Preclinical Assessment of Cell and Gene Therapy Products to Support an Investigational New Drug (IND) Application: A FDA/CBER Perspective

Sandhya Sanduja, PhD
Team Lead

Office of Tissues and Advanced Therapies (OTAT)
Center for Biologics Evaluation and Research (CBER)
US Food and Drug Administration (FDA)
Overview

- CBER/OTAT Organization and Products
- Cell and Gene Therapy (CGT) Products
- Regulatory Review Principles
- CGT Safety Concerns
- Preclinical Testing Program - CGT immunotherapies
- Potential Pitfalls/Regulatory Issues
- Early Interaction with CBER/OTAT
Diversity of OTAT-Regulated Products

- **Gene therapies**
 - *Ex vivo* genetically modified cells
 - Nonviral vectors (e.g., plasmids)
 - Replication-deficient viral vectors (e.g., adenovirus, adeno-associated virus, lentivirus)
 - Replication-competent viral vectors (e.g., measles, adenovirus, vaccinia)
 - Microbial vectors (e.g., *Listeria, Salmonella*)

- **Stem cells/stem cell-derived**
 - Embryonic
 - Fetal (e.g., neural)
 - Perinatal (e.g., placental, umbilical cord blood)
 - Adult (e.g., hematopoietic, neural, cardiac, adipose, mesenchymal)
 - Induced pluripotent stem cells (iPSCs)

- **Functionally mature/differentiated cells** (e.g., retinal pigment epithelial cells, pancreatic islets, chondrocytes, keratinocytes)

- **Products for xenotransplantation**

- **Therapeutic vaccines and other antigen-specific active immunotherapies**
 - Peptide vaccines
 - Cellular immunotherapy (e.g., natural killer cells)

- **Blood- and plasma-derived products**
 - Coagulation factors
 - Fibrin sealants, Fibrinogen, Thrombin, Plasminogen
 - Immune globulins
 - Antitoxins, snake venom antisera

- **Tissues**

- **Devices**

- **Combination products**
 - Engineered tissues/organs
CGT Products: Definition and Therapeutic Use in Human Diseases

- Cell therapy—autologous, allogeneic, or xenogeneic living cells that may or may not have been processed \textit{ex vivo}

- Gene therapy—products that mediate their effects by transcription and/or translation of transferred genetic material, or by specifically altering host (human) genetic sequences
 - Vector based—viral/non-viral
 - \textit{Ex vivo} genetically modified cells
 - Products incorporating genome editing

*Modified from
All IND Submissions with Cell Therapy Products, CY 1963–2019
All IND Submissions with Gene Therapy Products, CY 1963–2019
Examples

- Cell therapies: mesenchymal stem cells (MSCs), tumor-infiltrating lymphocytes (TILs), natural killer (NK) cells

 Alzheimer’s, graft versus host disease, solid tumors
Examples

- Cell therapies: mesenchymal stem cells (MSCs), tumor-infiltrating lymphocytes (TILs), natural killer (NK) cells

 Alzheimer’s, graft versus host disease, solid tumors

- Genetically engineered cell therapies: CD34+, T cell receptor (TCR)-T, chimeric antigen receptor (CAR) T cells

 Blood disorders, hematologic malignancies, solid tumors

Molecular Therapy, Volume 24, Issue 3, March 2016, Pages 430-446
CGT Products: Definition and Therapeutic Use in Human Diseases

Examples

- Cell therapies: mesenchymal stem cells (MSCs), tumor-infiltrating lymphocytes (TILs), natural killer (NK) cells
 Alzheimer’s, graft versus host disease, solid tumors

- Genetically engineered cell therapies: CD34+, T cell receptor (TCR)-T, chimeric antigen receptor (CAR) T cells
 Blood disorders, hematologic malignancies, solid tumors

- Vectors-based gene therapies: viruses, plasmids, lipid nanoparticles carrying mRNA
 Monogenic diseases, cancers

Molecular Therapy, Volume 24, Issue 3, March 2016, Pages 430-446
Examples of CGT-based Immunotherapy Products Regulated in OTAT

Examples

- Chimeric Antigen Receptor (CAR) T cells
 - TCR transgenic (Tg) T cells
 - Non-T cell CARs (B cell, NK cell, etc.)
 - Regulatory T cells (Tregs)
 - Mesenchymal Stem Cells (MSCs)
 - Therapeutic Vaccines (e.g., dendritic cells, irradiated tumor cells, peptide vaccines, etc.)

Molecular Therapy, Volume 24, Issue 3, March 2016, Pages 430-446
Product Lifecycle for CGT: Focus on the Preclinical Phase

[Diagram showing the product lifecycle stages and key milestones]

- Preclinical
- Clinical Trials
 - Phase 1
 - Phase 2
 - Phase 3
 - BLA
- Marketing Application
- Post-marketing
 - Safety Meetings
 - Marketing Submission
- IND Submission
 - End of Phase 1 Meeting
 - End of Phase 2 Meeting
Evaluating Safety and Activity of CGT Products to Support an IND

- IND Application: required to conduct a clinical trial in the US
 - Using an investigational product in a first-in-human (FIH) trial
 - Using an approved/investigational product for a new clinical indication/route of administration (ROA)/formulation
 - Has a 30-day US FDA review clock

- IND review team:
 - Is interdisciplinary
 - Regulatory Project Manager (RPM)
 - Chemistry, Manufacturing, and Controls (CMC) reviewer
 - Pharmacology/Toxicology (P/T) reviewer
 - Clinical reviewer
 - Statistical reviewer
 - Consult reviewer(s) (as needed)
 - Reviews information supporting rationale and safety of the trial
 - Interacts with the sponsor, as needed, to resolve issues or concerns
 - Makes a “go” or “hold” decision by the 30-day date
21 CFR 312.20 Subpart B: IND Application

☐	Form FDA 1571	21 CFR 312.23(a)(1)
☐	Table of Contents	21 CFR 312.23(a)(2)
☐	Introductory statement and general investigational plan	21 CFR 312.23(a)(3)
☐	Investigator's brochure	21 CFR 312.23(a)(5)
☐	Protocols	21 CFR 312.23(a)(6)
☐	Chemistry, manufacturing, and control data (including environmental assessment)	21 CFR 312.23(a)(7)
☑	Pharmacology and toxicology data	21 CFR 312.23(a)(8)
☐	Previous human experience	21 CFR 312.23(a)(9)
☐	Additional information	21 CFR 312.23(a)(10)
☐	Biosimilar User Fee Cover Sheet	Form FDA 3792
☐	Clinical Trials Certification of Compliance	Form FDA 3674
Key Elements in Regulatory Review of CGT Products

- Science-based approach to regulation
- Product manufacturing (CMC)
- Pharmacology/Toxicology (P/T)
- Clinical trial design—eligibility criteria, endpoints, monitoring during the trial, and long-term follow-up
Key Elements in Regulatory Review of CGT Products

- Science-based approach to regulation
- Product manufacturing (CMC)
- Pharmacology/Toxicology (P/T)
- Clinical trial design—eligibility criteria, endpoints, monitoring during the trial, and long-term follow-up
General Expectations for a Preclinical Testing Program for CGT Products

- Provide **rationale** or **procedures** for the preclinical trial
 - Understanding biological basis
 - *In vitro* and *in vivo* studies

- Provide comprehensive information on animal species/model
 - Identifying any acute allergic reactions
 - Risks of the proposed procedure

- Provide **recommendations** for the design
 - Patient population, eligibility
 - ROA, initial safe starting dose
 - Potential toxicities, clinical

Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD), HFC-400, 1401 Rockville Pike, Suite 2000, Rockville, MD 20852-1448, or by calling 1-800-855-4709 or 301-435-1400, or e-mail ocod@fda.hhs.gov, or from the Internet at http://www.fda.gov/BiologicBloodVaccines/GuidanceComplianceRegulatoryInformation/Guida nces/default.htm.

For questions on the content of this guidance, contact OCOD at the phone numbers or e-mail address listed above.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Biologics Evaluation and Research
November 2013

https://www.fda.gov/
General Expectations for a Preclinical Testing Program for CGT Products

- Provide rationale or proof of concept (POC) for the FIH clinical trial
 - Understanding biological activity, mechanism of action
 - In vitro and in vivo studies in an animal model(s)

- Provide comprehensive safety assessment in a relevant animal species/model
 - Identifying any acute and chronic, local and systemic toxicities
 - Risks of the proposed route of administration (ROA), delivery procedure

- Provide recommendations to inform the clinical trial design
 - Patient population, eligibility criteria
 - ROA, initial safe starting dose level, dose escalation scheme, dosing regimen
 - Potential toxicities, clinical monitoring, risk mitigation
Distinction from Small Molecules and Traditional Biologics

- First-in-human clinical trials in patient population
- Animal models of disease (Pharmacology/POC)
 - Biodistribution (BD)
 - Toxicology assessment
- A case-by-case approach
Sources of Preclinical Data to Support an IND

- Appropriately designed, well-executed proof of concept studies
- GLP-compliant toxicology studies
- Published data in peer-reviewed journals
- Authorized cross-reference to similar products in previous US FDA submissions

*Detailed clinical study reports from clinical trials conducted in the US and in foreign countries (may/may not be under an IND)
General Expectations for a Preclinical Testing Program for CGT Products

- Pharmacology
 - Provide **rationale** or **POC** for CGT administration in a specific clinical population
 - Understanding mechanism of action and biological activity in a relevant animal species/disease or injury model
 - Assessing BD (fate/persistence/distribution) *in vivo* to support activity
 - Prospect of Direct Benefit (PDB) is required by law for clinical studies in children (*per 21 CFR 50.52 Subpart D*)—if the trial represents more than minimal risk
General Expectations for a Preclinical Testing Program for CGT Products

- Toxicology
 - Provide comprehensive safety assessment of the CGT product to support human trials
 - Product-specific safety assessment following administration in a relevant animal species
 - Cells/vector/transgene-related immune responses
 - Tumorigenicity risk of CGT
 - Dosing procedure or device-related toxicities
 - Assessing BD as part of safety evaluation
General Expectations for a Preclinical Testing Program for CGT Products

- Provide recommendations to inform the clinical trial design
 - Patient population, eligibility/exclusion criteria
 - ROA, safe starting dose level, dose escalation scheme, dosing regimen
 - Potential toxicities, clinical monitoring, risk mitigation
Potential Safety Concerns for CGT Immunotherapies

- **Product-related**
 - Manufacturing (e.g., expansion, genetic modification, encapsulation, scaffold seeding)
 - Inappropriate cell proliferation (i.e., tumor formation)
 - Inappropriate cell differentiation (i.e., ectopic tissue formation)
 - Cell/vector distribution to non-target sites and potential toxicities
 - Inflammatory/immune response to the administered product
 - Toxicity to host tissues/organs (e.g., GVHD for allogeneic T cell products)
 - Toxicities due to cross-reactivity- on-target/off-tumor, off-target
 - Toxicities due to pharmacological action of CGT- cytokine release, tumor lysis, etc.

- **Procedure and/or device-related**

- **Concomitant therapies**
Preclinical Considerations for Pharmacology and Safety Aspects of CGT

- Product administered in preclinical studies
- Animal species and disease/injury model
- Study design—POC, BD, safety—assessments and endpoints
- Mirror the clinical scenario as closely as possible
CGT Product administered in preclinical studies

- **Product should be as similar as possible to the intended clinical product**
 - Tissue/sample source, harvesting procedure, expansion, culturing, formulation, encapsulation/scaffold seeding, storage, etc.
 - Vector production/final formulation/titer

- **Adequate product characterization**
 - Cellular morphology, phenotype
 - Molecular, biochemical markers
 - Vector sequence, genomes, empty capsids

- **Animal-derived analogous product**
 - Characterize the level of analogy between the animal product and the intended human product
 - Translation of data to humans
Animal Species and Disease/Injury Model

- **Biological Relevance**
 - Disease pathophysiology (e.g., biochemical, histopathological, functional)
 - Timing of administration (e.g., stage and severity of disease)
 - Safety and activity of CGT

- **ROA**
 - Anatomical delivery site
 - Feasibility of using the intended delivery system/procedure

- **There is no “default” to the use of:**
 - Nonhuman primates
 - Both a rodent and a nonrodent species

Considerations for alternative testing to support animal studies and application of the 3Rs (reduction, refinement, replacement) are encouraged
Study Design—POC, BD, Safety

- Adequate numbers of animals/group to enable interpretation of resulting data

- Nonbiased design
 - Random assignment to groups
 - Appropriate controls
 - Staggered dosing of animal across the groups
 - Masked analysis of key protocol–specified assessments

- Inclusion of multiple dose levels that bracket the clinical dose level range

- Justification of the dosing schedule/regimen

- Multiple sacrifice intervals (as appropriate) and sufficient study duration

- Appropriate study endpoints
Study Assessments and Endpoints

- **Multiple in-life and post-mortem time points for activity and safety**
 - Biochemical, functional outcomes
 - Distribution—cells, vector
 - Tumorigenicity—cells, vector
 - Transgene—expression, activity
 - Immunogenicity—cells/vector/transgene

- **Standard toxicology parameters**
 - Mortality, in-life—body weights, food consumption, etc.
 - Clinical observations
 - Clinical pathology
 - Gross and histopathology—target and non-target tissues
 - Nature/timing/severity/frequency of adverse findings
Vector Biodistribution

- BD profile in biofluids and tissues
 - Target and nontarget tissues
 - Distribution
 - Persistence
 - Clearance

- Transgene expression levels

- Identify whether observed toxicities are due to the vector and/or the transgene

- Guidance for BD assessment:
 - Guidance for Industry: Long Term Follow-up After Administration of Human Gene Therapy Products (Jan. 2020)
Mirror the Clinical Scenario (as Feasible)

- **Administration of the intended clinical product**
 - Product manufacturing/formulation
 - ROA, dose levels, dosing regimen
 - Delivery device and procedure
P/T Data to Address Potential Safety Concerns for CGT Immunotherapies

- In vitro and in vivo studies that assess
 - Expression profile of target (e.g., in silico analysis, RT-PCR, immunohistochemistry, flow cytometry, etc.)
 - On- and off-target cross-reactivity/cytotoxicity to cells derived from various tissues
 - Tumorigenicity assessment
 - Distribution to target and non-target sites
 - Inflammatory/immune response to the administered product
 - Toxicity to host tissues/organs (e.g., GVHD for allogeneic T cell products)
 - Procedure, device, and/or combination therapies-related toxicities
Potential Pitfalls

- Insufficient information to assess risk to subjects
 - Absence of preclinical safety data
 - Incomplete safety study reports
 - Insufficient product characterization
 - Inadequate clinical trial design

- Inadequate preclinical study design
 - Differences between preclinical and clinical products
 - Irrelevant animal species/model
 - Irrelevant ROA
 - Inadequate animal numbers/dose levels/study duration
 - Inadequate evaluations (safety/activity endpoints)

- Inadequate data to support PDB in a FIH study in children
Opportunities for Early Interactions with CBER/OTAT

INTERACT* (Pre-Pre-IND Interaction)

Pre-IND Meeting

IND Submission

End of Phase 1 Meeting

End of Phase 2 Meeting

Safety Meetings

*INTERACT: Initial Targeted Engagement for Regulatory Advice on CBER products

Preclinical

Clinical Trials

Marketing Application

Post-marketing

Development

Phase 1

Phase 2

Phase 3

BLA

Post-marketing
Opportunities for Early Interactions with CBER/OTAT

- **INTERACT Meetings**
 - **INITial Targeted Engagement for Regulatory Advice on CBER products**
 - Non-binding, informal scientific discussion between CBER review disciplines and the sponsor
 - Initial targeted discussion of specific issues before conduct of definitive preclinical studies
 - Request with a briefing package to be submitted to INTERACT-CBER@fda.hhs.gov
 - SOPP 8214 (https://www.fda.gov/media/124044/download)

- **Pre-IND Meetings**
 - Non-binding, formal meeting between CBER review disciplines and the sponsor to discuss CMC, preclinical program, and planned trial design
 - Should be requested prior to the initiation of definitive preclinical safety studies
 - Briefing package should include summary data and sound scientific principles to support use of a specific product in a specific patient population
 - Request to be submitted to Lori.Tull@fda.hhs.gov and OTATRPMS@fda.hhs.gov
FDA Guidances for Human Cell and Gene Therapy Products

- Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products (June 2015)

- Guidance for Industry: Long Term Follow-Up After Administration of Human Gene Therapy Products (Jan 2020)
FDA Guidances for Human Gene Therapy Products (Cont’d)

- Guidance for Industry: Human Gene Therapy for Retinal Disorders (Jan 2020)

- Guidance for Industry: Human Gene Therapy for Rare Diseases (Jan 2020)

- Guidance for Industry: Human Gene Therapy for Hemophilia (Jan 2020)

- Draft Guidance for Industry: Human Gene Therapy for Neurodegenerative Diseases
Approved CG Cancer Immunotherapies *

- **KYMRIAH**: CD19-directed genetically modified (lentiviral vector) autologous T cells
 Patients (up to 25 years of age) with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse, adult patients with relapsed/refractory large B-cell lymphoma

- **YESCARTA**: CD-19-directed genetically modified (retroviral vector) autologous T cells
 Adult patients with relapsed/refractory large B-cell lymphoma

- **TECARTUS**: CD19-directed genetically modified (retroviral vector) autologous T cells
 Adult patients with relapsed or refractory mantle cell lymphoma

- **BREYANZI**: CD19-directed genetically modified (lentiviral vector) autologous T cells
 Adult patients with relapsed/refractory large B-cell lymphoma after two or more lines of systemic therapy

Summary

- Preclinical PK/PD and safety studies should establish activity and safety of a CGT product to support an IND

- The evaluation of benefit-risk associated with CGT products requires a rigorous and comprehensive approach
 - Manufacturing controls and product characterization
 - Preclinical safety and activity—ROA, dose levels, regimen, device, procedure
 - Clinical trial design—target population, monitoring, long-term follow-up
 - No “one size fits all”; so, a “case-by-case approach”

- Interactions with CBER/OTAT at early stages of product development may be beneficial
Acknowledgements

- Colleagues in OTAT/CBER
- SITC
- Everyone in the mission of protecting public health
Contact Information

- Sandhya Sanduja, PhD: sandhya.sanduja@fda.hhs.gov
- Regulatory questions: Lori.Tull@fda.hhs.gov, OTATRPMS@fda.hhs.gov
- CBER phone: 240.402.8190 (OTAT Main Line), 1.800.835.4709, 240.402.8010
- CBER website: www.fda.gov/BiologicsBloodVaccines/default.htm
- US FDA Consumer Affairs Branch: ocod@fda.hhs.gov
- Manufacturers Assistance and Technical Training Branch: industry.biologics@fda.hhs.gov
- Follow us on Twitter: https://www.twitter.com/fdacber
Questions?