Immune Exclusion: Therapeutic approaches to ECM

Mechanisms of immune exclusion are complex and can be due to activated oncogenic pathways, hypoxia, degenerated blood vessels, cytokines and chemokines released by tumor, stromal cells, immune infiltration of immunosuppressive cells and ECM that limit lymphocyte access to the tumor nest.

Major ECM Constituents & Targets
Matrix scaffold macromolecules
- Proteoglycans
- Fibrous matrix forming proteins
 - Collagens I, III, IV needed for cancer cell survival; fibronectin, etc.
 - Collagen receptors, e.g. discoidin domain receptor 1 (DDR1) and lysyal oxidase as targets
- Hyaluronan forms a hydrogel-like matrix surrounding the tumor cells acting as an exclusion barrier > pegylated hyaluronidase, PEGPH20.

Cytokines & Chemokines
- N-CCL2 > TAM and MDSC recruitment
- TGFβ > collagen > fibrosis
 - Collagen is a LAIR-1 ligand – LAIR-1 ICB

Proteins with known barrier functions
- e.g. filagrin and desmosomal proteins like dystonin.
- T cell infiltration to the tumor bed is modulated by filagrin mutational state.
- Dystonin > loss of Th1-like immune signature
- Can disrupting agents be developed and safe??
Immune Exclusion: Therapeutic approaches to CAFs and Vessels

Major Stromal Constituents & Targets

• Cancer Associated Fibroblasts
 • Fibroblast activation protein (FAP)
 • FAP targeting CART – but anemia, bone marrow hypoplasia

• Endothelial cells
 • PSMA
 • ICANS Neurotoxicity from PSMA-specific, TGFβ-resistant CART
 • VEGFR2
 • Tolerable but no response – combo?
 • FSHR
 • Untested in patients

Cellular Gatekeepers

Bruni. et al. Frontiers in Oncol, 22 May 2023
Immune Exclusion: TAMs/MDSCs as gatekeepers & targets

• Accumulation is a poor prognostic factor in most solid cancer types.
• Associated with resistance to ICB and CART therapies.
• Recruited and corrupted by tumor cells.
• Commonly have an alternative or wound-healing phenotype and often reside in stroma.
 • Immunosuppressive cytokines (e.g. IL-10; TGFβ) and ligands (PD-L1)
 • Pro-angiogenic factors (e.g. VEGF-A)
 • Poor antigen presentation
 • Growth factors and matrix remodeling
 • Promote tumor growth, angiogenesis, metastasis, and immune evasion

• Challenges to targeting:
 • Comprised of diverse phenotypic subsets
 • Hard to discriminate b/w suppressor and inflammatory subsets
 • Subsets dynamically change & continued TAM recruitment

Targeting TAMs: Clinical Strategies to allow T cell infiltration and activity

CSF-1R inhibitors
- CSF-1 is implicated in tumor macrophage recruitment, survival, proliferation, and differentiation.
- Expression identified in primitive multipotent hematopoietic cells and mononuclear phagocytic lineage cells.
- Some evidence of clinical activity with some toxicity at current dose concentrations.

CD47 blocking antibodies and SIRPαFc fusions
- Provides a “do not eat” signal to macrophages by binding to signal regulatory protein alpha (SIRPα) on immune cells and suppresses phagocytosis.
- Ubiquitously expressed in human cells.
- Several trials; Some antitumor activity observed.

Challenges:
- Indiscriminate of TAM subset (e.g. inflammatory vs. suppressive)
- Activity in the TME and systemically; toxicity
- Short term activity/half-lives

New approaches:
- CART: advantage - durability of depletion – “logic” gating.
- Promotes endogenous T cell infiltration and activity

Newer targets: CD200, CD163, CD206, FRβ

(Casseta and Pollard, Nat Rev Drug Discovery, 2018)