Case Studies in Immunotherapy for the Treatment of Breast Cancer

December 1, 2021
11:30 a.m. – 12:30 p.m. ET
Webinar faculty

Jennifer Litton, MD – The University of Texas MD Anderson Cancer Center

Kevin Kalinsky, MD, MS – Winship Cancer Institute, Emory University

Heather McArthur, MD, MPH – UT Southwestern
Learning objectives

• Plan immunotherapy treatment regimens for challenging patient populations

• Select appropriate treatment strategies for patients with early and metastatic triple negative breast cancer

• Identify management strategies for uncommon and/or atypically responsive toxicities
Webinar outline

• Development of the guideline
• Toxicity timeframes
 • How IO differs from chemo
• Case 1: Neoadjuvant therapy- Dr. Kevin Kalinsky
• Case 2: First-line metastatic – Dr. Heather MacArthur
• Key takeaways
Development of the Guideline

<table>
<thead>
<tr>
<th>Open access</th>
<th>Position article and guidelines</th>
</tr>
</thead>
</table>

Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer

Leisha A Emens 1, Sylvia Adams, 2 Ashley Cimino-Mathews 3, Mary L Disis, 4 Margaret E Gatti-Mays 5, Alice Y Ho, 6 Kevin Kalinsky, 7 Heather L McArthur, 8 Elizabeth A Mittendorf, 9,10 Rita Nanda, 11 David B Page 12,13 Hope S Rugo 13,14 Krista M Rubin, 14 Hatem Soliman, 15 Patricia A Spears, 16 Sara M Tolaney 17,18 Jennifer K Litton 18
Development of the Guideline

- Developed according to the Institute of Medicine’s Standards for Developing Trustworthy Clinical Practice Guidelines
- Panel consisted of 17 experts in the field
- Recommendations are based upon published literature evidence, or clinical evidence where appropriate
- Consensus was defined at 75% approval among voting members
Webinar outline

• Development of the guideline
• Toxicity timeframes
 • How IO differs from chemo
• Case 1: Neoadjuvant therapy- Dr. Kevin Kalinsky
• Case 2: First-line metastatic – Dr. Heather MacArthur
• Key takeaways
Toxicities Associated With Immune Checkpoint Inhibitors

<table>
<thead>
<tr>
<th>Category</th>
<th>Chemotherapy</th>
<th>Immunotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence (moderate/severe AEs)</td>
<td>Almost all patients</td>
<td>Majority without</td>
</tr>
<tr>
<td>AE profile</td>
<td>Well described</td>
<td>Variable</td>
</tr>
<tr>
<td>Affected systems/organs</td>
<td>Few organs affected</td>
<td>Any organ</td>
</tr>
<tr>
<td>Time course</td>
<td>Well established</td>
<td>Variable (even after end of Tx)</td>
</tr>
<tr>
<td></td>
<td>Predictable</td>
<td>Relatively unpredictable</td>
</tr>
</tbody>
</table>

Slide credit: clinicaloptions.com
Organs/Systems Affected by Immune-Related Side Effects

Endocrine:
- Hyper/Hypothyroidism
- Hypophysitis
- Adrenal insufficiency
- Diabetes

Respiratory:
- Pneumonitis
- Pleuritis
- Sarcoid

Liver:
- Hepatitis

Renal:
- Nephritis

Musculoskeletal:
- Arthritis
- Dermatomyositis

Blood:
- Haemolytic Anaemia
- Thromocytopenia
- Neutropenia
- Haemophilia

Skin:
- Rash/Pruritus
- Psoriasis
- Vitiligo
- Stevens Johnston

Neurologic:
- Meningitis/Encephalitis
- Guillain Barre
- Myelopathy/neuropathy
- Myasthenia

Eye:
- Uveitis/Scleritis
- Conjunctivitis/Blepharitis
- Retinitis

Cardiovascular:
- Myocarditis
- Pericarditis
- Vasculitis

Gastrointestinal:
- Colitis
- Ileitis
- Pancreatitis
- Gastritis
Immune-Related AEs in Phase 3 TNBC Trials With CPI

* Above the incidence in the control arm
Toxicities With Immune Checkpoint Inhibitors

- Timing can be highly variable
- irAE can occur months or even a year after the end of treatment
- Time course might be even more variable with novel combinations
Multidisciplinary Management Coordinated by Oncologist
Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events

Julie R Brahmer,1 Hamzah Abu-Sbeih,2 Paolo Antonio Ascierto,3 Jill Brutsky,4 Laura C Cappelli,5 Frank B Cortazar,6,7 David E Gerber,8 Lamya Hamad,9 Eric Hansen,10 Douglas B Johnson,11 Mario E Lacouture,12 Gregory A Masters,13 Jarushka Naidoo,1,14 Michele Nanni,10 Miguel-Angel Perales,12 Igor Puzanov,10 Bianca Santomasso,15 Satish P Shanbhag,5,16 Rajeev Sharma,10 Dimitra Skondra,17 Jeffrey A Sosman,18 Michelle Turner,1 Marc S Ernstoff,19
Webinar outline

• Development of the guideline
• Toxicity timeframes
• Case 1: Neoadjuvant therapy
• Case 2: First-line metastatic
• Key takeaways
Case 1: Neoadjuvant therapy

• 44 year old woman presents with a newly diagnosed cT2N1 TNBC.
• She currently is a surgical candidate.
• What do you recommend next?
Neoadjuvant Studies: KEYNOTE-522

Eligibility
- Newly diagnosed TNBC (central confirmation)
- T1c N+ or T≥2 N0-2
- PD-L1+ or PD-L1-

Stratification
- T1/T2 vs T3/T4
- N0 vs N+
- Carboplatin Q1W vs Q3W

Study Treatment
- Neoadjuvant chemo + pembrolizumab
- Neoadjuvant chemo + placebo

Within 3-6 weeks

N = 1,174

Surgery
- Neoadjuvant chemo + pembrolizumab
- Neoadjuvant chemo + placebo

Adjuvant treatment
- Pembrolizumab 9 cycles
- Placebo 9 cycles

Primary endpoints
- pCR rate (ypT0/Tis ypN0)
- EFS

Secondary endpoints
- Alternative pCR rate (ypT0 ypN0)
- pCR rate in PD-L1+
- EFS in PD-L1+
- OS

Eligibility
- Newly diagnosed TNBC (central confirmation)
- T1c N+ or T≥2 N0-2
- PD-L1+ or PD-L1-

Surgery
- Adjuvant pembrolizumab
- Adjuvant placebo

Within 3-6 weeks

Study Treatment
- Carbo Q1W or Q3W
- Paclitaxel 80 mg/m² IV weekly
- Carboplatin weekly (AUC 1.5) or Q3W (AUC5)
- Doxorubicin 60 mg/m² IV Q3W
- Epirubicin 90 mg/m² IV Q3W
- Cyclophosphamide 600 mg/m² IV Q3W
- Pembrolizumab 200 mg IV Q3W

Eligibility
- Newly diagnosed TNBC (central confirmation)
- T1c N+ or T≥2 N0-2
- PD-L1+ or PD-L1-

Surgery
- Adjuvant pembrolizumab
- Adjuvant placebo

Within 3-6 weeks

Study Treatment
- Carbo Q1W or Q3W
- Paclitaxel 80 mg/m² IV weekly
- Carboplatin weekly (AUC 1.5) or Q3W (AUC5)
- Doxorubicin 60 mg/m² IV Q3W
- Epirubicin 90 mg/m² IV Q3W
- Cyclophosphamide 600 mg/m² IV Q3W
- Pembrolizumab 200 mg IV Q3W

Eligibility
- Newly diagnosed TNBC (central confirmation)
- T1c N+ or T≥2 N0-2
- PD-L1+ or PD-L1-

Surgery
- Adjuvant pembrolizumab
- Adjuvant placebo

Within 3-6 weeks

Study Treatment
- Carbo Q1W or Q3W
- Paclitaxel 80 mg/m² IV weekly
- Carboplatin weekly (AUC 1.5) or Q3W (AUC5)
- Doxorubicin 60 mg/m² IV Q3W
- Epirubicin 90 mg/m² IV Q3W
- Cyclophosphamide 600 mg/m² IV Q3W
- Pembrolizumab 200 mg IV Q3W
KEYNOTE-522: pCR at IA1¹

Primary Endpoint

By PD-L1 Status

Δ 14%

Δ 14%

Δ 18%
EFS update at IA4 (39.1mo)

Events
HR (95% CI)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Events</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembro + Chemo/Pembro</td>
<td>15.7%</td>
<td>0.63<sup>a</sup></td>
</tr>
<tr>
<td>Pbo + Chemo/Pbo</td>
<td>23.8%</td>
<td></td>
</tr>
</tbody>
</table>

P-value: 0.00031^b

Summary of First EFS Events by Category

<table>
<thead>
<tr>
<th>Event</th>
<th>All Subjects, N = 1174</th>
<th>Pembro + Chemo/Pembro N = 784</th>
<th>Pbo + Chemo/Pbo N = 390</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any EFS event</td>
<td></td>
<td>123 (15.7%)</td>
<td>93 (23.8%)</td>
</tr>
<tr>
<td>Progression of disease that precludes definitive surgery</td>
<td>14 (1.8%)</td>
<td>15 (3.8%)</td>
<td></td>
</tr>
<tr>
<td>Local recurrence<sup>a</sup></td>
<td>28 (3.6%)</td>
<td>17 (4.4%)</td>
<td></td>
</tr>
<tr>
<td>Distant recurrence</td>
<td>60 (7.7%)</td>
<td>51 (13.1%)</td>
<td></td>
</tr>
<tr>
<td>Secondary primary malignancy<sup>b</sup></td>
<td>6 (0.8%)</td>
<td>4 (1.0%)</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>15 (1.9%)</td>
<td>6 (1.5%)</td>
<td></td>
</tr>
</tbody>
</table>

^a Includes local progression, local relapse, and local recurrence.

^b Includes distant progression, distant relapse, and distant recurrence.

EFS by pCR (ypT0/Tis ypN0)

Overall Survival

<table>
<thead>
<tr>
<th></th>
<th>Events</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembro + Chemo/Pembro</td>
<td>10.2%</td>
<td>0.72<sup>a</sup> (0.51-1.02)</td>
<td>0.03214<sup>b</sup></td>
</tr>
<tr>
<td>Pbo + Chemo/Pbo</td>
<td>14.1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FDA-Approval¹

• On July 27, 2021, the FDA approved pembrolizumab for high-risk early-stage TNBC with chemotherapy as neoadjuvant treatment and then continued as a single agent as adjuvant treatment after surgery

• Based on KEYNOTE-522, the indication for palliative pembrolizumab was converted from accelerated to full approval
IMpassion031: Phase III atezolizumab neoadjuvant study in eTNBC

A randomized, multicenter, international, double-blind, placebo-controlled trial

N = 333
- TNBC, with primary tumour > 2 cm
- cT2-cT4, cN0-cN3, cM0
- Known PD-L1 status (IHC)
- No prior therapy for treatment or prevention of BC
- ECOG PS 0 or 1

Stratification Factors:
- Stage II vs Stage III
- PD-L1 IC < 1% vs IC ≥ 1%

Co-primary endpoints: Pathologic complete response (pCR, ypT0/is ypN0) in ITT and PD-L1–positive (IC ≥ 1%) subpopulation

Secondary endpoints: EFS, DFS, and OS in ITT and in PD-L1–positive subpopulation, safety, PROs

Treatment Arms:
- **Placebo + nab-paclitaxel 125 mg/m² IV qw**
- **Atezolizumab 840 mg IV q2w + nab-paclitaxel 125 mg/m² IV qw**
- **Placebo + Doxorubicin 60 mg/m² IV q2w + Cyclophosphamide 600 mg/m² IV q2w**
- **Atezolizumab 840 mg IV q2w + Doxorubicin 60 mg/m² IV q2w + Cyclophosphamide 600 mg/m² IV q2w**

12 weeks
- **S U R G E R Y**
- **pCR ≤ 1 year from start**

8 weeks
- **Atezolizumab 1200 mg IV q3w x 11 doses**
- **Monitoring**

Survival follow-up
- ≤ 1 year from start
Co-primary endpoint pCR by PD-L1 status

PD-L1+

- Atezolizumab-chemo: 68.8% (53/77)
- Placebo-chemo: 49.3% (37/75)
- Δ 19.5%

PD-L1-

- Atezolizumab-chemo: 47.7% (42/88)
- Placebo-chemo: 34.4% (32/93)
- Δ 13.3%

Harbeck et al. ESMO 2020
Adjuvant Studies: IMpassion030

Eligibility
- Adequately excised primary invasive TNBC (stage II/III) 50:50 node negative/positive–enriched population

Stratification
- Axillary nodal status (0 vs 1-3 vs ≥4 positive lymph nodes)
- Surgery (breast conserving vs mastectomy)
- PD-L1 IC0 vs IC1/2/3

N = 2,300

Primary endpoint: iDFS in ITT
Secondary endpoints: iDFS PD-L1 IC1/2/3, OS, RFI, distant RFI, safety, and health-related QoL

Co-PIs: Ignatiadis, McArthur, Saji
Post NAC Residual Disease: SWOG 1418

TNBC with ≥ 1 cm residual invasive breast cancer or any + LN after neoadjuvant chemotherapy

N=100

- **Pembrolizumab 200 mg IV q 3 weeks x 1y**

1:1

- **Observation**

Registration:
- Central PD-L1 testing

Stratification:
- Nodal stage ypNo vs ypN+
- Residual tumor ≥2 vs < 2cm
- PD-L1 pos vs neg
- Prior adjuvant chemo yes vs no

Hypothesis:
- Pembrolizumab reduces IDFS by 33% c/w observation alone

Primary Endpoint:
- Invasive DFS in PD-L1-positive and overall cohort

Secondary Endpoints:
- Toxicity
- OS
- DRFS
- QOL (PROMIS, PRO-CTCAE forms, inflammatory markers)
- Tissue banking

Case 1, continued

- She receives neoadjuvant pembrolizumab + paclitaxel x 12 cycles followed by ddAC
- Post treatment- reveals a pCR
- Post-operatively, she develops confusion and is unable to answer questions appropriately.

- A brain MRI is unremarkable?
- What are your next steps?
Case 1, continued

• CMP, cortisol, ACTH, FSH, LH, TSH, T4
• Morning serum cortisol = 1.8 mcg/dL (Normal 10–20 mcg/dL)
• Plasma ACTH = 21 pg/mL (Normal 20–52 pg/mL)
• Very low cortisol, low-to-normal ACTH
• DS is diagnosed with secondary adrenal insufficiency (hypophysitis) and receives hydrocortisone indefinitely
Primary adrenal insufficiency

- Evaluate morning cortisol and ACTH levels
- Comprehensive metabolic panel (Na, K, CO$_2$, glucose)

Hypophysitis

- Evaluate
 - Morning cortisol and ACTH
 - FSH, LH, TSH, free T4, testosterone in men, estrogen in premenopausal women
- MRI brain ± contrast with pituitary/sellar cuts, if symptomatic
• Majority of irAEs are mild to moderate
• Severity can be asymptomatic to life-threatening; prompt recognition is crucial
• Most reversible with steroids; some require discontinuation of therapy
• Important to educate care team, patient, and caregivers on signs and symptoms of irAEs

Managing AEs From Immune Checkpoint Inhibitors

Increasing intensity of treatment required

Managed in outpatient/community setting

Generally requires Hospital admission

Increasing grade of side effect

Symptomatic therapy

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>Moderate</td>
<td>Severe</td>
<td>Very severe</td>
</tr>
</tbody>
</table>

Referral to specialist
Strong immune suppressive treatment

Stop treatment *

Oral steroids

-----> Intravenous steroids

Steroids (PO/IV): 1-2 mg/kg/d prednisone or equivalent, slow taper over 4-6/52

* For some AEs, treatment can be restarted after resolution (e.g. rash); CPI generally continued with endocrinopathies once managed

Slide credit: clinicaloptions.com

Adapted from Champiat. ESMO Patient Guide Series.
Webinar outline

• Development of the guideline
• Toxicity timeframes
• Case 1: Neoadjuvant therapy
• Case 2: First-line metastatic
• Key takeaways
Case 2: First-line metastatic

• 41 year old woman with a BRCA1 mutation was treated with ddAC and weekly paclitaxel 2 years ago for an early stage TNBC
• She now presents with new cough and CT chest identifies multiple new lung nodules
• Biopsy of a 1.5 cm RLL nodule is consistent with metastatic TNBC
• What should you do next?
Case 2: First-line metastatic, continued

• You check PD-L1 status
 • What should you check?
IMpassion130

IMpassion130 (NCT02425891): A Global, Randomized, Double-Blind, Phase 3 Study of Atezolizumab + Nab-Paclitaxel vs Placebo + Nab-Paclitaxel in Treatment-Naïve Locally Advanced or Metastatic TNBC

- Co-primary endpoints: PFS and OS in the ITT and PD-L1 populations
- Key secondary endpoints: ORR, DOR, and safety

Stratification
- Previously untreated metastatic or inoperable locally advanced TNBC
- ECOG PS 0-1

N = 902

Atezolizumab
- 840 mg IV on d 1 and 15 + nab-P 100 mg/m² IV on d 1, 8, and 15 of 28-d cycle until RECIST v1.1 PD
- ITT population: n = 451
- PD-L1 IC+ patients: n = 185 (41%)

Placebo
- 840 mg IV on d 1 and 15 + nab-P 100 mg/m² IV on d 1, 8, and 15 of 28-d cycle until RECIST v1.1 PD
- ITT population: n = 451
- PD-L1 IC+ patients: n = 184 (41%)
Interim OS Analysis

ITT

- 17.6 mo (15.9, 20.0)
- 21.3 mo (17.3, 23.4)

PD-L1+

- 15.5 mo (13.1, 19.4)
- 25.0 mo (22.6, NE)

IMpassion 130: Overall Survival

Interim OS in PD-L1+ Group

<table>
<thead>
<tr>
<th></th>
<th>Atezo + nab-P (N = 185)</th>
<th>Plac + nab-P (N = 184)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS events, n</td>
<td>64</td>
<td>88</td>
</tr>
<tr>
<td>1-year OS</td>
<td>54% (42, 65)</td>
<td>37% (26, 47)</td>
</tr>
</tbody>
</table>

OS (%)

Schmid P, et al. *ASCO 2019*

24-Month OS Rate (95% CI)

Stratified HR, 0.71*
(95% CI: 0.54, 0.93)

Patients at risk

Schmid P, et al. *ASCO 2019*

*Not formally tested due to prespecified enrichment analysis plan.
Clinical cutoff date: January 2, 2018. Median PFS (95% CI) is indicated on the plot. Median-PF (ITT): 18.0 months.
FDA-Approval

• On 3/8/19, the FDA granted accelerated approval to **atezolizumab** in combination with protein-bound paclitaxel for patients with unresectable locally advanced or metastatic TNBC whose tumors express **PD-L1** (PD-L1 stained tumor-infiltrating immune cells [IC] of any intensity covering ≥1% of the tumor area), as determined by an FDA-approved test.
FDA-Approval

- On 08/27/21, Roche withdrew the indication for atezolizumab for mTNBC
- Continued approval was contingent upon IMpassion131 trial meeting the primary PFS end point
- A potential alternative pre-market requirement is being explored
KEYNOTE-355 Study Design (NCT02819518)

Key Eligibility Criteria
- Age ≥18 years
- Central determination of TNBC and PD-L1 expression
- Previously untreated locally recurrent inoperable or metastatic TNBC
- Completion of treatment with curative intent ≥6 months prior to first disease recurrence
- ECOG performance status 0 or 1
- Life expectancy ≥12 weeks from randomization
- Adequate organ function
- No systemic steroids
- No active CNS metastases
- No active autoimmune disease

Stratification Factors:
- Chemotherapy on study (taxane vs gemcitabine/carboplatin)
- PD-L1 tumor expression (CPS ≥1 vs CPS <1)
- Prior treatment with same class chemotherapy in the neoadjuvant or adjuvant setting (yes vs no)
Baseline Characteristics, ITT

<table>
<thead>
<tr>
<th>Characteristic, n (%)</th>
<th>All Subjects, N = 847</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pembro + Chemo N = 566</td>
</tr>
<tr>
<td>Age, median (range), yrs</td>
<td>53 (25-85)</td>
</tr>
<tr>
<td>ECOG PS 1</td>
<td>232 (41.0)</td>
</tr>
<tr>
<td>PD-L1–positive CPS ≥1</td>
<td>425 (75.1)</td>
</tr>
<tr>
<td>PD-L1–positive CPS ≥10</td>
<td>220 (38.9)</td>
</tr>
<tr>
<td>Chemotherapy on study</td>
<td></td>
</tr>
<tr>
<td>Taxane</td>
<td>255 (45.1)</td>
</tr>
<tr>
<td>Gemcitabine/Carboplatin</td>
<td>311 (54.9)</td>
</tr>
<tr>
<td>Prior same-class chemotherapy</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>124 (21.9)</td>
</tr>
<tr>
<td>No</td>
<td>442 (78.1)</td>
</tr>
<tr>
<td>Disease-free interval</td>
<td></td>
</tr>
<tr>
<td>de novo metastasis</td>
<td>167 (29.5)</td>
</tr>
<tr>
<td><12 months</td>
<td>126 (22.3)</td>
</tr>
<tr>
<td>≥12 months</td>
<td>270 (47.7)</td>
</tr>
</tbody>
</table>

Data cutoff date: December 11, 2019.
KEYNOTE-355: PFS

![Graph showing Progression-Free Survival: ITT](image)

KEYNOTE-355: PFS

Progression-Free Survival: PD-L1 CPS ≥1

- **56.4%** for Pembrolizumab + Chemo (n/N: 288/425, Events: 67.8%, HR (95% CI): 0.79 (0.61-0.98), P-value (one-sided): 0.00146)
- **51.7%** for Placebo + Chemo (n/N: 163/311, Events: 76.8%

Both survival curves show a decline in the percentage of patients over time. The survival rate at 7.6 months is 56.4% for Pembrolizumab + Chemo, and 51.7% for Placebo + Chemo.

Progression-Free Survival: PD-L1 CPS ≥10

- **65.0%** for Pembrolizumab + Chemo (n/N: 118/230, Events: 61.8%, HR (95% CI): 0.85 (0.49-0.86), P-value (one-sided): 0.00132)
- **39.1%** for Placebo + Chemo (n/N: 78/103, Events: 76.7%)

Both survival curves show a decline in the percentage of patients over time. The survival rate at 9.7 months is 65.0% for Pembrolizumab + Chemo, and 39.1% for Placebo + Chemo.

On 11/13/20, the FDA granted accelerated approval to pembrolizumab in combination with chemotherapy for patients with unresectable or metastatic TNBC whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test.
Overall Survival: PD-L1 CPS ≥10

OS Δ ≈ 7 mo
IMpassion130 PD-L1 Analysis

<table>
<thead>
<tr>
<th>Population</th>
<th>PFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS, mo</td>
<td>HR (95% CI)</td>
<td>Median OS, mo</td>
</tr>
<tr>
<td>A + nP</td>
<td>P + nP</td>
<td>Δ</td>
</tr>
<tr>
<td>SP142+ 22C3+ (45%; 279/614)</td>
<td>8.3</td>
<td>3.9</td>
</tr>
<tr>
<td>SP142- 22C3+ (36%; 218/614)</td>
<td>7.3</td>
<td>5.6</td>
</tr>
<tr>
<td>SP142- 22C3- (18%, 111/614)</td>
<td>5.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.
Which PD-L1 Assay Should I Use?

Atezolizumab[^a]
SP142

Pembroluzimab[^b]
- TMB > 10
- MSI-H/dMMR
- CPS* score >10

* Combined Positive Score = \[
\frac{\text{# of PD-L1+ staining cells (tumor cells, lymphocytes, macrophages)}}{\text{total number of viable tumor cells}} \times 100
\]
Case 2: First-line metastatic - continued

• She has a mild rash and call your office to get instructions
After 3 weeks patient presents with G1 rash

Metastatic TNBC with lung & LN metastases

Paclitaxel + anti-PD/PD-L1

03/2018

What would you do?
1. Observe
2. Antihistamines
3. Topical steroids
4. Oral steroids

2 days later rash deteriorated to G3

What would you do?
2. Antihistamines
4. Oral steroids

Rash completely resolves after 1 week

What to do now?
1. Restart CPI

Patient with good PR until 06/2019

49
Patient presenting with new rash several weeks after starting on CPI

What to do?
1. Observe
2. Topical steroids
3. Oral steroids

Advice was given to observe

4 weeks later

63 y/o woman
Different Patterns of Skin Toxicity
Key Takeaways

• Immunotherapy has improved pCR and long term outcomes in early stage TNBC and should be considered.

• For metastatic TNBC – using as early as possible has shown improvement in PFS and OS

• Immunotoxicity patterns are different in many cases from standard expected chemotherapy toxicities.
 • Have a low threshold for evaluation as they can escalate quickly.
Learn more and register at: https://www.sitcancer.org/CPG-webinars
Targets for Cancer Immunotherapy: A Deep Dive Seminar Series

Eight online seminars will address key questions in the field of cancer immunotherapy drug development

SEMINAR 8: T CELL SELECTION FOR ADOPTIVE CELL THERAPY
January 25, 2022, 11:30 a.m. – 1:30 p.m. ET

Learn more and register at:
https://www.sitcancer.org/education/deepdive
A Focus on Gynecologic Cancers

December 14, 2021, 12 – 4 p.m. ET

CME-, CPE-, CNE-, MOC-certified

Learn more and register at:
https://www.sitcancer.org/education/ac
Earn CME Credit as a *JITC* Reviewer

JITC also cooperates with reviewer recognition services (such as Publons) to confirm participation without compromising reviewer anonymity or journal peer review processes, giving reviewers the ability to safely share their involvement in the journal.

Learn how to become a reviewer at sitcancer.org/jitc
Cancer Immunotherapy Clinical Practice Guidelines Mobile App

sitcancer.org/CPG-app

#SITCGuidelines
Thank you for attending the webinar!

Questions or comments: connectED@sitcancer.org