answer Session

5:55 – 6:00 p.m. ET Closing Remarks
How to Submit Questions

• Click the “Q&A” icon located on at the bottom of your Zoom control panel
• Type your question in the Q&A box, then click “Send”
• Questions will be answered in the Question & Answer session at the end of the webinar (as time permits)
Webinar faculty

Michael R. Bishop, MD
University of Chicago

Sattva S. Neelapu, MD
The University of Texas
MD Anderson Cancer Center

Stephen M. Ansell, MD, PhD
Mayo Clinic Cancer Center
Outline

• Introduction to lymphoma
• Management of B-cell non-Hodgkin lymphoma
• Management of Hodgkin lymphoma, chronic lymphocytic leukemia and T cell lymphoma
• Toxicity management
Lymphoma

- Most common type of hematologic cancer
- Estimated 85,720 new cases and 20,910 deaths in 2020
- Treatment modalities include chemotherapy, radiotherapy, stem cell transplantation, targeted therapies and immunotherapy
Guideline development

• *The Institute of Medicine’s Standards for Developing Trustworthy Practice Guidelines* were used to develop these recommendations

• Panel consisted of 12 participants, including medical oncologists, a pediatric oncologist, a nurse practitioner, and a patient advocate

• Recommendations come from literature evidence, supplemented with clinical experience of the panel members where necessary

• Consensus defined as ≥75% agreement
Guideline development

Position article and guidelines

Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of lymphoma

Sattva S Neelapu¹, Sherry Adkins¹, Stephen M Ansell², Joshua Brody³, Mitchell S Cairo⁴, Jonathan W Friedberg⁵, Justin P Kline⁶, Ronald Levy⁷, David L Porter⁸, Koen van Besien⁹, Michael Werner¹⁰ and Michael R Bishop⁶

Author affiliations +

Abstract

The recent development and clinical implementation of novel immunotherapies for the treatment of Hodgkin and non-Hodgkin lymphoma have improved patient outcomes across subgroups. The rapid introduction of immunotherapeutic agents into the clinic, however, has presented significant questions regarding optimal treatment scheduling around existing chemotherapy/radiation options, as well as a need for improved understanding of how to properly manage patients and recognize toxicities. To address these challenges, the Society for Immunotherapy of Cancer (SITC) convened a panel of experts in lymphoma to develop a clinical practice guideline for the education of healthcare professionals on various aspects of immunotherapeutic treatment. The panel discussed subjects including treatment scheduling, immune-related adverse events (irAEs), and the integration of immunotherapy and stem cell transplant to form recommendations to guide healthcare professionals treating patients with lymphoma.
General recommendations for lymphoma

• **Clinical trials** should be strongly considered as a treatment option at each stage of therapy for eligible patients with lymphoma.

• All patients newly diagnosed with lymphoma should receive initial imaging via **FDG-PET/CT**.

• Patients should be routinely administered **complete blood count (CBC) and serum IgG tests**. Infection precautions may be considered in patients with decreased neutrophil and absolute lymphocyte counts from CBC tests, as well as low levels of serum IgG.

• All patients with newly diagnosed lymphoma should receive assessment of their **cardiovascular history** and risk factors prior to receiving potentially cardiotoxic therapies.
Outline

• Introduction to lymphoma
• Management of B-cell non-Hodgkin lymphoma
• Management of Hodgkin lymphoma, chronic lymphocytic leukemia and T cell lymphoma
• Toxicity management
Diffuse Large B-cell Lymphoma Case

• 47 yo male who presented with stage IVB DLBCL with bulky retroperitoneal lymphadenopathy of up to 15 cm in size

• Had partial response after 4 cycles of DA-EPOCH-R but progressed after cycle 6

• After 1 cycle of R-DHAP he had increasing back pain and a CT scan revealed progressive disease

• Treatment options approved for 2nd or 3rd line DLBCL:
 • CAR T-cell therapy
 • Polatuzumab + bendamustine + rituximab
 • Tafasitamab + lenalidomide

• What is the best treatment option for this patient?
Treatment of NHL

Immunotherapy options include:

- Monoclonal antibodies
 - Rituximab
 - Obinutuzumab
 - Mogamulizumab-kpkc
 - Tafasitamab-cxix
- Antibody-drug conjugates
 - Ibritumomab tiuxetan
 - Brentuximab vedotin
 - Polatuzumab vedotin-piix

- Cellular therapies
 - Axicabtagene ciloleucel
 - Tisagenlecleucel
 - Brexucabtagene autoleucel
- Immunomodulators
 - Lenalidomide
- Immune checkpoint inhibitors
 - Pembrolizumab
Rituximab

Anti-CD20 antibody

- **Approved for:**
 - R/R low grade or follicular CD20-positive B-cell NHL as a single agent
 - Previously untreated follicular, CD20-positive, B-cell NHL in combination with first-line chemotherapy and, in patients achieving a CR or PR to rituximab + chemotherapy, as single-agent maintenance
 - Non-progressing low-grade CD20-positive B-cell NHL as single agent after first-line cyclophosphamide, vincristine and prednisone
 - Previously untreated diffuse large B-cell, CD20-positive NHL in combination with CHOP or other anthracycline chemotherapy
Obinutuzumab

Anti-CD20 antibody

• Approved for:
 • R/R follicular lymphoma after rituximab, in combination with bendamustine, followed by obinutuzumab monotherapy
 • Previously untreated stage II bulky, III or IV follicular lymphoma, in combination with chemotherapy, followed by obinutuzumab monotherapy if achieving at least a PR
Tafasitamab-cxix

Anti-CD19 antibody

• Approved for: R/R DLBCL in combination with lenalidomide for patients ineligible for autoSCT

• Fc engineering enhances ADCC and ADP compared to unmodified IgG

• Panel noted tafasitamab + lenalidomide as a treatment option for second-line treatment of transplant-ineligible DLBCL
Ibritumomab tiuxetan
Anti-CD20 antibody + 90Y

- Delivers cytotoxic radiation to CD20-expressing cells

- Approved for:
 - R/R low-grade or follicular NHL
 - Follicular NHL with a PR or CR to first-line chemotherapy

- Requires additional handling/safety considerations, since radioactive

- Dosing in units of millicurie (mCi) per kg
Polatuzumab vedotin-piiq
Anti-CD79b antibody + monomethyl auristatin E

• Approved for:
 • R/R DLBCL after at least two prior therapies, in combination with rituximab and bendamustine

• Committee recommends PV as the third-line treatment for patients with DLBCL who are ineligible for CAR T therapy.
Axicabtagene ciloleucel, tisagenlecleucel and brexucabtagene autoleucel

CD19 CAR T therapies

<table>
<thead>
<tr>
<th>Agent</th>
<th>Approved indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axicabtagene ciloleucel</td>
<td>R/R large B cell lymphomas after 2+ prior therapies</td>
</tr>
<tr>
<td>Tisagenlecleucel</td>
<td>R/R large B cell lymphomas after 2+ prior therapies</td>
</tr>
<tr>
<td>Brexucabtagene autoleucel</td>
<td>R/R MCL</td>
</tr>
</tbody>
</table>

Axi-cel and brexu-cel have the same CAR construct; however, the manufacturing of brexu-cel involves enrichment of specific lymphocytes to improve therapeutic potential.
Recommendations for DLBCL

First-line treatment
- Adults: R-CHOP
- Pediatric: rituximab + FAB chemotherapy

Second-line treatment
- Transplant eligible: chemoimmunotherapy regimen that includes rituximab, followed by autoSCT if CR achieved
- Transplant-ineligible: no consensus. Options: lenalidomide, lenalidomide + tafasitamab, polatuzumab vedotin + BR, or salvage chemoimmunotherapy

Third-line treatment (or later)
- Anti-CD19 CAR T therapy
- CAR-ineligible: polatuzumab vedotin + rituximab + bendamustine
DLBCL Case Study

• The first-line regimen for newly diagnosed DLBCL in adult patients should be R-CHOP or R-CHOP-like regimens.

• For the second-line therapy of DLBCL, transplant-eligible patients should receive a chemoimmunotherapy regimen that includes rituximab followed by autoSCT consolidation if CR is achieved.

• The third-line treatment for DLBCL in fit patients should be anti-CD19 CAR T cell therapy.
 • Anti-CD19 CAR T-cell therapy should be considered prior to tafasitamab + lenalidomide therapy in CART-eligible patients

• Patients who are ineligible for third-line anti-CD19 CAR T cell therapy should instead receive polatuzumab vedotin-piiq+ rituximab+bendamustine.
 • Bendamustine should be avoided prior to apheresis in CART-eligible patients
Recommendations for MCL

<table>
<thead>
<tr>
<th>First-line treatment</th>
<th>Second-line treatment</th>
<th>Third-line treatment (or later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplant-eligible: No consensus</td>
<td>No consensus</td>
<td>No consensus</td>
</tr>
<tr>
<td>Options: chemoimmunotherapy + autoSCT or chemoimmunotherapy alone</td>
<td>Options: brexucabtagene autoleucel, proteasome inhibitors, BTK inhibitors, BTK inhibitors + rituximab, or lenalidomide + rituximab</td>
<td></td>
</tr>
<tr>
<td>Transplant-ineligible: chemoimmunotherapy + rituximab maintenance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recommendations for FL

First-line treatment
- **Low tumor burden: no consensus**
- **Options include:** *rituximab, lenalidomide* + *rituximab*, or *chemoimmunotherapy*
- **High tumor burden:** chemoimmunotherapy

Second-line treatment
- Options will vary and should be decided on case-by-case basis, factoring in:
 - Prior therapies
 - Time of relapse
 - Tumor bulk
 - Age
 - Comorbidities

Third-line treatment (or later)

Notes:
- When anti-CD20 antibody is indicated, *rituximab* should be used over *obinutuzumab*
- If relapse occurs <6 months after *rituximab*, *obinutuzumab* should be used
- If relapse occurs >6 months after *rituximab*, re-administration of *rituximab* can occur
Recommendations for MZL

<table>
<thead>
<tr>
<th>First-line treatment</th>
<th>Second-line treatment</th>
<th>Third-line treatment (or later)</th>
</tr>
</thead>
</table>
| Low tumor burden: rituximab monotherapy | Options will vary and should be decided on case-by-case basis, factoring in:
 • Prior therapies
 • Time of relapse
 • Tumor bulk
 • Age
 • Comorbidities | High tumor burden: chemoimmunotherapy |

- Low tumor burden: **rituximab** monotherapy
- High tumor burden: chemoimmunotherapy

Options will vary and should be decided on case-by-case basis, factoring in:
- Prior therapies
- Time of relapse
- Tumor bulk
- Age
- Comorbidities
Recommendations for PMBCL

First-line treatment
- DA-R-EPOCH

Second-line treatment
- Transplant eligible: chemoimmunotherapy regimen that includes *rituximab*, followed by autoSCT if CR achieved.
- Transplant-ineligible: no consensus. Options: *lenalidomide, lenalidomide + tafasitamab, polatuzumab vedotin + BR, or salvage chemoimmunotherapy.*

Third-line treatment (or later)
- No consensus.
- Options: *axicabtagene cilocelel, BV + pembrolizumab, salvage chemoimmunotherapy.*
Recommendations for BL - pediatric

<table>
<thead>
<tr>
<th>First-line treatment</th>
<th>Second-line treatment</th>
<th>Third-line treatment (or later)</th>
</tr>
</thead>
</table>
| • **Rituximab-containing** chemoimmunotherapy, with either FAB or BFM backbone | • **Rituximab-containing** chemoimmunotherapy
• Options: R-ICE or R-CYVE | • Patients should receive stem cell transplant if eligible. |

Recommendations for BL - adult

First-line treatment
- **Rituximab-containing** chemoimmunotherapy.
- Options: rituximab + CODOXM/IVAC alternating with rituximab + HyperCVAD, rituximab + LMB

Second-line treatment
- Similar **rituximab-containing** chemoimmunotherapy
- Consolidation similar to DLBCL

Third-line treatment (or later)
Outline

• Introduction to lymphoma
• Management of B-cell non-Hodgkin lymphoma
• Management of Hodgkin lymphoma, chronic lymphocytic leukemia and T cell lymphoma
• Toxicity management
Hodgkin lymphoma case

• A 27 year old male presents with stage IVA nodular sclerosis Hodgkin lymphoma.
• He has diffuse lymphadenopathy; liver, lung and splenic lesions and multiple bone lesions on PET scan.
• He receives brentiximab vedotin + AVD x 6 cycles and has a CR.
• He has a biopsy proven relapse 9 months later.
• He receives ICE chemotherapy followed by an autologous stem cell transplant and brentuximab vedotin for 1 year.
• The patient relapses again 6 months after completing 16 cycles of brentuximab vedotin and is treated with nivolumab.
• He has a CR and is offered an allogenic transplant, but declines.
• He remains in remission 4 years later.
Approved immunotherapies for Hodgkin lymphoma

<table>
<thead>
<tr>
<th>Agent</th>
<th>Therapy type</th>
<th>Indication(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brentuximab vedotin</td>
<td>ADC</td>
<td>First-line stage III-IV cHL (combination with doxorubicin, vinblastine and dacarbazine)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consolidation therapy for cHL after autoSCT and high risk of relapse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R/R cHL after autoSCT</td>
</tr>
<tr>
<td>Nivolumab</td>
<td>ICI</td>
<td>R/R cHL after autoSCT and brentuximab vedotin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R/R cHL after 3+ prior therapies</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>ICI</td>
<td>R/R cHL after 3+ prior therapies</td>
</tr>
</tbody>
</table>
Brentuximab vedotin

Anti-CD30 antibody + monomethyl auristatin E

<table>
<thead>
<tr>
<th>Trial</th>
<th>Study design</th>
<th>Patient population</th>
<th>Enrolled patients</th>
<th>Primary endpoint</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHELON-1</td>
<td>Randomized phase III; comparator: ABVD</td>
<td>First line stage III or IV cHL</td>
<td>1334</td>
<td>Modified PFS</td>
<td>2-yr PFS: 82.1 vs 77.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-yr OS: 96.6 vs 94.9%</td>
</tr>
<tr>
<td>AETHERA</td>
<td>Randomized phase III; comparator: BSC</td>
<td>cHL at high risk of relapse after autoSCT</td>
<td>329</td>
<td>PFS</td>
<td>5-yr PFS: 59 vs 41%</td>
</tr>
<tr>
<td>NCT00848926</td>
<td>Phase II, single-arm</td>
<td>R/R cHL with prior autoSCT</td>
<td>102</td>
<td>ORR</td>
<td>ORR: 75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CR rate: 34%</td>
</tr>
</tbody>
</table>

Recommended uses in HL:
- Pre-autoSCT with chemotherapy, ICI, or monotherapy
- First-line stage III-IV with AVD
- Third-line treatment

Moskowitz, Blood 2018.
Younes, J Clin Oncol 2012.
Nivolumab and pembrolizumab

Anti-PD-1 antibodies

<table>
<thead>
<tr>
<th>Trial</th>
<th>Study design</th>
<th>Patient population</th>
<th>Enrolled patients</th>
<th>Primary endpoint</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>CheckMate 205</td>
<td>Phase II single-</td>
<td>R/R cHL with prior autoSCT +/- BV</td>
<td>243</td>
<td>ORR</td>
<td>ORR: 69%</td>
</tr>
<tr>
<td></td>
<td>arm, nivolumab</td>
<td></td>
<td></td>
<td></td>
<td>Median PFS: 14.7 mo</td>
</tr>
<tr>
<td>NCT02572167</td>
<td>Phase I/II single-</td>
<td>R/R cHL second-line</td>
<td>62</td>
<td>CR rate</td>
<td>CR rate: 61%</td>
</tr>
<tr>
<td></td>
<td>arm, nivolumab +</td>
<td></td>
<td></td>
<td></td>
<td>ORR: 83%</td>
</tr>
<tr>
<td></td>
<td>BV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEYNOTE-087</td>
<td>Phase II single-</td>
<td>R/R cHL</td>
<td>210</td>
<td>ORR and safety</td>
<td>ORR: 69%</td>
</tr>
<tr>
<td></td>
<td>arm, pembrolizumab</td>
<td></td>
<td></td>
<td></td>
<td>6-month PFS: 72.4%</td>
</tr>
</tbody>
</table>

Recommended uses in HL:
- Pre-autoSCT with BV
- Third-line treatment
Recommendations for HL

<table>
<thead>
<tr>
<th>First-line treatment</th>
<th>Second-line treatment</th>
<th>Third-line treatment (or later)</th>
</tr>
</thead>
</table>
| Stage I-II: doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD) | • Salvage chemotherapy or immunotherapy, and autoSCT if eligible. Pre-autoSCT options include:
 • **Brentuximab vedotin**
 • Ifosfamide + carboplatin + etoposide
 • **Brentuximab vedotin** + **nivolumab**
 • **Brentuximab vedotin** monotherapy | • **No consensus. Options:**
 • **Salvage chemotherapy or immunotherapy** + autoSCT if eligible
 • **PD-1 inhibitor therapy**
 • **Brentuximab vedotin** |
| Stage III-IV: no consensus. Options:
 • ABVD
 • **Brentuximab vedotin**, doxorubicin, vinblastine and dacarbazine (A-AVD) | | |

32
Hodgkin lymphoma case

1. Brentuximab vedotin is standardly included in initial chemotherapy combinations
2. Brentuximab vedotin should be given as consolidation therapy after autologous stem cell transplantation in high-risk patients
3. Anti-PD1 antibodies are standard of care in relapsed Hodgkin lymphoma patients post autologous transplant
4. Consider allogeneic transplant or a clinical trial if the disease progresses
Recommendations for PTCL

First-line treatment
- CD30+: no consensus
- Options: BV + CHP, chemotherapy, chemotherapy + autoSCT
- CD30-negative: chemotherapy + autoSCT

Second-line treatment
- Eligible for transplant: no consensus.
- Options: chemotherapy + autoSCT, chemotherapy + alloSCT, HDAC inhibitors
- CD30+, SCT-ineligible: BV up to 16 doses
- CD30-, SCT-ineligible: HDAC inhibitors

Third-line treatment (or later)
Approved therapies for CLL

<table>
<thead>
<tr>
<th>Agent</th>
<th>Treatment type</th>
<th>Indication(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab</td>
<td>Anti-CD20 antibody</td>
<td>Untreated CD20-positive CLL in combination with FC
R/R CD20-positive CLL in combination with FC</td>
</tr>
<tr>
<td>Obinutuzumab</td>
<td>Anti-CD20 antibody</td>
<td>Untreated CLL in combination with chlorambucil</td>
</tr>
<tr>
<td>Ofatumumab</td>
<td>Anti-CD20 antibody</td>
<td>Untreated, fludarabine-ineligible CLL in combination with chlorambucil
Relapsed CLL in combination with FC
Extended treatment of CLL in CR or PR after 2+ prior therapies
CLL refractory to fludarabine and alemtuzumab</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>Anti-CD52 antibody</td>
<td>Untreated or R/R CLL</td>
</tr>
</tbody>
</table>

The panel did not reach consensus on preferred regimens for the first-line or second-line treatment of CLL. Options include targeted therapy (if eligible) and chemoimmunotherapy regimens, which may include rituximab, obinutuzumab, ofatumumab, and alemtuzumab.
Outline

• Introduction to lymphoma
• Management of B-cell non-Hodgkin lymphoma
• Management of Hodgkin lymphoma, chronic lymphocytic leukemia and T cell lymphoma
• Toxicity management
“Black box” warnings on lymphoma immunotherapies

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Warning due to</th>
<th>Therapy</th>
<th>Warning due to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alemtuzumab</td>
<td>• Autoimmune conditions</td>
<td>Ibritumomab tiuxetan</td>
<td>• Severe infusion reactions</td>
</tr>
<tr>
<td></td>
<td>• Severe infusion reactions</td>
<td></td>
<td>• Severe cytopenia</td>
</tr>
<tr>
<td></td>
<td>• Anaphylaxis</td>
<td></td>
<td>• Severe cutaneous/mucocutaneous reactions</td>
</tr>
<tr>
<td></td>
<td>• Cancer</td>
<td></td>
<td>• Do not administer if altered biodistribution</td>
</tr>
<tr>
<td></td>
<td>• Infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axicabtagene ciloleucel</td>
<td>• CRS</td>
<td>Lenalidomide</td>
<td>• Embryo-fetal toxicity</td>
</tr>
<tr>
<td></td>
<td>• ICANS</td>
<td></td>
<td>• Significant neutropenia, thrombocytopenia</td>
</tr>
<tr>
<td></td>
<td>• Do not administer if active infection or inflammation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brexucabtagene autoleucel</td>
<td>• CRS</td>
<td>Rituximab and biosimilars</td>
<td>• Severe infusion reactions</td>
</tr>
<tr>
<td></td>
<td>• ICANS</td>
<td></td>
<td>• TLS</td>
</tr>
<tr>
<td></td>
<td>• Do not administer if active infection or inflammation</td>
<td></td>
<td>• Severe mucocutaneous reactions</td>
</tr>
<tr>
<td>Brentuximab vedotin</td>
<td>• PML</td>
<td>Tisagenlecleucel</td>
<td>• PML</td>
</tr>
<tr>
<td>Obinutuzumab</td>
<td>• Hepatitis B reactivation</td>
<td></td>
<td>• Hepatitis B reactivation</td>
</tr>
<tr>
<td></td>
<td>• PML</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cytokine release syndrome

• Common with CAR T therapy but can occur with other immunotherapies.
• Management includes tocilizumab and corticosteroids.
Neurotoxicity

- Also called CAR-T Related Encephalopathy Syndrome (CRES) or IEC-associated neurologic syndrome (ICANS)
- Manifests as confusion, delirium, seizures, cerebral edema
- Largely unknown mechanisms
- Incidence increases with more doses, increased age, more prior therapies
- Management options:
 - Supportive care
 - Corticosteroids

<table>
<thead>
<tr>
<th>Neurotoxicity Domain</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE score</td>
<td>7-9</td>
<td>3-6</td>
<td>0-2</td>
<td>0</td>
</tr>
<tr>
<td>Depressed level of consciousness</td>
<td>Awakens spontaneously</td>
<td>Awakens to voice</td>
<td>Awakens to tactile stimulus</td>
<td>Unrousable</td>
</tr>
<tr>
<td>Seizure</td>
<td>N/A</td>
<td>N/A</td>
<td>Any clinical seizure/on EEG</td>
<td>Prolonged/life-threatening seizure</td>
</tr>
<tr>
<td>Motor Findings</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Hemi or paraparesis, deep focal motor weakness</td>
</tr>
<tr>
<td>Raised ICP/cerebral edema</td>
<td>N/A</td>
<td>N/A</td>
<td>Focal edema on imaging</td>
<td>Diffuse cerebral edema on imaging, cranial N palsy, Cushing’s triad, Decorticate posture</td>
</tr>
</tbody>
</table>

Infusion reactions

• Can be allergic or non-allergic
• Allergic reactions uncommon, but can lead to anaphylaxis
• Infusion reactions are common, particularly when mAbs are administered after SCT
• Most infusion reactions occur with first dose of therapy
• Among lymphoma immunotherapies, rituximab has highest incidence of infusion reactions, up to 77%
Tumor lysis syndrome

• Result of a sudden and massive release of metabolites after widespread lysis of tumor cells

• Particularly high risk in hematologic cancers with high tumor burden

• Management approaches include:
 • Prophylactic hydration
 • Prophylactic hypouricemic agents, like allopurinol
 • Dialysis
Patients with viral infections

• Reactivation of hepatitis B infection has been reported after certain antibody therapies, including rituximab and BV

• Panel recommends **not treating patients with active viral infections** with CAR T therapy or alloSCT

• Patients should be **evaluated for HBV/HCV** prior to immunotherapy, and antivirals should be initiated if positive

• Patients with **HIV can be considered** for immunotherapy if their HIV is well-controlled
Conclusions

• **Clinical trials** should be strongly considered as a treatment option at each stage of therapy for eligible patients with lymphoma.

• The immunotherapy options for B-NHL are broad include rituximab as a standard for newly diagnose disease. CAR T cells have emerged as the preferred option for relapsed/refractory disease while polatuzumab vedotin is available for CAR-ineligible patients.

• Brentuximab vedotin has been incorporated into both frontline and second-line therapies for HL. Checkpoint inhibitors are standard options in the relapsed/refractory settings

• Careful consideration, monitoring and management are necessary when immunotherapies are utilized in lymphoma.
How to Submit Questions

• Click the “Q&A” icon located on at the bottom of your Zoom control panel
• Type your question in the Q&A box, then click “Send”
• Questions will be answered in the Question & Answer session at the end of the webinar (as time permits)
CME Credit Now Available for JITC Reviewers

As a way to give back to the community of reviewers who volunteer their time to support SITC’s open access, peer-reviewed journal, the Journal for ImmunoTherapy of Cancer (JITC), is pleased to offer continuing medical education (CME) credits for reviewers.

To learn more about the benefits of serving as a JITC manuscript reviewer and to volunteer visit: sitcancer.org/jitc
Upcoming Webinar:

Clinical Practice Guideline Webinar – Immune Effector Cell-related Adverse Events
Friday, March 5 at 3 – 4 p.m. ET

Faculty:
Stephan Grupp, MD, PhD – Children’s Hospital of Philadelphia and U. of Pennsylvania
Matthew J. Frigault, MD, MSc – Massachusetts General Hospital
Frederick L. Locke, MD – Moffitt Cancer Center
Bianca D. Santomasso, MD, PhD – Memorial Sloan Kettering Cancer Center

sitcancer.org/guidelines

Jointly provided by Postgraduate Institute for Medicine and the Society for Immunotherapy of Cancer

This webinar is supported, in part, by independent medical education grant funding from Amgen, AstraZeneca Pharmaceuticals LP, Celgene Corporation and Merck & Co., Inc.
The 2020–2021 ACI series is jointly provided by Postgraduate Institute for Medicine and the Society for Immunotherapy of Cancer.

The 2020–2021 Advances in Cancer Immunotherapy™ educational series is supported, in part, by independent medical education grants from Amgen, AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Exelixis, Inc., and Merck & Co., Inc.

Advances in Cancer Immunotherapy™
Virtual Programs

Thursday, February 18

Saturday, March 20

Thursday, April 8

• Learn about how to treat patients with FDA-approved immunotherapies
• Available for CME, CPE and CME credits and MOC points
• Free for healthcare professionals, students, patient or patient advocates

sitcancer.org/aci
Continuing Education Credits

- Continuing Education Credits are offered for Physicians, PA’s, NP’s, RN’s and Pharmacists
- You will receive an email following the webinar with instructions on how to claim credit
- Questions and comments: connectED@sitcancer.org

Thank you for attending the webinar!

Jointly provided by Postgraduate Institute for Medicine and the Society for Immunotherapy of Cancer

This webinar is supported, in part, by independent medical education grant funding from Amgen, AstraZeneca Pharmaceuticals LP, Celgene Corporation and Merck & Co., Inc.
Acknowledgements

• Some figures created using biorender.com