
Controlling Desktop

Applications from Micro Focus

COBOL Using Automation

Abstract

This paper shows how the powerful support for the Microsoft

Component Object Model (COM) in Micro Focus Net Express®

enables you to integrate the functionality of common desktop

applications into your own development. By reusing the existing

functionality of applications that your users may already have on

their desktops, you can reduce the amount of development effort

needed to implement new functionality, as well as bring

enhancements to your users faster.

Contents
Introduction ...1

Automation Clients and Servers ..2
A Note on Terminology ...2
Why use the Object Oriented Syntax? ..4

A Simple Example Using Microsoft Word ..5
Basic Concepts ..6

The ooctrl(+P) directive ...7
The CLASS-CONTROL Section ..7
The Object Reference ...7
Creating a New Instance of an Automation Server 7
Sending Commands to Word ..8
Finalize the Objects ...8
Summary of the Basic Structure of an Automation Client 8

Object Models ..9
Methods and Properties ..10
Collections ..10
Basic Data Types used with Automation Servers ..11

Numeric Data Types ..11
Strings ..11

Example Using Excel ..12
Where Do I Find More Information on Automation
Servers? ..16

Documentation ..16
Translating from Visual Basic to COBOL ..16

Basic method calls ...16
Properties ...17
Method Chaining ...17
Default Methods and Properties ..17

Getting Information from Type Libraries ...18
Running the Type Library Assistant ..18

Determining the Parameters to Use for a Method ..20
Using Methods with a Get or Set Prefix ...25
Error Handling ..26
More on Data Types ..30

Using Arrays ..30
More Examples ...35

Using Microsoft Visio ..35
Launching Internet Explorer ..39

Conclusion ...40

1

Introduction
How many times have you developed an application and had to implement functionality
similar to that provided by existing commonly available desktop applications? For
example, you may have had to develop an application that generates an attractive
looking report on Windows. You may have coded this yourself by making calls to various
Windows API functions or COBOL run-time routines. Or you may have purchased a
separate third-party package that provides calls you can make from your COBOL
application. However, there is an alternative if you know your users will have Microsoft
Word installed on their systems. You can simply make calls from your COBOL application
to Word to create the report and print it for you.

The technology that makes this possible is called Automation . Automation is a technology
based on Microsoft’s Component Object Model (COM). Automation enables an
application to expose its functionality so that it can be utilized by other applications. This
means that parts of off-the-shelf packages can be used, in conjunction with custom
software, to create new applications. All of the applications in the Microsoft Office suite
expose their functionality via Automation, allowing parts of these applications to be
reused by your applications to perform common functions. Other Microsoft technologies
also support Automation.

When people think of using technologies such as Automati on, they usually think of using
programming languages such as Microsoft Visual Basic or C++. It is rare to find someone
who immediately thinks of COBOL. However, Micro Focus has supported the use of
Automation from COBOL for many years and, as this paper will show, COBOL can be a
very appropriate language for creating business applications and utilizing functionality
that has been exposed through Automation. Micro Focus Net Express 3.1 provides all the
support you need.

2

Automation Clients and Servers
When we talk about Automation, applications can be Automation clients, Automation
servers or both.

An Automation server is an application that exposes its functionality so that it can be
“controlled” by other applications. Examples of Automation servers are the Microsoft
Office applications such as Word, Excel, PowerPoint, as well as applications such as
Microsoft Visio and the application used for administration of Microsoft BackOffice
servers.

An Automation client is an application or programming language that controls other
Automation servers by accessing the functionality exposed by those servers. These include
Microsoft Visual Basic, Microsoft Visual C++ and, of course, Micro Focus COBOL as
supported by Net Express.

This paper will focus on COBOL as an Automation client. For information on creating
Automation servers in COBOL, see the paper “Developing Mixed Visual Basic/COBOL
Applications” at http://www.cobolportal.com/resources .

A Note on Terminology
Over the years, Microsoft has introduced many different names for their component-
based technologies and you will often see different names referring to the same
technology. Because Micro Focus Net Express has supported these technologies for many
years, you may see areas where the older terms are used. This section introduces the
different terminologies, but you do not a detailed understanding of these terms to read
and understand this paper.

Underpinning it all is the Microsoft Component Object Model (COM). A COM component
is simply an object that exposes specific interfaces that enable an application to query the
capabilities of the component and use it. All of the other technologies are based on COM
components.

3

There are two primary mechanisms used for accessing COM components – the vtable
mechanism and the Dispatch mechanism.

• A Vtable is the lowest level form of interface in to a COM component. A vtable is
basically a record structure containing a number of pointers to different functions in
the component. The COM specification lays out the format of these record structures.
Vtables are ideally suited for languages such as C++ where pointers to functions are
extensively used, but are not so useful for higher level languages such as COBOL and
Visual Basic. For these languages, the Dispatch mechanism was introduced.

• The Dispatch mechanism enables a programmer to call a function in the component
by name, rather than finding a pointer to the function and calling that function.

All components that support the dispatch mechanism also support the vtable mechanism
for accessing the component. However, the reverse is not true. Not all COM components
support Dispatch interfaces. Increasingly though, writers of COM components are being
encouraged to support both mechanisms to enable their components to be used from the
widest possible range of programming languages. This is important for COBOL, since
COBOL only supports the Dispatch mechanism for accessing a component. If the
component can be accessed from Visual Basic, you can be reasonably confident that you
will be able to use it from COBOL.

Applications that provide a Dispatch interface were initially called OLE Automation
servers. OLE stands for Object Linking and Embedding. It was the original name used by
Microsoft for their component technologies and you will see the term OLE Automation
used in Net Express. Now such components are simply referred to as Automation Servers.
You will also sometimes see them referred to as ActiveX servers. The term Automation
Server will be used for the rest of this paper.

4

Why Use the Object Oriented Syntax?
When you look at the examples later in this paper, you will see that Micro Focus has made
use of the new object oriented (OO) syntax that has been recently added to COBOL to
implement support for Automation. Even if you are not already familiar with these new
additions to COBOL, you’ll see that it is very easy to use these powerful extensions to the
language.

So, why do you need to use the OO syntax at all? The reason is that the functionality of an
Automation Server is exposed through an object interface. Each function is accessed using
a combination of a reference to the object being used and the name of the function or
property being accessed. This would not be possible using the standard COBOL CALL
syntax. Instead, the new COBOL verb invoke is used, together with the new data type,
object reference .

The key point is that, although we are using the new syntax, most programs that use
Automation are unlikely to be object oriented programs. As you will see from the
examples in this paper, you can still use standard procedural programming techniques,
even though you are using the OO syntax to access Automation Servers.

5

A Simple Example Using Microsoft Word
The best way to get started with Automation is to look at a simple example. This
example will use Microsoft Word to create a new document, insert some text, make some
of the inserted text bold and then save the document.

 $set ooctrl(+P)

 class-control.
 MicrosoftWord is class "OLEWord.Application".

 working-storage section.

 78 Automation-True value 1.
 78 Automation-False value 0.

 01 Word object reference.
 01 Documents object reference.
 01 Document object reference.
 01 TextRange object reference.
 01 BoldRange object reference.

 01 StartBoldPoint pic 9(8) comp-5.
 01 EndBoldPoint pic 9(8) comp-5.

 01 Example-Text pic x(43) value
 z"This is an example document created using ".

 procedure division.
 * Startup Microsoft Word
 invoke MicrosoftWord "new" returning Word
 * Make Word visible so that we can see what is
 * happening
 invoke Word "setVisible"
 using by value Automation-True
 * Get the collection of documents
 invoke Word "getDocuments" returning Documents
 * Add a new document
 invoke Documents "Add" returning Document
 * Get a range object for the entire document
 invoke Document "Range" returning TextRange
 * Insert some text. This will extend the range object
 invoke TextRange "InsertAfter" using Example-Text
 * Store the end of the range
 invoke TextRange "getEnd" returning StartBoldPoint
 * Insert some more text
 invoke TextRange "InsertAfter" using
 z"Micro Focus COBOL and Microsoft Word."
 * Get the end point of the range
 invoke TextRange "getEnd" returning EndBoldPoint
* Finish with this range object
 invoke TextRange "Finalize" returning TextRange
 * Adjust the starting point because this would have
 * included the end-of-paragraph marker
 subtract 1 from StartBoldPoint
 * Create a new range object that just refers to the
 * text "Micro Focus COBOL and Microsoft Word"

6

 invoke Document "Range"
 using by value StartBoldPoint
 by value EndBoldPoint
 returning TextRange
 * Make this text bold
 invoke TextRange "setBold"
 using by value Automation-True
 * Now save the document
 invoke Document "SaveAs" using z"Example-Document"
 * Finalize all of the objects
 invoke TextRange "Finalize" returning TextRange
 invoke Document "Finalize" returning Document
 invoke Documents "Finalize" returning Documents
 * Close Microsoft Word and finalize the Word object
 invoke Word "Quit"
 invoke Word "Finalize" returning Word
 stop run.

Figure 1 shows this program being animated using Net Express.

Figure 1 – Animating the Program using Net Express

Note. All of the examples in this paper have been tested using Microsoft Office XP. Most
of them should work with Microsoft Office 2000 and Microsoft Office 97, but there have
been some changes in the way the Office applications handle Automation over the
years, so you should test with the versions of Office you will be expecting your users to
use.

Basic Concepts
The previous example shows many of the concepts involved when using Automation. The
following section will go through this program in detail.

7

The ooctrl(+P) directive

The first thing you will see in the program is the line:

 $set ooctrl(+P)

This causes the ooctrl(+P) directive to be used when the program is compiled. This must
be specified for all programs that use Automation. It ensures that the data type of each
parameter in an invoke statement is available to the run-time. This is required to ensure
that any conversion between data types is carried out correctly.

The CLASS-CONTROL Section

The next new feature in the program is shown in the lines:

 class-control.
 MicrosoftWord is class "OLEWord.Application".

This is used to identify the Automation Servers that will be used by the application (if you
were writing an OO program, this section would also identify the COBOL classes used by
the application, but we don’t need to worry about that in this program).

The Automation Server we are using is Word.Application. The name to use here will be
specified in the documentation supplied with the Automation Server you are using.

The use of OLE in the name is used to notify the COBOL Run-Time System that the class
being used is an Automation Server (Automation Servers used to be called OLE
Automation Servers, hence the use of the word ‘OLE’). If this is not specified, the COBOL
Run-Time System will search for a COBOL class of the specified name, so OLE should
always precede the name of the Automation Server you are using.

MicrosoftWord is the name that will be used for the class in the COBOL program. The
use of this is seen later in the example.

The Object Reference

Before we can use any Automation Server, we will need one or more data items declared
as type object reference. For example:

 01 Word object reference.

This variable is used to hold a reference to an object in the Automation Server. There are
two ways to get a reference to an object, either by using the “new” method or by it being
returned by a method call to another object. Both types are seen in this example.

Creating a New Instance of an Automation Server

The first line in the Procedure Division is:

 invoke MicrosoftWord "new" returning Word

This is used to create a new instance of Microsoft Word. This means that a new copy of
Word is started and a reference to it is returned in the variable Word .

8

The New command (or method) is the only time you will use the name declared in the
Class-Control section. From now on, you will use the reference returned in the variable
Word .

Sending Commands to Word

Once you have a reference to an instance of the Automation Server you want to use, you
can use that reference to send commands to it. The remainder of the program is a series
of commands to Word to create a new document and insert some text. Many of these
commands involve getting references to other objects. We will look at the techniques
used in this section in more detail later.

Finalize the Objects

Finally, once you have completed using an object, you should ensure that any memory
used by that object is released by using the Finalize method. In the example, this is done
for the Word object using the following line:

 invoke Word "Finalize" returning Word

To avoid memory leaks, you should ensure that you finalize every object you use.

Summary of the Basic Structure of an Automation Client

This example demonstrates the basic concepts of using COBOL as an Automation Client.
The steps common to all programs are:

� Use the compiler directive ooctrl (+P).

� Define a Class-Control section that includes the Automation Servers you will be
accessing.

� Declare at least one variable of type object reference to be used when sending
commands to the Automation Server.

� Use the ‘New’ method to create a new instance of the Automation Server. This returns
a reference to the object.

� Send commands to the Automation Server using the object reference returned by the
‘New’ method.

� Finalize all objects before terminating the application.

9

Object Models
To use most Automation Servers, including all of the Automation Servers in Microsoft
Office, you must understand their object models . An object model is a representation of
an application’s functionality in terms of objects. An application has many different
objects that are organized into various levels. These can be thought of as tiers in a
hierarchy. The topmost tier is usually occupied by an object that represents the main
application – the Application object. The second tier consists of a high-level
categorization of objects. Lower tiers include additional objects used to access
functionality that the second tier objects contain. Your application traverses the tiers to
find the object you want to use.

Figure 2 shows the parts of the Word object model that are used by the previous example.

Figure 2 – The Parts of the Word Object Model used by this Example

The complete object model for Microsoft Word can be found at:
http://msdn.microsoft.com/library/default.asp ?url=/library/en-
us/off2000/html/wotocObjectModelApplication.asp)

Note. You may see some examples of using Microsoft Word via Automation that use a
class called “Word.Basic”. This is an earlier, simpler Automation model used by Word.
Although Word.Basic is still supported by Word today, it is recommended that you use
Word.Application for new applications.

You can see that different terms are used: Collections, Methods and Properties. These
terms are described in the following sections.

1 0

Methods and Properties
Objects have methods and properties . Methods are actions that an object can perform.
For example, in the previous program, we used the method InsertAfter to insert a piece
of text in to the document. Properties are functions that access information about the
state of something in the Automation server. For example, the property Visible on the
application object indicates whether Word is visible or not.

In Micro Focus COBOL, both methods and properties are accessed using the COBOL
invoke statement. To distinguish between them, to set a property, you prefix the property
name with “set” and to retrieve the value of a property, you prefix the name with “get”.

In the earlier example, you saw that the Visible property was set on the Application
object, using the following line:

 invoke Word "setVisible"
 using by value Automation-True

You might be wondering how you call a method if the method name begins with “set” or
“get”. To do this, you need to override the default behavior of the invoke verb. We will
see how this is done in a later section.

Note. All of the examples in this paper set the Visible property for the application to true
so that you can see what is happening. If you do not set the Visible property to true in
Microsoft Office applications, they will run hidden.

Collections
In many applications, objects are grouped into collections. In the previous example, we
retrieved the collection of documents currently loaded into Word using the following line:

 invoke Word "getDocuments" returning Documents

Note that “Documents” is prefixed by the word “get”. This is because collections are
treated by most Automation Servers as properties of the object that contains the
collection, so we have to prefix the name with “get” as described in the previous section.

We create a new document by using the Add method on the collection of documents:

 invoke Documents "Add" returning Document

To access a particular element in a collection, use the Item property and specify the
number of the element for which you want to obtain a reference. For example, to obtain
a reference to the second document in a collection, you would use:

 invoke Documents "getItem”
 using by value 2 returning Document

To determine the number of items in a collection, use the Count property. For example:

 01 DocumentCount pic 9(4) comp-5.

invoke Documents "getCount” returning DocumentCount

By using the item and count properties, you can loop through a collection. For example,
to loop through the collection of documents, you could use:

 01 DocumentCount pic 9(4) comp-5.
01 CurrentDocument pic 9(4) comp-5.

1 1

invoke Documents "getCount” returning DocumentCount
move 1 to CurrentDocument
perform until CurrentDocument > DocumentCount
 invoke Documents “getItem”
 using CurrentDocument

 returning Document

*> Perform whatever functions are needed on the
*> document and then finalize the reference

 *> to the document

 invoke Document “Finalize” returning Document
 add 1 to CurrentDocument
end-perform

Basic Data Types used with Automation Servers
When using Automation servers, you are limited in the types of data you can pass as
parameters to the Automation server. Because Automation servers can be written in any
programming language, you are restricted to data types that are common to all major
programming languages.

Numeric Data Types

All integer variables that will be used in calls to Automation servers should be declared as
a 2 or 4 byte COMP-5 item. For example:

 * 2-byte integers
01 Parameter1 pic xx comp-5.

 01 Parameter2 pic 9(4) comp-5.

 * 4-byte integers
01 Parameter3 pic x(4) comp-5.

 01 Parameter4 pic 9(9) comp-5.

If you want to use signed items, declare them as follows:

01 Parameter3 pic s9(4) comp-5.
01 Parameter4 pic s9(9) comp-5.

If the Automation Server is expecting a Boolean parameter, it should be declared as a one
byte COMP-5 item as follows:

01 Boolean pic x comp-5.

A value of 0 is used to indicate False. A value of 1 is used to indicate True.

Non-integer numeric data should be passed as either COMP-1 or COMP-2.

Strings

Strings require some care. In most cases, strings are handled internally by COM using a
type called a BSTR . This is a null-terminated string that is prefixed by the number of
characters in the string. There is no COBOL data type that corresponds to this, so the
COBOL Run-Time System handles the conversion between BSTR and PIC X fields

1 2

It is recommended that any string that is going to be passed to an Automation server be
zero-terminated. This means that the last character in the string must be a null character
(X”00). To do this in COBOL, either append a null character to the string or use the ‘z’
prefix. For example:

 01 Example-Text pic x(43) value
 z"This is an example document created using ".

 invoke TextRange "InsertAfter" using
 z"Micro Focus COBOL and Microsoft Word."

It is also important to remember that any string returned from an Automation server
should be zero-terminated. This means that you should normally check for a null
character and remove it before using the string in the COBOL program.

The following code segment shows how a string returned from an Automation Server can
be converted into a standard COBOL space-terminated string. By moving low-values to
the string before invoking Word to get the name of the application, we ensure that every
character after the name will be null. This also ensures that no previous data will be left in
the string since only the part of the string that is affected will be updated.

01 AppName pic x(70).

move low-values to AppName
 invoke Word "getName" returning AppName
 inspect AppName replacing all X"00" by space

We will take a more detailed look at data types and how you choose which one to use
later in this paper.

Example Using Excel
To show a more complex example of using an object model and different data types, the
following example uses Microsoft Excel. This program reads a COBOL file containing
fictional target and actual sales information for a company that does business in different
European countries. An Excel worksheet is updated with this information and a chart is
created to display the information graphically. This chart is then printed. You will see that
the structure of this application is very similar to the previous one.

$set ooctrl(+P)
 file-control.
 select Sales-File assign "SALESDAT.DAT"
 organization indexed
 access sequential
 record key Country.

 class-control.
 MicrosoftExcel is class "OLEExcel.Application".

 data division.

 file section.
 fd Sales-File.

 01 Sales-record.
 03 Country pic x(20).
 03 Sales-Target pic 9(8).
 03 Sales-Actual pic 9(8).

1 3

 working-storage section.

 01 Excel object reference.
 01 WorkBooks object reference.
 01 WorkBook object reference.
 01 WorkSheets object reference.
 01 WorkSheet object reference.
 01 Cell object reference.
 01 CellRange object reference.
 01 Charts object reference.
 01 Chart object reference.
 01 ColumnIndex pic xx comp-5.
 01 FloatValue comp-1.
 01 EndOfFile pic 9 value 0.

 78 Automation-True value 1.
 78 Automation-False value 0.

 78 xl3DColumn value -4100.

 procedure division.
 * Create a new instance of Microsoft Excel
 invoke MicrosoftExcel "new" returning Excel
 * Make Excel visible
 invoke Excel "setVisible"
 using by value Automation-True
 * Get the collection of WorkBooks
 invoke Excel "getWorkBooks" returning WorkBooks
 * Add a new WorkBook to the collection
 invoke WorkBooks "Add" returning WorkBook
 invoke WorkBook "getWorkSheets"
 returning WorkSheets
 invoke WorkSheets "getItem"
 using by value 1
 returning WorkSheet
 * Set the first column to the titles for the rows
 invoke WorkSheet "getCells" using by value 2
 by value 1
 returning Cell
 invoke Cell "setValue" using z"Target"
 invoke Cell "Finalize" returning Cell
 invoke WorkSheet "getCells" using by value 3
 by value 1
 returning Cell
 invoke Cell "setValue" using z"Actual"
 invoke Cell "Finalize" returning Cell
 * Now, read the sales file, filling in the columns in
 * the worksheet
 open input Sales-File
 move 2 to ColumnIndex
 perform until EndOfFile = 1
 read Sales-File
 at end move 1 to EndOfFile
 end-read
 if EndOfFile = 0
 invoke Excel "getCells"
 using by value 1

1 4

 by value ColumnIndex
 returning Cell
 invoke Cell "setValue" using Country
 invoke Cell "finalize" returning Cell
 invoke Excel "getCells"
 using by value 2
 by value ColumnIndex
 returning Cell
 move Sales-Target to FloatValue
 invoke Cell "setValue"
 using by value FloatValue
 invoke Cell "finalize" returning Cell
invoke Excel "getCells"
 using by value 3
 by value ColumnIndex
 returning Cell
 move Sales-Actual to FloatValue
 invoke Cell "setValue"
 using by value FloatValue
 invoke Cell "finalize" returning Cell
 add 1 to ColumnIndex
 end-if
 end-perform
 * Select the first 3 rows of cells
 invoke Excel "getRows" using z"1:3"
 returning CellRange
 invoke CellRange "Select"
 * Get the collection of charts
 invoke Excel "getCharts" returning Charts
 * Add a new chart to the collection. This will create
 * a chart using the 3 rows we selected above
 invoke Charts "Add" returning Chart
 * Set the chart type to be 3D-Column
 invoke Chart "setType" using by value xl3DColumn
 * Print the chart
 invoke Chart "PrintOut"
 * Close the WorkBook, discarding the contents
 invoke WorkBook "Close" using by value 0
 * Finalize all objects
 invoke Chart "finalize" returning Chart
 invoke Charts "finalize" returning Charts
 invoke CellRange "finalize" returning CellRange
 invoke WorkSheet "finalize" returning WorkSheet
 invoke WorkSheets "finalize" returning WorkSheets
 invoke WorkBook "finalize" returning WorkBook
 invoke WorkBooks "finalize" returning WorkBooks
 * Exit Excel
 invoke Excel "Quit"
 invoke Excel "Finalize" returning Excel
 stop run.

Figure 3 shows the Excel display just before the chart is printed:

1 5

Figure 3 – The chart that will be printed by the example

1 6

Where Do I Find More Information on
Automation Servers?

Hopefully, by now, you have seen that using Automation servers from COBOL is not
difficult. However, how do you find out what functions are provided by the Automation
server and the parameters they require? The answer to this question is not so easy for
COBOL programmers since most documentation for Automation servers is written with
Visual Basic programmers in mind. This section focuses on how to find the information
you need and how to interpret it so that you can call the server from COBOL.

Documentation
For Microsoft applications, the best source of information is the Microsoft Developer
Network (MSDN) Library CD available from Microsoft Corporation. This information can
also be found on Microsoft’s web site at http://msdn.microsoft.com/library . This provides
information on the object models used in Microsoft Office and other Microsoft products.

For Microsoft Office, look in the Microsoft Office documentation for the Visual Basic
Reference guide for the application you are interested in. All of the Microsoft Office
applications use Visual Basic for Applications as their macro language. The language
reference will list all of the objects, methods and properties for the application.

Translating from Visual Basic to COBOL
Once you have found a description of the method or property you want to use, how do
you determine how to use it from COBOL? In order to do this, we need to look at how
Automation servers are used from Visual Basic and then take a look at the COBOL
equivalent. In the following sections, any reference to Visual Basic also includes Visual
Basic for Applications.

Basic method calls

From Visual Basic, you would call a method using the following syntax if there was no
return value:

Call object.method(parameters)

Or:

object.method(parameters)

From COBOL, you would use:

Invoke object “method” using parameters

If the method has a return value, you would use the following from Visual Basic:

RetVal = object.method(parameters)

From COBOL, you would use:

Invoke object “method” using parameters
 returning RetVal

Pass numeric parameters using BY VALUE. Use BY REFERENCE to pass strings as
parameters. For example:

1 7

 invoke WorkBook "Close" using by value 0
 invoke TextRange "InsertAfter"
 using by reference Example-Text

Note. BY REFERENCE is the default, so if neither BY VALUE or BY REFERENCE is specified,
then BY REFERENCE is assumed.

So, the following two lines behave identically:

 invoke TextRange "InsertAfter"
 using by reference Example-Text
 invoke TextRange "InsertAfter"
 using Example-Text

Properties

In Visual Basic, you can move values to a property of an object and you can move the
value of a property to a variable. For example:

 object.Property = 5
 avalue = object.Property

In COBOL, you make explicit method calls, prefixing the property name with “set” or
“get”, for example:

 invoke object “setProperty” using by value 5
 invoke object “getProperty” returning avalue

Method Chaining

In Visual Basic, if a method returns an object, you can chain that object by directly calling
another method on it. For instance:

 MyRange.Find.Execute

The “Find” property method returns another object, and the method “Execute” is then
called on that object, after which the temporary “Find” object is automatically released.
This is equivalent to:

 Dim findObject As Object
 findObject = MyRange.Find
 findObject.Execute
 Set findObject = Nothing

In COBOL, this must be done explicitly, as follows:

 01 findObject object reference.
 …
 invoke MyRange “getFind” returning findObject
 invoke findObject “Execute”
 invoke findObject “finalize” returning findObject

In each case, both the Visual Basic Run-Time System and the COBOL Run-Time System are
making the same number of calls to the Automation server.

Default Methods and Properties

For a particular collection of objects, one method or property may be declared as the
“default”. Visual Basic may allow the programmer to assume the default method when
chaining methods together. For example, in a Visual Basic program that uses Microsoft
Word you might see:

1 8

 Documents(1).Activate

This uses the default property, Item, for the Documents collection, which takes an integer
parameter and returns the specific Document object from the collection. Once again, this
object is chained by calling another method on it. If this was expanded out to show the
code that is being executed, you would see:

 Dim Document as Object

 Document = Documents.Item(1)
 Document.Activate
 Set Document To Nothing

In COBOL, all of the methods assumed by Visual Basic should be invoked:

 01 Document object reference.
 …
 invoke Documents “getItem” using by value 1
 returning Document
 invoke Document “Activate”
 invoke Document “finalize” returning Document

Getting Information from Type Libraries
One of the most useful sources of information about the methods supported by an
Automation server and the parameters required for those methods is a type library. A
type library is a binary file that contains specifications of the objects, methods and
properties supported by an Automation server. Most Automation servers will provide a
type library, either as a separate file (usually with a file extension of .TLB or .OLB) or built-
in to the Automation server executable.

All of the Microsoft Office applications provide type libraries. They are installed in the
same directory as the Microsoft Office executables. For Office XP, they have the following
names:

MSACC.OLB Type library for Microsoft Access

MSOUTL.OLB Type library for Microsoft Outlook

MSPPT.OLB Type library for Microsoft PowerPoint

MSWORD.OLB Type library for Microsoft Word

XL5EN32.OLB Type library for Microsoft Excel

Micro Focus Net Express 3.1 includes a useful utility to read a type library and generate a
COBOL copy file containing equivalent COBOL definitions. This utility is called the Type
Library Assistant.

Running the Type Library Assistant

The Type Library Assistant can be found on the Tools menu in Net Express. When you run
it, you will see a window similar to that shown in Figure 4.

1 9

Figure 4 – The Type Library Assistant

This window shows all of the type libraries that are registered on your computer – there
may be a lot of them. Type libraries are normally registered when the corresponding
applications are installed. Microsoft Office is no exception. You can see that the type
library for Microsoft Excel 10.0 has been selected.

If you want to use a type library that has not been registered, you can select Browse to
search for the type library you want to use. If you press View , you will see the window
shown in figure 5.

Figure 5 – Generating the copy file

Don’t worry about the contents of the box labelled Contents of type library. This just
allows you to limit the amount of information produced in the copy file. In most cases,
you will just select the top level of the tree. Clicking Generate will generate the copy file
you have requested.

2 0

Determining the Parameters to Use for a Method
Although the file generated is a valid COBOL copy file, it is unlikely that you will use every
definition included in it unmodified. However, it is an excellent source of information for
helping to determine what parameters to use when calling a particular function and
which parameters are needed. For example, consider the Excel method SaveAs which can
be used on a Worksheet. If we look in the Office XP documentation for Excel, we find the
following description:

Saves changes to the chart or worksheet in a different file.

expression.SaveAs(FileName, FileFormat, Password,
WriteResPassword, ReadOnlyRecommended, CreateBackup, AddToMru,
TextCodepage, TextVisualLayout, Local)

expression Required. An expression that returns one of the above objects.

Filename Optional Variant. A string that indicates the name of the file to be saved. You
can include a full path; if you don't, Microsoft Excel saves the file in the current folder.

FileFormat Optional Variant. The file format to use when you save the file. For a list of
valid choices, see the FileFormat property. For an existing file, the default format is the
last file format specified; for a new file, the default is the format of the version of Excel
being used.

Password Optional Variant. A case-sensitive string (no more than 15 characters) that
indicates the protection password to be given to the file.

WriteResPassword Optional Variant. A string that indicates the write-reservation
password for this file. If a file is saved with the password and the password isn't supplied
when the file is opened, the file is opened as read-only.

ReadOnlyRecommended Optional Variant. True to display a message when the file is
opened, recommending that the file be opened as read-only.

CreateBackup Optional Variant. True to create a backup file.

AddToMru Optional Variant. True to add this workbook to the list of recently used files.
The default value is False.

TextCodePage Optional Variant. Not used in U.S. English Microsoft Excel.

TextVisualLayout Optional Variant. Not used in U.S. English Microsoft Excel.

Local Optional Variant. True saves files against the language of Microsoft Excel (including
control panel settings). False (default) saves files against the language of Visual Basic for
Applications (VBA) (which is typically US English unless the VBA project where
Workbooks.Open is run from is an old internationalized XL5/95 VBA project).

How do you convert this into the appropriate invoke statement from COBOL? The first
thing to do is look at the definition for SaveAs that was produced in the copy file:

 Method: "SaveAs".
 01 Filename BSTR.
 01 FileFormat VARIANT.
 01 Password VARIANT.

2 1

 01 WriteResPassword VARIANT.
 01 ReadOnlyRecommended VARIANT.
 01 CreateBackup VARIANT.
 01 AddToMru VARIANT.
 01 TextCodepage VARIANT.
 01 TextVisualLayout VARIANT.
 01 Local VARIANT.
 invoke using
 by value Filename *> [IN]
 by value FileFormat *> [IN][OPTIONAL]
 by value Password *> [IN][OPTIONAL]
 by value WriteResPassword *> [IN][OPTIONAL]
 by value ReadOnlyRecommended *> [IN][OPTIONAL]
 by value CreateBackup *> [IN][OPTIONAL]
 by value AddToMru *> [IN][OPTIONAL]
 by value TextCodepage *> [IN][OPTIONAL]
 by value TextVisualLayout *> [IN][OPTIONAL]
 by value Local *> [IN][OPTIONAL].

The first thing to notice is the comment “[OPTIONAL]” next to all of the parameters
except the first one (Filename). This means that every parameter except the first one is
optional and does not need to be specified. However, if you wish to specify one of the
optional parameters, you must specify all previous parameters. For example, if you want
to specify Password , you must also specify Filename and FileFormat in the list of
parameters you pass to the method.

Next, notice that all of the parameters are specified as “[IN]”. This means that they are all
input parameters. If the method returns a value, you would see a returning clause on the
invoke statement in the copy file.

Now we have to determine what types to use for the parameters. Any parameter
specified as BSTR is a string. In COBOL, this means that a variable defined as pic x(n) or a
string constant is used.

Important Note. Even though the parameters in the definition are specified as BY VALUE,
you ALWAYS pass strings to Automation servers BY REFERENCE. Strings cannot be
passed BY VALUE. The COBOL Run-Time System will handle the string correctly when
passing it to the Automation server.

The rest of the parameters have a type of VARIANT . A variant is a COM data type that
can contain different types. In COBOL terminology, it is similar in concept to a REDEFINES
statement where a variable can be redefined as a different type. For example:

 01 VarA pic x(4).
 01 VarB redefines VarA pic 9(9) comp-5.

VarA and VarB refer to the same area of memory, but that piece of memory can be used
as a string or a 4-byte value depending on whether it is accessed using the name VarA or
VarB. A variant type is similar, but it uses a type indicator to determine the type of the
data stored in the variant.

Net Express includes a COBOL class to create and manipulate variants (look at the
definition of the class OLEVariant in the Net Express documentation). However, you
should very rarely need to use this class since the COBOL Run-Time System handles the
conversion of COBOL data types to variants automatically when the method is called and
converts any variant returned into the appropriate COBOL data type. So, if a variant is

2 2

specified, you should look at the description of the function to see the type of parameter
that is being expected.

For example, for the FileFormat parameter, it refers to the FileFormat property. If we
look up FileFormat in the Excel documentation, it references a type of xlFileFormat.
Looking up xlFileFormat in the copy file generated by the Type Library Assistant, we find
the definition:

 01 XlFileFormat pic s9(9) comp-5 typedef.
 88 xlAddIn VALUE 18.
 88 xlCSV VALUE 6.
 88 xlCSVMac VALUE 22.
 88 xlCSVMSDOS VALUE 24.
 88 xlCSVWindows VALUE 23.
 88 xlDBF2 VALUE 7.
 88 xlDBF3 VALUE 8.
 88 xlDBF4 VALUE 11.
 88 xlDIF VALUE 9.
 88 xlExcel2 VALUE 16.
 88 xlExcel2FarEast VALUE 27.
 88 xlExcel3 VALUE 29.
 88 xlExcel4 VALUE 33.
 88 xlExcel5 VALUE 39.
 88 xlExcel7 VALUE 39.
 88 xlExcel9795 VALUE 43.
 88 xlExcel4Workbook VALUE 35.

 …

This tells us that the parameter to use for the FileFormat is a 4-byte signed integer (pic
s9(9) comp-5) and it gives us the values of the constants used to specify different file
formats.

If we look at the description of the Password parameter, we see that it says that it is a
string. Therefore, we use a null-terminated pic x(n) field or string constant.

We can determine the types of the remaining parameters in a similar fashion.

So, this means that the following are all valid invokes of SaveAs:

01 Worksheet object reference.
 01 XlFileFormat pic s9(9) comp-5.
 88 xlExcel9795 value 43.
 78 xlExcel9795c value 43.

invoke WorkSheet "SaveAs" using FileName

invoke WorkSheet “SaveAs” using
 by reference z”C:\Temp\data.xls”
 by value xlExcel9795c

set xlExcel9795 to true
invoke WorkSheet “SaveAs” using

 by reference z”C:\Temp\data.xls”
 by value xlFileFormat

 by reference z”Password”

It might take a bit of investigation to determine exactly the right parameters for a
method call, but by using a combination of the documentation for the Automation server

2 3

and the copy file produced by the Type Library Assistant, you can find the information you
need.

As another example, the following line was used in the first Excel example in this paper:

 invoke Chart "setType" using by value xl3DColumn

where xl3DColumn is defined as:

 78 xl3DColumn value -4100.

How did we determine the value for this constant? If we look in the Excel documentation
for chart types, we will find a long list of different types. Here is just a subset, showing the
types of column chart available:

Description Constant

Clustered Column xlColumnClustered

3D Clustered Column xl3DColumnClustered

Stacked Column xlColumnStacked

3D Stacked Column xl3DColumnStacked

100% Stacked Column xlColumnStacked100

3D 100% Stacked Column xl3DColumnStacked100

3D Column xl3DColumn

You will notice that for each type, there is a named constant. If we search the copy file
generated by the Type Library Assistant for the value xl3DColumn, we will find the
following definition:

 01 XlChartType pic s9(9) comp-5 typedef.
 88 xlColumnClustered VALUE 51.
 88 xlColumnStacked VALUE 52.
 88 xlColumnStacked100 VALUE 53.
 88 xl3DColumnClustered VALUE 54.
 88 xl3DColumnStacked VALUE 55.
 88 xl3DColumnStacked100 VALUE 56.
 88 xlBarClustered VALUE 57.
 88 xlBarStacked VALUE 58.
 88 xlBarStacked100 VALUE 59.
 88 xl3DBarClustered VALUE 60.
 88 xl3DBarStacked VALUE 61.
 88 xl3DBarStacked100 VALUE 62.
 88 xlLineStacked VALUE 63.
 88 xlLineStacked100 VALUE 64.
 88 xlLineMarkers VALUE 65.
 88 xlLineMarkersStacked VALUE 66.
 88 xlLineMarkersStacked100 VALUE 67.
 88 xlPieOfPie VALUE 68.
 88 xlPieExploded VALUE 69.
 88 xl3DPieExploded VALUE 70.

2 4

 88 xlBarOfPie VALUE 71.
 88 xlXYScatterSmooth VALUE 72.
 88 xlXYScatterSmoothNoMarkers VALUE 73.
 88 xlXYScatterLines VALUE 74.
 88 xlXYScatterLinesNoMarkers VALUE 75.
 88 xlAreaStacked VALUE 76.
 88 xlAreaStacked100 VALUE 77.
 88 xl3DAreaStacked VALUE 78.
 88 xl3DAreaStacked100 VALUE 79.
 88 xlDoughnutExploded VALUE 80.
 88 xlRadarMarkers VALUE 81.
 88 xlRadarFilled VALUE 82.
 88 xlSurface VALUE 83.
 88 xlSurfaceWireframe VALUE 84.
 88 xlSurfaceTopView VALUE 85.
 88 xlSurfaceTopViewWireframe VALUE 86.
 88 xlBubble VALUE 15.
 88 xlBubble3DEffect VALUE 87.
 88 xlStockHLC VALUE 88.
 88 xlStockOHLC VALUE 89.
 88 xlStockVHLC VALUE 90.
 88 xlStockVOHLC VALUE 91.
 88 xlCylinderColClustered VALUE 92.
 88 xlCylinderColStacked VALUE 93.
 88 xlCylinderColStacked100 VALUE 94.
 88 xlCylinderBarClustered VALUE 95.
 88 xlCylinderBarStacked VALUE 96.
 88 xlCylinderBarStacked100 VALUE 97.
 88 xlCylinderCol VALUE 98.
 88 xlConeColClustered VALUE 99.
 88 xlConeColStacked VALUE 100.
 88 xlConeColStacked100 VALUE 101.
 88 xlConeBarClustered VALUE 102.
 88 xlConeBarStacked VALUE 103.
 88 xlConeBarStacked100 VALUE 104.
 88 xlConeCol VALUE 105.
 88 xlPyramidColClustered VALUE 106.
 88 xlPyramidColStacked VALUE 107.
 88 xlPyramidColStacked100 VALUE 108.
 88 xlPyramidBarClustered VALUE 109.
 88 xlPyramidBarStacked VALUE 110.
 88 xlPyramidBarStacked100 VALUE 111.
 88 xlPyramidCol VALUE 112.
 88 xl3DColumn VALUE -4100.
 88 xlLine VALUE 4.
 88 xl3DLine VALUE -4101.
 88 xl3DPie VALUE -4102.
 88 xlPie VALUE 5.
 88 xlXYScatter VALUE -4169.
 88 xl3DArea VALUE -4098.
 88 xlArea VALUE 1.
 88 xlDoughnut VALUE -4120.
 88 xlRadar VALUE -4151.

You will see that xl3DColumn is defined with a value of -4100. You can use this entire
definition in your program and use the following code to set the chart type:

01 ChartType xlChartType.

2 5

set xl3DColumn of ChartType to true
 invoke Chart "setType" using by value ChartType

Alternatively, you could use the approach taken in the earlier program and define a
constant (a level 78 item) of the appropriate value and use that constant directly. Either
approach will work.

Using Methods with a Get or Set Prefix
Earlier, in the discussion on methods and properties, we said that you prefixed the name
of a property with get to retrieve the value of a property or with set to set the value of a
property. However, what happens if the Automation server provides a method name that
begins with set or get? For example, Microsoft Excel provides a method
GetSaveAsFileName that prompts the user for the filename to be used to save the file.
Since this method begins with Get , the COBOL Run-Time System will try to retrieve the
value of a property called SaveAsFileName and will fail.

To overcome this, we need to use a method in a COBOL support class, olesup, to override
the default behavior. This method is called setDispatchType . The following program
shows this in use:

 $set ooctrl(+P)

 class-control.
 MicrosoftExcel is class "OLEExcel.Application"
 AutomationSupport is class "olesup".

 data division.

 working-storage section.

 01 Excel object reference.
 01 WorkBooks object reference.
 01 WorkBook object reference.
 01 WorkSheets object reference.
 01 WorkSheet object reference.
 01 Cell object reference.
 01 CellRange object reference.

 78 Automation-True value 1.
 78 Automation-False value 0.

 01 FileFilter pic x(46) value
 z"Excel Files (*.xls),*.xls,All Files (*.*),*.*".

 01 FileName pic x(100).
procedure division.
 * Create a new instance of Microsoft Excel
 invoke MicrosoftExcel "new" returning Excel
 * Make Excel visible
 invoke Excel "setVisible"
 using by value Automation-True
 * Get the collection of WorkBooks
 invoke Excel "getWorkBooks" returning WorkBooks
 * Add a new WorkBook to the collection
 invoke WorkBooks "Add" returning WorkBook
 invoke WorkBook "getWorkSheets"
 returning WorkSheets

2 6

 invoke WorkSheets "getItem" using by value 1
 returning WorkSheet
 * Set the first cell to "Example Sheet"
 invoke WorkSheet "getCells" using by value 1
 by value 1
 returning Cell
 invoke Cell "setValue" using z"Example Sheet"
 invoke Cell "Finalize" returning Cell
 * Override the default behavior of a method prefixed
 * by "get"
 invoke AutomationSupport "setDispatchType"
 using by value 0
 move low-values to FileName
 * Get the filename to be used to save the file
 invoke Excel "GetSaveAsFileName"
 using by reference z"Sample"
 by reference FileFilter
 returning FileName
 * Use the name we just retrieved to save the file
invoke WorkSheet "SaveAs" using FileName
 * Close the WorkBook, discarding the contents
 invoke WorkBook "Close" using by value 0
 * Finalize all objects
 invoke WorkSheet "finalize" returning WorkSheet
 invoke WorkSheets "finalize" returning WorkSheets
 invoke WorkBook "finalize" returning WorkBook
 invoke WorkBooks "finalize" returning WorkBooks
 * Exit Excel
 invoke Excel "Quit"
 invoke Excel "Finalize" returning Excel
 stop run.

A new class has been added to the Class Control section, as follows:

 AutomationSupport is class "olesup".

This class is a COBOL class provided with Net Express. It provides a number of methods
that support the use of COM and Automation from COBOL. Note that this class is a
standard COBOL class and so the name is not prefixed with “OLE”. More information
on this class can be found in the Net Express documentation. The method we need in this
program is setDispatchType . We use this just before the invoke of
GetSaveAsFileName as follows:

 invoke AutomationSupport "setDispatchType"
 using by value 0

This overrides the default behavior of the Get prefix for the next invoke of an
Automation method. Therefore, GetSaveAsFileName will be handled as a method call,
rather than a property get.

The same call would be used before a method that begins with the prefix Set.

Error Handling
You will notice that there has been no error handling in the examples shown in this paper
so far. If an error occurs in any of the calls to the Automation servers, the COBOL Run-
Time System will simply display an error on the screen and give you an opportunity to
stop the program. Obviously, for real-life applications, we need to ensure that errors that

2 7

occur when using the Automation server are handled correctly. To do this, we need to
install an exception handler to handle the error appropriately.

The following program installs an exception handler and then attempts to start up an
Automation server that does not exist. Rather than stopping with a run time error, the
error is trapped by the exception handler.

 $set ooctrl(+P)

 class-control.
 AutomationServer is class "OLEUnknown"
 EntryPointCallback is class "entrycll"
 ExceptionManager is class "exptnmgr"
 AutomationExceptionManager is class "oleexpt".

 working-storage section.

 01 AutomationObject object reference.
 01 NullReference object reference value null.
 01 HandlerObject object reference.

 01 ErrorOccurred pic 9 value 0.

 * An empty local-storage section is needed to ensure
 * that the program is re-entrant.
 local-storage section.

 * Parameters for Exception Callback
 linkage section.
 01 ErrorNumber pic x(4) comp-5.
 01 ErrorObject object reference.
 01 ErrorText object reference.

 procedure division.
 * Register an exception handler
 invoke EntryPointCallback "new"
 using z"AutomationException"
 returning HandlerObject
 invoke ExceptionManager "register"
 using AutomationExceptionManager
 HandlerObject
 * Attempt to startup the Automation Server
 invoke AutomationServer "new"
 returning AutomationObject
 if ErrorOccurred = 1
 display "Unable to load the Automation Server"
 stop run
 end-if
 invoke AutomationObject "finalize"
 returning AutomationObject
 stop run.

 Callback section.
 entry "AutomationException"
 using by reference ErrorObject
 by reference ErrorNumber
 by reference ErrorText.
 move 1 to ErrorOccurred

2 8

 display "Error number: " ErrorNumber
 invoke ErrorText "display"
 exit program returning NullReference.

The first thing you will notice is that three extra classes are defined in the class control
section.

 EntryPointCallback is class "entrycll"
 ExceptionManager is class "exptnmgr"
 AutomationExceptionManager is class "oleexpt".

These classes are COBOL classes that are used to handle exceptions. For more information
on these classes, refer to the Net Express documentation.

Next we define an empty local storage section and a linkage section. The presence of a
local storage section indicates to the COBOL Run-Time System that the program is
allowed to be recursive, that is, calls can be made back to itself (by default, COBOL is not
recursive). The linkage section defines the three parameters that will be passed to the
exception handling routine when an exception occurs.

The first thing you see in the procedure division is the two lines of code that register the
COBOL entry point, AutomationException, which will handle any exceptions:

 invoke EntryPointCallback "new"
 using z"AutomationException"
 returning HandlerObject
 invoke ExceptionManager "register"
 using AutomationExceptionManager
 HandlerObject

This means that, from that point on in the program, if any error occurs in an Automation
server, the entry point AutomationException will be called. This entry point will be
passed three parameters

• A number identifying the error that occurred

• The object that caused the error

• A reference to an ordered collection that contains a description of the error. You can
use methods on the ordered collection object to get the different lines of the
description. In this example, we simply invoke the method to display the text.

Note. The “Distributed Computing” book in the Net Express 3.1 documentation contains
errors in its description of exception handlers. It only mentions the first two parameters.
However, a third parameter containing the error text is always passed through to the
exception handler routine.

In this program, we simply set a flag (ErrorOccured) to indicate that an error occurred.
When the exception handler finishes, control is returned to the statement immediately
after the statement that caused the problem. In this case, it is the line:

 if ErrorOccurred = 1

that tests the flag and stops execution if an error occurred.

In the example above, we mentioned that the error text is returned as an ordered
collection containing multiple lines. In most cases, you will only want the first line. The

2 9

following code shows an alternative exception handling routine that you could use that
would set the first line of the error message in the COBOL string ExceptionText and the
length of the text in ExceptionTextLen

 01 ExceptionText pic x(160) value spaces.
 01 ExceptionTextLen pic 9(9) comp-5 value 0.
 01 i pic 9(9) comp-5.
 01 ErrorTextObj object reference.
 …

 entry "AutomationException" using
 by reference ErrorObject
 by reference ErrorNumber
 by reference ErrorText.
 move 1 to ErrorOccured
 if ErrorText not = null
 move 1 to i
 invoke ErrorText "at" using i
 returning ErrorTextObj
 move 160 to i
 invoke ErrorTextObj "getValueWithSize" using i
 returning ExceptionText
* Remove anything after any x"ODOA" (CR/LF)
* sequence
 move 1 to i
 perform until i > 160 or
 ExceptionText(i:1) = x"0D"
 add 1 to i
 end-perform
 if i <= 160
 move spaces to ExceptionText(i:)
 move i to ExceptionTextLen
 else
 move 160 to ExceptionTextLen
 end-if
* Remove any trailing spaces
 perform until
 ExceptionTextLen = 0 or
 ExceptionText(ExceptionTextLen:1) not = space
 subtract 1 from ExceptionTextLen
 end-perform
 display ExceptionText(1:ExceptionTextLen)
 else
 move spaces to ExceptionText
 move 0 to ExceptionTextLen
 end-if
 exit program returning NullReference.

3 0

More on Data Types

Using Arrays

Some functions exposed by Automation Servers require that you pass an array to the
function. For example, if you want to populate a range of cells in an Excel spreadsheet in
one single Invoke, you would need to use an array. These arrays are called SafeArrays.

Net Express includes an Object COBOL class that provides you with the functionality to:

� Create a Safe Array

� Add data to a Safe Array

� Retrieve data from a Safe Array

� Destroy a Safe Array

The following example shows how Safe Arrays can be used in Excel to populate ranges of
cells:

 $set ooctrl(+P)
 class-control.
 MicrosoftExcel is class "OLEExcel.Application"
 OleSafeArray is class "olesafea".

 working-storage section.
 copy "olesafea.cpy".

 01 Excel object reference.
 01 WorkBooks object reference.
 01 WorkBook object reference.
 01 WorkSheets object reference.
 01 WorkSheet object reference.
 01 CellRange object reference.
 01 Charts object reference.
 01 Chart object reference.

 01 LoopCount pic xx comp-5.

 01 saBound SAFEARRAYBOUND.
 01 bstrSafeArray object reference.
 01 intSafeArray object reference.
 01 saIndex pic x(4) comp-5.
 01 hResult pic x(4) comp-5.
 01 iValue pic x(2) comp-5.
 01 dPointer pointer.
78 Automation-True value 1.
 78 Automation-False value 0.

 78 xl3DBar value -4099.

 procedure division.
 * Create a new instance of Microsoft Excel
 invoke MicrosoftExcel "new" returning Excel
 * Make Excel visible

3 1

 invoke Excel "setVisible"
 using by value Automation-True
 * Get the collection of WorkBooks
 invoke Excel "getWorkBooks" returning WorkBooks
 * Add a new WorkBook to the collection
 invoke WorkBooks "Add" returning WorkBook
 * Get a reference to the first WorkSheet
 invoke WorkBook "getWorkSheets"
 returning WorkSheets
 invoke WorkSheets "getItem" using by value 1
 returning WorkSheet
 * Select the range of cells to populate
 invoke WorkSheet "getRange" using z"A1:C1"
 returning CellRange
 * Create a 3-element safearray containing strings
 move 3 to cElements of saBound
 move 0 to llBound of saBound
 invoke OleSafeArray "new"
 using by value VT-BSTR size 2
 by value 1 size 4
 by reference saBound
 returning bstrSafeArray
 move 0 to saIndex
 invoke bstrSafeArray "putString"
 using by reference saIndex
 by value 4 size 4
 by reference "Dogs"
 returning hResult
 move 1 to saIndex
 invoke bstrSafeArray "putString"
 using by reference saIndex
 by value 4 size 4
 by reference "Cats"
 returning hResult
 move 2 to saIndex
 invoke bstrSafeArray "putString"
 using by reference saIndex
 by value 6 size 4
 by reference "Horses"
 returning hResult
 * Populate the range of cells from the safearray
 invoke CellRange "setValue"
 using by value bstrSafeArray
 invoke bstrSafeArray "Finalize"
 returning bstrSafeArray
 invoke CellRange "Finalize" returning CellRange
 * Get a new range to populate
 invoke WorkSheet "getRange"
 using z"A2:C2"
 returning CellRange
 * Create a 3-element safearray containing 2-byte
 * integers
 move 3 to cElements of saBound
 move 0 to llBound of saBound
 invoke OleSafeArray "new"
 using by value VT-I2 size 2
 by value 1 size 4
 by reference saBound

3 2

 returning intSafeArray
 set dPointer to address of iValue
 move 34 to iValue
 move 0 to saIndex
 invoke intSafeArray "putElement"
 using by reference saIndex
 by value dPointer
 returning hResult
 move 53 to iValue
 move 1 to saIndex
 invoke intSafeArray "putElement"
 using by reference saIndex
 by value dPointer
 returning hResult
 move 12 to iValue
 move 2 to saIndex
 invoke intSafeArray "putElement"
 using by reference saIndex
 by value dPointer
 returning hResult
 * Populate the range from the safearray
 invoke CellRange "setValue"
 using by value intSafeArray
 invoke intSafeArray "Finalize"
 returning intSafeArray
 invoke CellRange "Finalize" returning CellRange
 * Get range to select and select it
 invoke WorkSheet "getRange"
 using z"A1:C2"
 returning CellRange
 invoke CellRange "Select"
 * Get the collection of charts
 invoke Excel "getCharts" returning Charts
 * Add a new chart to the collection
 invoke Charts "Add" returning Chart
 * Set the chart type to be 3D-Bar
 invoke Chart "setType" using by value xl3DBar
 * Remove the legend
 invoke Chart "setHasLegend"
 using by value Automation-False
 * Print the chart
 invoke Chart "PrintOut"
 * Close the WorkBook, discarding the contents
 invoke WorkBook "Close"
 using by value Automation-False
 * Finalize all objects
 invoke Chart "finalize" returning Chart
 invoke Charts "finalize" returning Charts
 invoke CellRange "finalize" returning CellRange
 invoke WorkSheet "finalize" returning WorkSheet
 invoke WorkSheets "finalize" returning WorkSheets
 invoke WorkBook "finalize" returning WorkBook
 invoke WorkBooks "finalize" returning WorkBooks
 * Exit Excel
 invoke Excel "Quit"
 invoke Excel "Finalize" returning Excel
 stop run.

The following sections describe what you must do to use Safe Arrays:

3 3

Use the Class OleSafeArray

Your class control section should include a definition of the OleSafeArray class as follows:

OleSafeArray is class "olesafea"

This class is fully documented in the online help and in the “Distributed Computing” book
supplied with Net Express. You should refer to the “Distributed Computing” book for
more information on using safe arrays.

Include OleSafeA.cpy

Add the following line to your working storage section:

copy "olesafea.cpy".

This file includes all of the type definitions and constants needed when using Safe Arrays.

Define a Safe Array of the Appropriate Type and Size

When you need to use a Safe Array, you create a new array by sending the “New” method
to the class OleSafeArray. The following information needs to be provided as parameters
to the call:

� The type of the element stored in the array. This is specified by using the constants
defined in OleSafeA.cpy that have the prefix VT-. In the example above, two arrays
are created. One contains strings (VT-BSTR) and the other array contains 2-byte
integers (VT-I2).

� The number of dimensions in the array.

� The lower and upper bounds for each dimension. These are specified in a
SAFEARRAYBOUND structure.

The New method returns an object reference to the array.

Populate the Safe Array

Methods are provided to put data into the elements in a Safe Array. In this program,
“PutString” is used to place a string into an array that contains strings and “PutElement” is
used to place numbers into the array that holds integers. For example:

 move 1 to saIndex
 invoke bstrSafeArray "putString"
 using by reference saIndex
 by value 4 size 4
 by reference "Cats"
 returning hResult

and:

 set dPointer to address of iValue
 move 34 to iValue
 move 0 to saIndex
 invoke intSafeArray "putElement"
 using by reference saIndex
 by value dPointer
 returning hResult

3 4

Destroy the Safe Array

When you have finished using the Safe Array, you should destroy it by sending the Finalize
method to the array. For example:

invoke intSafeArray "Finalize"
 returning intSafeArray

3 5

More Examples
Here are more examples showing what is possible using Automation.

Using Microsoft Visio
This program shows a different way of representing the sales data used in the first Excel
example using Microsoft Visio. Visio is a diagramming tool that can be used to help
visualize information. This program uses the data to colorize a map of Europe with data
from the different countries, showing graphically whether they are performing above or
below target.

 $set ooctrl(+P)
 file-control.
 select Sales-File assign "SALESDAT.DAT"
 organization indexed
 access dynamic
 record key Country
 status File-Status.

 class-control.
 MicrosoftVisio is class "OLEVisio.Application".

 data division.

 file section.
 fd Sales-File.

 01 sales-record.
 03 Country pic x(20).
 03 Sales-Target pic 9(8).
 03 Sales-Actual pic 9(8).

 working-storage section.

 01 VSDFile pic x(35) value
 z"e:\Automation\VisioDemo\Europe.VSD".

3 6

 01 Visio object reference.
 01 Docs object reference.
 01 Doc object reference.
 01 PagesObj object reference.
 01 PageObj object reference.
 01 Shapes object reference.
 01 Shape object reference.
 01 ShapeCount pic 9(9) comp-5.
 01 ShapeIndex pic 9(9) comp-5.
 01 ShapeName pic x(20).

 01 file-status.
 03 file-status-1 pic x.
 03 file-status-2 pic x.

 01 Percent-Difference pic s9(8).

 procedure division.
 Main section.
 * Open a new instance of Visio
 invoke MicrosoftVisio "new" returning Visio
 * Open the map drawing
 invoke Visio "Documents" returning Docs
 invoke Docs "Open"
 using VSDFile
 returning Doc
 * Get the first page in the drawing
 invoke Doc "Pages" returning PagesObj
 invoke PagesObj "getItem" using by value 1
 returning PageObj
 * Get the collection of shapes
 invoke PageObj "GetShapes" returning Shapes

 * For each of the country shapes, find its record in
 * the data file and determine which color to fill it
 * with based on the sales performance
 open input Sales-File
 perform varying ShapeIndex from 2 by 1
 until ShapeIndex > 13
 invoke Shapes "GetItem"
 using by value ShapeIndex
 returning Shape
 move spaces to Country
 invoke Shape "GetName" returning Country
 inspect Country replacing all X"00" by space
 read Sales-File
 compute Percent-Difference =
 (Sales-Actual - Sales-Target) /
 Sales-Target * 100

3 7

 evaluate true
 when Percent-Difference <= -20
 invoke Shape "SetFillStyle"
 using z"Red fill"

 when Percent-Difference <= -5 and
 Percent-Difference > -20
 invoke Shape "SetFillStyle"
 using z"Magenta fill"

 when Percent-Difference > -5 and
 Percent-Difference < 5
 invoke Shape "SetFillStyle"
 using z"Blue fill"

 when Percent-Difference >= 5 and
 Percent-Difference < 20
 invoke Shape "SetFillStyle"
 using z"Yellow fill"

 when Percent-Difference >= 20
 invoke Shape "SetFillStyle"
 using z"Green fill"

 end-evaluate
 invoke Shape "Finalize" returning Shape
 end-perform
 invoke Shapes "Finalize" returning Shapes
 invoke PageObj "Finalize" returning PageObj
 invoke PagesObj "Finalize" returning PagesObj
 close Sales-File
 * Print the document
 invoke Doc "print"
 * Set the 'saved' flag so that we can close the
 * document without being prompted for a save
 invoke Doc "SetSaved" using by value 1
 * Close the document
 invoke Doc "Close"
 * Finalize the remaining objects
 invoke Doc "Finalize" returning Doc
 invoke Docs "Finalize" returning Docs
 * Close Visio
 invoke Visio "Quit"
 invoke Visio "Finalize" returning Visio
 stop run.

3 8

Figure 6 shows the Visio window just before the drawing is printed:

Figure 6 – The Visio Drawing created by the program

3 9

Launching Internet Explorer
The following code could be used by your application to launch a copy of Microsoft
Internet Explorer and navigate to a particular URL:

 $set ooctrl(+P)
 class-control.
 IE is class "OLEInternetExplorer.Application".

 working-storage section.
 01 IEObject object reference.

 procedure division.
 * Create a new instance of Internet Explorer
 invoke IE "new" returning IEObject
 * Make Internet Explorer visible
 invoke IEObject "setVisible" using by value 1
 * Navigate to the reguired URL
 invoke IEObject "Navigate"
 using by reference z” http://www.microfocus.com”
 * Cleanup. This will leave Internet Explorer running
 invoke IEObject "Finalize" returning IEObject
 stop run.

4 0

Conclusion
Hopefully, you have now seen the opportunities made possible to you by the use of
Automation from your programs. Automation makes an incredible range of functionality
available to you that can be easily exploited from your applications. If you need to
provide similar functionality in your application and you know your users have the
relevant Automation Server on their workstations, consider using Automation as an
alternative to writing the code yourself.

About the author: Wayne Rippin is a self-employed consultant. Previously, he worked for
Micro Focus for 16 years, first as a systems programmer and later as a product manager.
His most recent role there was director of product management, leading a team of
product managers responsible for Net Express, Mainframe Express and UNIX compiler
products.

4 1

Micro Focus
Choosing the right partner is as critical as choosing the right technology. As you move
forward to meet these demands and the demands of your customers, Micro Focus
continues to move forward with you as your strategic ally for legacy change. Unlike other
e-business vendors, our approach starts with your enterprise legacy system and is designed
to leverage, integrate and build upon your legacy assets. We have no computers or
applications to sell. Our focus is to build the best tools to make your legacy system better.
For more information on this approach or any of the supporting Micro Focus
technologies, please contact your Micro Focus representative, or use the contact
information listed.

© 2002 Micro Focus. All Rights Reserved. Micro Focus and Net Express are registered
trademarks of Micro Focus. Other trademarks are the property of their respective owners.

