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Preface

In spring 2019 The Society of Fire Protection Engineering Educational and Scientific
Foundation expressed an interest to support research initiative aiming at presenting
new data on evacuation modelling. This was done through the proposal Research to
Update Anthropometric Data and Movement Speeds.

Lund University was awarded a grant with the aim to present new data resulting from
a Brandforsk research project just finished but not sufficiently analyzed. The grant
from the SFPE Foundation provided means for completing most of the data analysis
on single file flow and to update a prototype model for pedestrian movement. The
prototype model is developed to predict movement of persons based on a first
principle approach using basic population data such as age, height, gender and
response time to adapt the walking speed in a crowd. The intention with the new
approach is to present a predictive capability for the future as a consequence of the
identified demographical changes observed in today's society.

The work presented is also part of a project performed at York University in Canada
also supported by the same SFPE Foundation research proposal. The two projects are,
therefore, linked and presented in a joint publication. However, the Lund University
report is also available as a stand-alone publication available through the University
repository.

This work has been performed during 2019 and was presented to the SFPE
Foundation in March 2020.

The authors wish to express their gratitude to the Foundation for providing the means
for publishing this data and for being able to further refine the prototype model for
predicting pedestrian single file speed and flow.

The authors also want to thank Professor Daniel Nilsson (University of Canterbury
in New Zealand) and Dr Denise McGrath (University College Dublin in Dublin,
Ireland) for providing valuable feed-back on the analysis and report.

Finally, but not least, the report is based on experimental data that was collected by
two students at the Fire Protection Engineering program at Lund University for their
final thesis; Gabriel Larsson and Jesper Friholm. The work they did is highly
appreciated.






Summary

Based on the fact that demographic changes in the population have been identified in
the many countries, it has been questioned whether the documents describing the
movement of people are valid. Researchers who, some thirty years ago, produced
information on, for example, walking speeds in stairs, consider that their material is
not suitable for use anymore.

It would be natural to conduct new experiments in order to get updated data and such
efforts are also taking place. However, there might be different ways to consider the
changes that have been observed, e.g. to start using basic physical factors that
determine how fast a person moves. One approach could be to assume a
biomechanical model linked to the individual and his or her conditions and the
influence of the environment.

To that extent, the model developed by Thompson et al. (2015) has been adjusted
with a new set of data on single-file pedestrian movement at different densities. The
resulting model is expressed in forms of three equations that relate inter-person
distance to biomechanical data such as height, foot length, and step length. Other
variables included in the equations are preferred unimpeded walking speed and
adaption time.

The following table presents peak flow values for single-file configuration for
different cohorts.

predictions students (Cao) (Cao) | (11y.0.)
Height h [m] 1.80 1.62 1.64 1.42
Preferred unimpeded

walking speed v, [m/s] 1.29 0.95 1.23 1.29
Max density [p/m] 3.28 2.58 3.40 4.34
Adaption time Ta [s] 0.37 0.68 0.37 0.37
Foot length [m] 0.29 0.28 0.28 0.22
Step extent factor A (at v.) 0.92 0.92 0.92 0.92
Peak single-file flow [p/s] 1.03 0.71 1.06 1.23
Percentage of Lund

students flow rate 100% 69% 103% 119%
Percentage difference from

Lund students flow rate 0% -31% -3% 19%
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1 Introduction

The standard analyses of life safety in buildings and transportation systems use
experimentally derived flow rates and walking speeds to calculate evacuation times.
Current design guides typically use a basic flow rate for a single uniform population,
which has not changed since the regulation of door and passageway sizes in the mid-
20th century. In recent years, the long-established data and the relationships between
speed or flow and density have been subject to scrutiny. Indeed, the authors of what are
widely considered as the most relevant North American datasets (Fruin, 1971; Pauls,
1996) have stated that their data sets are no longer applicable and have asked them to
be removed from future design guides (Pauls, Fruin, & Zupan, 2007).

This loss of confidence in the data is due to recognition of the ever-increasing
proportions of elderly, obese and mobility impaired in society (OECD, 2017; Thompson,
Nilsson, Boyce, & McGrath, 2015). These proportions have increased significantly
since the original observations were made of the egress and circulation “flows’ of office
workers and commuters between the 1950s and the 1980s. Mixing populations can have
a dramatic effect on optimal crowd flow movement and ultimately safe escape. Despite
the recognition of the potential dangers of using the original datasets, there has been no
fundamental research carried out to study the effect of changing population
demographics, or the nature and causes of the observed flow behaviours and associated
parameters. Demographic changes have now provided the impetus and have reinforced
the need to consider a first principles approach to understand pedestrian movement in
populated spaces. In order to avoid increasing design and life safety implications, a
fundamental change needs to be made of the approach to modelling occupant movement
in populated spaces. Moreover, collecting data on modern populations only provides a
temporary solution, since unavoidable demographic changes to come in the next
decades would make the new data obsolete. Therefore, rather than solely updating the
data, it is necessary to develop a fundamental model of pedestrian dynamics based on
biomechanics that can be adapted for any set of demographic data. This new model
would allow to derive the movement of a single file crowd based on the biomechanical
characteristics of the people in it.

With the objective to advance this idea, an extensive literature review of movement
across related fields, including fire evacuation, pedestrian movement, biomechanics and
computer modelling was carried out (Thompson, Nilsson, Boyce, McGrath, & Molloy,
2015). In this review, potential parameters and their associated metrics were identified.
The potential for these parameters to be modelled and measured has been considered
and prototype experiments have been performed. With the aid of modern software, new
analytical relationships have been deemed important to determine the metrics for future
modelling and evacuation analyses. These analytical relationships are body dimensions,
walking speed, inter-person distance, rate of walking steps (cadence), body sway (gait),
contact vectors and spatial restrictions. Rigorous scientific analyses, the application of
biomechanical principles and core aspects of physical and cognitive factors have also
been utilised to lay out clear pathways for global research, regulatory and design
communities. This ‘roadmap’ for future research and modelling activities is a result of
an extensive research program recently published in Nilsson, Thompson, McGrath,
Boyce and Frantzich (Nilsson, Thompson, McGrath, Boyce, & Frantzich, 2020).

The research program was initialized with the main objective of evaluating different
experimental measurement techniques to identify the parameters that define pedestrian



movement (Doka, 2019; Hansen, 2018; Thompson, Nilsson, Boyce, & McGrath, 2016).
Experiments were run both in Lund (Larsson & Friholm, 2019) and Dublin (Thompson,
Nilsson, Boyce, McGrath, et al., 2015), measuring parameters relevant to walking speed
for different occupant densities and using different methods for data collection and
analysis. A large body of data was collected, but only parts of the data were analysed
and presented.

1.1 Objectives

The main objective of this study is to analyse and present a set of existing experimental
results and to use the results to improve a current model for pedestrian movement at
different densities developed by Thompson (2015). Furthermore, the improved model
is used to predict flows for three different cohorts (elderly, young adults and children)
based on data published by other researchers.

1.2 Delimitations

Some of the limitations of this study are due to the fact of it being a pioneering approach.
Currently only single file flow has been investigated and wider flow should be
considered the following step. Moreover, the study relies solely on a sample consisting
of young, healthy adults (student population).

Additional limitations were due to the nature of video analysis for data collection. The
transformation of the movement characteristics from the video films to data points relies
on manual labour which introduces an uncertainty of the true movement patterns.
However, it is judged that this uncertainty is small compared to the parameter values
obtained.

2 Theoretical approach to movement

The model developed by Thompson et al. (2015) consists of the evaluation of the
anthropometric parameters that govern pedestrian movement in conjunction with the
boundary conditions affecting the person (i.e. proximity of other pedestrians). The
model has since been refined in Nilsson, Thompson, McGrath, Boyce and Frantzich
(2020).

Basically, the model consists of the preferred speed of a person and their intention to
avoid collisions with other pedestrians based on their physical and cognitive abilities.
It can currently be used to predict walking speeds and single file flow and is currently
based on the equations, presented in the report, in a spread sheet program. The desire to
avoid colliding with the person in front make you leave a space enough to that person
in case there is a sudden stop or change in walking speed.

Some cognitive and physical principles of traffic flow were drawn from the Handbook
of Road Technology (Lay, 2009) as a starting point. Therefore, the basic principles of
human locomotion considered in this study are:

1. Unimpeded normal walking speed: also called “preferred walking speed”, refers
to that the individual would choose if they were not constricted by obstacles or
impediments such as other pedestrians. This parameter can be affected by age,
gender and height of the individual.



2. Body dimensions: more specifically height, breadth, thigh length, shank length,

ankle height, foot length, and body sway.

Gait parameters: step length, step extent.

Contact buffer: which refers to the minimum distance kept between the

individual and the pedestrian in front of them, which would allow the individual

to avoid a collision given a change in the movement conditions. The contact
buffer can be a factor of walking speed, stress or perceived threat.

5. Visual perception time: time needed for the individual to recognize a change in
the movement conditions and adjust their walking speed as needed. This
parameter is closely related to contact buffer, since the change in the
individual’s walking speed needs to be adjusted within that space in order to
avoid collisions.

sw

Figure 1 illustrates some of these basic principles, which was used for the development
of the walking speed model.
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Figure 1 — Components of pedestrian movement in a congested space

As shown on Figure 1, step length (s) refers to the distance between two consecutive
floor heel strikes. The step length position does not occur at any time as the two heels
are not in contact with the floor simultaneously, except at stand still. Step extent (Se) is
the distance between the back heel and the tip of the toe of the forward-most foot, at
any time; that is the physical space occupied by the person when taking a step. Contact
buffer (Cp) is based not only on the individual but also on the nearest pedestrian in front
of them. The contact buffer is measured between the instantaneous potential points of
contact (heel/toe) of two consecutive pedestrians. Lastly, inter-person distance (d) is
measured between the centre of the hipbone of the individual and that of the nearest
pedestrian in front of them.

After a series of revisions done on the initial model by Thompson (2015), Nilsson et al.
(2020) presented an improved version of the prototype model for single-file flow that
considers demographics, biomechanics and visual response/adaption. This prototype
model can be used as a tool for prediction of flow rates for different groups based on
some key descriptive parameters of the demographics of the group. The entire
development of the prototype model is detailed by Nilsson et al. (2020), and the reader
is encouraged to follow the corresponding derivations there. For the purpose of this
study, the initial point consists of Equations 1a, 1b and 2 presented below, which are
modified versions of equations 6a, 6b and 7 by Nilsson et al. (2020). In these modified



versions, the step length (s) was obtained from the analysis of the experimental data
from the video recordings, after extensive regression analyses. Table 1 describes the
different parameters in Equations 1a, 1b and 2. It should be noted that the two equations
la and 1b both refers to movement conditions there the walking speed depends on the
person in front, i.e. not for the case of unimpeded walking. These equations will later
be applied to predict flow values for different population cohorts.

Step extent |Contact buffer

Step |F00t

Walking with contact buffer
above the minimum: d = A(s+f) + (wxT,) [1a]

where Cpmin)< VXTa

At standstill or low speeds ] 1 [1b]
where contact buffer determines d= AG+f) + (E N fl)
personal space: Cpmin) >= vXxTa
Relating inter-person distance 1 [2]
to single-file flow density P=1q
Table 1 — Summary of terms and units used on Equations 1a, 1b and 1c
A = factor for step extent, as a proportion of step length + foot length
Co = contact buffer (m)
Cominy = minimum contact buffer, at stand-still with minimum inter-person distance
d = inter-person distance between centroid of Person 1 and centroid of Person 2
fi = foot length for people of equal demographics (m)
h = height of person (m)
S = step length - distance between successive heel-strikes to the floor of a
person walkina - “left heel. then riaht heel distance on floor” (m)
Se = “step extent” of a walking person, defined as the horizontal distance
between the rearmost point of the rearmost heel and the foremost point of
the foremost foot (m)
Sy = unimpeded step length for people of equal demographics (m)
Ta = adaption time (time to accommodate movement adaption for a person in
front) (s)
v = forward velocity of person at any given walking speed (m/s)
Vu = ‘unimpeded’ (preferred) forward walking velocity of a person (m/s)

The factor A varies during a complete step cycle and reaches a maximum around 0.98
(0.92-0.98).



3 Method

The data collection was based on analysis of video footage of experiments done by
Larsson & Friholm (Larsson & Friholm, 2019). In these laboratory experiments,
participants were recorded while walking on a predefined circuit at varying densities.
A total of 16 runs of single-file movement were performed, in which the movement of
the participants was analysed by pinpointing the position of trackers attached to them.
The analysis of the video footage generated up to 1785 usable data-points, each of them
including enough information about the movement characteristics of the participant at
a given point in time (e.g. step length, walking speed, inter-person distance).

The primary objective of the experiments was to investigate the relationship between
walking speed and inter-person distance. The experiments were performed in 2018 and
are fully described in Larsson & Friholm (Larsson & Friholm, 2019), which is also the
source of all illustrations in this section (used with permission).

The walking speed and all distances deemed important were measured after the
experiment using video analysis techniques.

3.1 Description of experiment

The experiments took place at the Faculty of Engineering at Lund University in 2018.
The following sections describe the experiment in detail.

3.1.1 Participants

Participants were recruited at the Faculty of Engineering at Lund University during
lecture hours one week before the experiments took place. Therefore, most of the
participants were students. It can be assumed that many participants knew each other to
certain degree. Table 2 presents demographic data of the participants. No participants
had any sort of mobility impairments.

Table 2 — Participants’ gender, age and height

participants gender age height [m]
total female male min max avg stdev min max avg st.dev
59 22 37 17 29 20 20 1.60 202 1.80 0.103

The average height of the sample is 1.80 m, with a standard deviation of 0.10 m, and a
mode and a median of 1.81 m. The average foot length of the sample is 0.287 m, with
a standard deviation of 0.023 m, and a median and a mode of 0.29 m.

As a gratitude for their participation in the experiments, they received one cinema ticket.
3.1.2 Equipment

The equipment used for the experiment is detailed on Table 3, partially reproduced with
permission from Larsson & Friholm (Larsson & Friholm, 2019).



Table 3 — Equipment used for the experiments run

Piece of equipment Purpose

Measuring tape, folding | Tracing the circuit; measuring the participants’ height
ruler

Different kinds of tape Outlining the circuit and the position of the cameras; creating a grid on
the floor to be used as reference during the analysis

Pole of a known length Used as point of reference in the corners of the grid.

Chairs and tables Creating physical barriers around the circuit preventing the participants
of wandering off the path

Rope Creating a physical barrier with minimum blockage of the visibility for
the cameras

Movable room partitions Isolating the participants within the field of view of the camera from
the background

Paper tags Assigning each participant a unique number

Markers Pinpointing specific points of interest on the participants to facilitate

the video analysis

Computer Registration of participants’ tag number, age, height, scenario, etc., and
for taking notes during the experiment

Video cameras with tripods | Recording of the experiment from different angles. Two models were
used: SONY HDR-PJ780 and SONY HDR-CX220

The software Farrascope was used for the analysis of the videos. Farrascope is a
custom-developed software package for frame sequences or video analysis to quantify
the movement of identified points in the field of view of a fixed camera. It uses
perspective reduction techniques and radial lens adjustment to remove measurement
losses from the distance and lens distortion of the camera. Although the software is
newly built for this project, many measurement verification tests were done, to
crosscheck the screen co-ordinate values against known real-world measurements on
the test poles and floor grid in the field of view of the camera. The accuracy was found
to be +/-1 cm, but the greater room for error was actually due to the blur of moving feet
at higher speeds, making it slightly uncertain sometimes, where the exact toe end or
heel end was at that time. It should be pointed out that Farrascope is not validated except
for comparing with similar data collected in Larson & Friholm (2019) which used
Kinovea (Kinovea, (n.d.)).

Farrascope is developed and owned by IAScience Ltd (owner & author Bob Farrell,
who is a close collaborator with one of the authors, Peter Thompson). Figure 2 shows
Farrascope’s user interface during the analysis of a frame. The cross-hair indicating the
markers and the reference points on the floor are highlighted.



Figure 2 — Visualisation of the user interface of Farrascope showing the markers being tracked with cross-hairs
and reference grid points used for establishing the position of the points of interest

3.1.3 Experimental setup

The experimental setup consisted of a circuit installed in the centre of a large room at
the Faculty of Engineering, Lund University. Figure 3 presents a schematic view of the
circuit and a photograph of it.
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Figure 3 — a) Schematic view of the dimensions in millimetres of the circuit and the location of the camera. The
third camera was filming from above. b) View of the circuit in the room

The circuit consisted of a 0.80 m wide path as shown on Figure 3, with a perimeter of
20.56 m in the centreline. The back of the chairs delimitated the path participants were
walking on. Ropes were used instead to minimise clutter near the participants within
the field of view of the camera, and the movable room partitions allowed doing the same
in the background. All cameras were recording in HD resolution. Additional to the
circuit, a workstation was placed in a corner of the room, where participants had their
measures taken and their tag and markers attached. The following measurements were
made: height, shoe length, thigh length (os femoris) and shank length (os tibia). The
numbered tag was attached on their right arm, and markers were attached to their heels,
tip of toe, knee, hip, shoulder and centre of the head. Figure 4 presents the locations of



the tags and how they were used as a reference for measuring the dimensions of the
body parts.

Figure 4 — a) Location of the tags attached to each participant and the dimensions measured, where A indicates
the height of the participant; B is the thigh length, C is the shank length; D is the ankle height, and E is the foot
length. b) Markers attached to the participants’ legs

3.1.4 Procedure

Upon arrival, participants had their tag and markers attached, as well as their
measurements taken. Participants were told the aim of the experiment was to study the
movement of people in crowded spaces, and signed an informed consent form. However,
they were not informed about which parameters were going to be analysed to avoid bias
in the results. One by one, they were asked to walk alone in the circuit at their preferred
walking speed, in order to measure their preferred unimpeded walking speed.

Then, they were assigned to different tests, each test consisting of a variation of the
density of people per meter. In all tests, participants were asked to walk as they would
do given the number of people present around them (occupant density) without
overtaking. The tests had different number of participants in order to represent different
occupant densities, and included participants of different heights. Table 4, partially
reproduced here from (Larsson & Friholm, 2019), shows all tests performed on single-
file configuration, with the number of participants, and the nominal density.



Table 4 — Number of participants and densities achieved per test on single-file configurations

Test Participants Density

[un] [pers/m]
A2 59 2.87
A3 59 2.87
B2 49 2.38
B3 49 2.38
C2 39 1.90
C3 39 1.90
D1 29 141
D2 29 1.36
F 59 2.87
G 24 1.17
H 24 1.17
I 24 1.17
J 24 1.17
K 19 0.92
L 24 1.17

3.2 Data collection techniques

After finalising the experiments, the video recordings were analysed using Farrascope.
The analysis consisted of following the walking cycle of each participant in each test,
one at a time, on a frame-by-frame approach, in order to identify the heel strikes, points
of minimum contact and position of the hip and shoulder. Only the 4 m path delimitated
by the ropes was considered in the analysis. Given the different densities in each test,
and the fact that each heel strike was recorded, participants in high-density tests took
many short or very short steps, compared to those in low-density test. This was an
expected outcome given the nature of the movement in densely packed conditions.
However, it meant an imbalance in the final dataset, as high-density tests produced
many more data points than the low-density ones. More specifically, walking speeds
below 0.2 m/s covered approx. 1/3 of the total data points. This overrepresentation of
high densities compared to the rest of the data set will be addressed in the discussion
section.

During the analysis of the video footage, the coordinates of the markers on the hip,
shoulder, heels and the toes were recorded, for two persons being followed along the
4 m path. With this information, the following data was derived: step length, step extent,
hip position, shoulder position, inter-person distance, hip speed, and contact buffer.

3.3 Data analysis techniques

Once the data was extracted from the videos, spreadsheets were used for their analysis.
Initially different plots were created consisting of a given parameter (i.e. step length
and step extent) as a function of hip speed. When fitting a curve to the data points, the
initial idea was to produce a power curve such as the ones used by Dean and Wang



(Dean, 1965; Wang et al., 2018). However, the fitting curve seemed to be heavily
influenced by the overrepresentation of data points at lower speeds, as described before.

To counteract this effect, the data was rearranged in 0.05 m/s bands, so that each band
would have the same total weight when fitting a curve to them. This adjustment
produced a fitting curve that seemed more representative of the data points obtained,
but at the same time, it did not allow to show the true trend of the data collected. In a
third attempt, the idea of a power curve was replaced for that of a second order
polynomial. The second order polynomial curve gave a better description of the data
set, and there was no need for averaging any values. Therefore, second order polynomial
curves were chosen to represent the data for step length and step extent. The second
order polynomial equation obtained was later used in Equations 1a and 1b to predict
flows for different cohorts. There is no physical reason for choosing either the power
curve or polynomial regression line to describe the relation of the data. The choice was
made based on how well the regression line fitted the data, i.e. using the coefficient of
determination (the R2-value).

It was also decided to present the results and their corresponding curves after
normalising them to the average height of the sample. The normalisation was intended
to allow others to apply the same equations to other cohorts, after being normalised to
their average height as well. The method used for normalising the results consisted of
applying the ratio between the average height of the sample and the height of the
individual as a correction factor.

Lastly, the step length data was plotted as a function of the ratio between the
instantaneous speed and the preferred speed. v/vy. Analogously to the case of the
normalisation for the height, this modification of the speed parameter allows to easily
replace the experimental speed by those of other cohorts.

4 Results

Results of the analysis of the collected data are presented here. Some of the results were
normalized to the average height of the participant sample, in order to allow the final
model to adapt to different populations.

4.1 Normalised step length and step extent

Following the data analysis techniques described on section 3.3, Figure 5 shows the
normalised step length as a function of hip speed with a fitted power curve. As it can be
observed, the power curve seems to underestimate the step length at higher walking
speeds. Moreover, it became apparent that the large cluster of data points at low walking
speeds (which occurred at high densities) had a strong effect on the equation. That large
cluster of data points between 0 and 0.20 m/s consisted of ca. 650 entries out of a total
of ca. 1700 points, which means an unbalanced distribution of points along the spectrum
of walking speeds covered in this study.
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Figure 5 — Data set for step length as a function of hip speed with a fitted power curve.

As an alternative, the data points were aggregated in 0.05 m/s bands, in an attempt to
counteract the overrepresentation of the movement at low walking speeds. Figure 6
shows the data set aggregated in 0.05 m/s bands. With this adjustment, the fitted power
curve seems to be a better description of the trend in the data set.

Step length normalised to 1.80 m height by bands
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Figure 6 — Normalised step length as a function of hip speed, aggregated by bands. This simple visualisation
shows how the normalized step length varies at different walking speeds

Aggregating the results in bands helped to visualise the trend better, but as in any other
method used for simplification, the banding could not show the full extent of the data
points collected, and its corresponding fitting curve could hardly be considered a good
description of the whole data set.

Visual examination of the points on Figure 5 showed that a linear equation was by no
means a good representation of the sample. Therefore, the second order polynomial



seemed to be the best fitting curve for the data set. Figure 7 presents the step length
normalised to the average height of the sample as a function of hip speed, with its fitting
curve. This second degree polynomial curve shows a better fitting than the previous
power curve and it is therefore a better description of the data set.

Step length normalised to 1.80 m height

y =-0.1852x2 + 0.7594x + 0.0421
09 R? =0.9062

L

o
~

o
=]

o
3]

o
o

o
w

//
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Hip speed (m/s)

Normalised step length (m

o
[

o

(=]

Figure 7 — Normalized step length as a function of hip speed for participants at different densities

Analogously to the steps presented for choosing Figure 7 as the best representation of
the data set, Figure 8 shows the step extent normalized to the average height of the
sample.

Step extent normalised to 1.80 m height

y =-0.1814x2 + 0.6997x + 0.325
R?=0.8664
1
E
=08
o)
=
)
5]
. 0.6
©
@
0
£ 0.4
5]
=
0.2
D L L L L L L L )
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Hip speed (m/s)

Figure 8 — Normalised step extent as a function of hip speed

4.2 Inter-person distance

Inter-person distance was measured both at the shoulder and the hip. Figure 9 shows
both parameters as a function of hip speed, with the data being aggregated 0.05 m bands.



The aggregation of the data aimed to simplify the plot. Additionally, the difference
between the two measurements was added to show how little they differed, which
implies both parameters were equally good for describing inter-person distance.
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Figure 9 — Inter-person distance aggregated in 0.05 m bands, measured at shoulder and hip, and the difference

between the two measurements

4.3 Contact buffer

The data collected on contact buffer is presented on Figure 10. As it can be observed,
at low speeds (which occurs at high densities) the contact buffer was sometimes
negative, indicating an overlap between the feet of the participants.

m)

Distance (

Contact Buffer
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Figure 10 — Contact buffer data collected. Negative values indicate overlapping of the feet between two

participants

In order to reduce the impact of overrepresentation of certain flow characteristics, the
data on contact buffer was aggregated in 0.05 m bands as a function of hip speed. The



result is presented on Figure 11. It can be seen that the contact buffer remains negative
on average at lower speeds. Polynomial fitting curves are provided for the negative and
positive sections independently. The yellow line represents a model for estimation of
the contact buffer, which becomes independent of the walking speed once the average
preferred unimpeded walking speed for the sample (1.28 m/s) is reached.

Contact buffer data - aggregated/average in 0.05 m/s bands
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Figure 11 — Contact buffer as a function of hip speed, aggregated by 0.05 bands. Dotted lines mark the fitted
curves respectively to the negative and positive sections. The yellow curve is the representation of a model for
estimating contact buffer based on the walking speed.

4.4 Deriving step extent from step length

As indicated on section 2, step extent is proportional to the sum of step length and foot
length, with the proportion reducing linearly from nearly 100% at standstill to around
92% at the preferred walking speed. Figure 12 shows the fitted curve to the
experimental values for step extent compared to the model expectation of step extent
being equal to step length plus foot length. The difference between the two values
corresponds to the proportional factor A shown on Equations 1a and 1b.
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Figure 12 — Fitted second order polynomial curves to the measured value of step extent and the sum of the
measured values for step length plus the average foot length for the sample

4.5 Deriving step extent from preferred speed and height

Figure 13 shows the step length data as a function of the reduction in walking speed, as
a proportion of the sample average preferred unimpeded speed (i.e. the relationship

between the instantaneous walking speed v and the preferred walking speed for the
individual vy).
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Figure 13 — Normalised step length as a function or the relationship between the individuals walking speed and
their preferred walking speed.



It should be noted that the equation of the fitted curve is based on experimental values
normalised to the average height of the sample (1.80 m/s) and the average preferred
unimpeded walking speed. To apply the curve to cohorts of different demographics, the
normalisation process needs to be reversed first and then redone using the average
height of the target cohort (to derive step length), and the value of “v/vu” should be
multiplied by the cohort average preferred walking speed (to derive walking speed).

4.6 Application of the model to the experimental data

The model can now be applied using input form the experimental data. In order to do
that, Equations 1a, 1b and 2 are used with input parameters based on the demographics
of the experimental sample. Table 5 presents the parameters used as input and the results
produced. All input parameters are based on the experimental results used for
developing the model. The adaption time was not directly measured in the experiment
but derived from the gradient of the linear fit curve on the contact buffer for all the
positive contact buffer points, cf. Figure 11.

Table 5 — Input parameters used in the model and the results produced. The input parameters are marked in gray.

Parameters & calculated predictions Lund students

Height h [m] 1.80
Preferred unimpeded walking speed vu [m/s] 1.29
Max density [p/m] 3.28
Adaption time Ta [s] 0.37
Foot length [m] 0.29
Step extent factor A (at Vu) 0.92
Peak single-file flow [p/s] 1.03

To contrast those results to the experimental data, Figure 14 superimposes the output of
the model (full line) in the form of walking speed as a function of inter-person distance
to the spread of experimental data points. The values for step extent at points of
minimum contact are shown in a dashed line. The crossing between the inter-person
distance and the step extent indicate negative contact buffer, i.e. situations where the
toe of the person behind is located in front of the heel for the person in front, see Figure
4.
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Figure 14 — Model for walking speed as a function of inter-person distance contrasted with the experimental data.
Negative contact buffer can be seen at low densities.

4.7 Application of the model to other cohorts

Similar to the previous section, the model was applied in order to compare its
predictions to other available experimental data. For prediction of flow values for both
elderly and young adults, the data produced by Cao (Cao et al., 2016) was used. In the
case of children, the data produced by Wang (Wang et al., 2018) was used. The input
needed from both sources was average height, walking speed and foot length. An
assumption was made for adaption time for the elderly sample, given the lack of
available data. For this cohort, the adaption time was considered to be that of the young
population with an added value of 0.309 ms based on the results of a laboratory
experiment made using a treadmill (Nilsson et al., 2020). Table 6 presents a summary
of the input values for indicative predictions of flow for each cohort. As the predictive
model and the experiments performed are part of a pilot study, additional experiments
are needed to validate the results.



Table 6 — Summary of predictions from the movement adaption model based on parameters from Cao (2016) and
Wang (2018).

Lund Elderly Young | Children
Parameters & calculated predictions BLERE e e L s
Height h [m] 1.80 1.62 1.64 1.42
Preferred unimpeded walking speed vu [m/s] 1.29 0.95 1.23 1.29
Max density [p/m] 3.28 2.58 3.40 4.34
Adaption time Ta [s] 0.37 0.68 0.37 0.37
Foot length [m] 0.29 0.28 0.28 0.22
Step extent factor A (at vu) 0.92 0.92 0.92 0.92
Peak single-file flow [p/s] 1.03 0.71 1.06 1.23
Percentage of Lund students flow rate 100% 69% 103% 119%
Difference from Lund students flow rate 0% -31% -3% 19%

4.7.1 Elderly

Figure 15 presents the prediction of the model for walking speed as a function of inter-
person distance. As shown in the figure, the model does not predict negative inter-
person distance even at high densities. Negative inter-person distances were found in
the experimental data from the Lund experiments, but the lack of it could be due to the
longer adaption time used as input for the elderly population.

Inter-person distance vs walking speed - Elderly (Cao 2016)
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Figure 15 — Step extent and inter-person distance predicted by the model for an elderly cohort based on Cao
(2016) sample, contrasted to the experimental data from the Lund experiments.



4.7.2 Young

Figure 16 presents the expected walking speed for a young cohort based on the input
from Cao (Cao et al., 2016). The negative contact buffer at high densities (notice
crossing of the full line and the dashed line) matches the observed behaviour in the Lund
experiments.

Inter-person distance vs walking speed - Young (Cao 2016)
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Figure 16 - Step extent and inter-person distance predicted by the model for a young cohort based on Cao (2016)
sample, contrasted to the experimental data from the Lund experiments.



4.7.3 Children

Figure 17 presents the model’s prediction of walking speeds for children based on the
input form Wang (Wang et al., 2018). The results fall in the lines of other studies
performed on walking speed of children. Results are not unexpected based on other
studies (Hankin & Wrigth, 1958).

Inter-person distance vs walking speed - Children 11 y.0.(Wang 2018)
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Figure 17 — Step extent and inter-person distance predicted by the model for a cohort of 11 year old children
according to the data set from Wang (2018) contrasted to the experimental data from the Lund experiments.



4.7.4 Summary of model predictions

With the results obtained from the application of the model to different cohorts, it was
possible to present the data in a more practical term for its use. Figure 18 shows the
predicted flow as a function of density for the cohorts presented in Table 6. The
predicted curves are superimposed with the experimental data obtained by Cao (Cao et
al., 2016), which consists of three cohorts: young adults, old adults, and a mixed group
of both in a 1:1 proportion.
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Figure 18 — Predicted single file flows based on different cohorts compared to the experimental values obtained
for young, mixed and old samples by Cao (2016).

Similarly, the data is also presented in terms of walking speed as a function of density
on Figure 19, also superimposed with experimental data from Cao (Cao et al., 2016).
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Figure 19 — Predicted walking speed as a function of density compared to the experimental values obtained for
young, mixed and old samples by Cao (2016).



4.7.5 Comparison with other studies

Lastly, Figure 20 compares the measured step length as a function of walking speed to
that obtained by other studies. The curve obtained falls along the lines of the models
proposed by the other studies.
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Figure 20 — Comparison of the obtained fitted curve for the Lund experiment and those from other studies

5 Discussion

The experimental results are on themselves an important contribution to the existing
available data on walking speeds on a young adult cohort, as it is based on a modern
sample of people. Moreover, the way the data was collected and presented (i.e. not only
walking speeds but also biomechanical information) would potentially allow designers
to know to a better degree whether this data set is representative of the population they
expect in their buildings.

Much can be discussed about the best choice for a fitting curve for the large set of data
presented in terms of step length and step extent (see Figure 7 and Figure 8). As it can
be seen on Figure 20, different groups of researchers opted for different kinds of fitting
curves: linear equation, power curve, second degree polynomial. As explained on
section 4.1, the second degree polynomial proved to be a better description of the
complete data set, and therefore more representative of the trends measured in the
experiment.

The data obtained allowed improving the prototype model (Nilsson et al., 2020) for
estimating walking speeds at different densities on single-file configurations. This
improved model can be applied to reflect different flow conditions and some
demographic characteristics of the occupants. The equations behind the model aim for
a higher level of detail in the description of the movement, and represent a contribution
to the improvement of previous models produced by other studies. Currently the model
is described in a spreadsheet program but has also been implemented in a computer
simulation model, Simulex (Thompson, 1994), for testing.



The flows predicted by the model show similarities with the experimental data (Cao et
al., 2016) available for contrast, especially in the prediction for peak flow rate.

The model developed by Thompson et al. (Nilsson et al., 2020; Thompson et al., 2016;
Thompson, Nilsson, Boyce, McGrath, et al., 2015) has the advantage of being thought
out not just as a description of the experimental data set but also as a versatile tool that
can be used for different cohorts. This approach is especially useful given the natural
variation in cohorts around the world but also in the decades to come.

Input on adaption time needed to be estimated for the elderly cohort as there was only
little available data on it. The adaption time can be expected to vary between different
cohorts so it needs to be collected together with other biomechanical data for each
cohort. This is something needing more attention in future studies.

With the increasing challenges to securing funding for research on pedestrian dynamics,
it is important that the scientific community develops basic standards for data
collection, so that the same experimental measurements can be used in different models.
This means a change in the way of designing studies: from collecting data for a unique
study or set of studies, to a global approach in which fundamental variables are
measured across different studies in a standardised way. New data sets would enrich
any existing models and their ability to be fed into different models would make them
a more efficient use of the available resources.

Although custom-developed software was used to collect and process the data, the data
collection technique used to extract the information from the video recordings proved
to be highly time-consuming. Moreover, despite the high resolution of the videos,
blurred images were unavoidable and lead to a lower level of precision in the
measurements. Additionally, in the case of high densities, overlapping between the feet
of two consecutive participants (i.e. negative contact buffer) did not always allow for a
precise location of the corresponding markers, as one might have been behind the other
person’s foot. It is therefore considered that the technique of markers and video
recordings may imply some subjectivity in the identification of the position of each
marker.

A different technique, such as optical motion capture, could improve the accuracy of
the measurements. However, such a technique can only be applied in laboratory
conditions and mostly on single-file configurations only.

Despite of the possible imprecision of the analysis of video recordings, the technique
has the advantage of providing a detailed sequence of events (such as identifying
particular responses by the test participants), not just the coordinates, which may be
beneficial when collecting data on pedestrian movement more complex scenarios (e.g.
doorway passage, stairs, different cohorts, etc.). Additionally, the relatively low cost of
video recordings compared to that of motion capture systems allow for larger samples
in the experiments.

The overrepresentation of data points at high-density (and therefore low speed) levels
may have an influence on the fitted curve. Producing a separated chart for the high-
density section only was not possible due to the high variation between the data points
(a densely packed cluster), and it was not possible to identify a trend.



6 Conclusions

The data set of walking speeds produced by this study is a valuable contribution to the
current effort of SFPE to update anthropometric data for modelling of egress and
pedestrian movement in an attempt to keep up with changes in demographic. The data
is also hereby made publicly available.

Moreover, the improvements made to the model for estimating flows at different
densities is a versatile tool possibly to be used in the future to model pedestrian
movement that can easily be adapted for different cohorts. This versatility is especially
beneficial when dealing with buildings or spaces used by people of different ages.
Nevertheless, the model still requires data on certain specific parameters relative to each
cohort for it to be useful. Therefore, a collaboration within the research community is
needed in order to collect data on those specific parameters.
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