CONTROLLING DESKTOP
APPLICATIONS FROM MICRO Focus
COBOL USING AUTOMATION

Abstract

This paper shows how the powerful support for the Microsoft
Component Object Model (COM) in Micro Focus Net Express®
enables you to integrate the functionality of common desktop
applications into your own development. By reusing the existing
functionality of applications that your users may already have on
their desktops, you can reduce the amount of development effort
needed to implement new functionality, as well as bring
enhancements to your users faster.

Contents

INtrodUCtion... ..o e n s 1
Automation Clients and Servers 2
A Note on Terminology 2
Why use the Object Oriented Syntax? 4

A Simple Example Using Microsoft Word.......c.ccceveieiriiirirnrnrrarananes 5

Basic Concepts 6
The ooctrl(+P) directive 7
The CLASS-CONTROL Section 7
The Object Reference 7
Creating a New Instance of an Automation Server 7
Sending Commands to Word 8
Finalize the Objects 8
Summary of the Basic Structure of an Automation Client 8
Object MOdElSieimieimiirinri s s s s r s s ranmnnas 9
Methods and Properties 10
Collections 10
Basic Data Types used with Automation Servers 11
Numeric Data Types 11
Strings 11
Example Using Excel 12
Where Do | Find More Information on Automation
T = 7 =) -3 16
Documentation 16
Translating from Visual Basic to COBOL 16
Basic method calls 16
Properties 17
Method Chaining 17
Default Methods and Properties 17
Getting Information from Type Libraries 18
Running the Type Library Assistant 18
Determining the Parameters to Use for a Method 20
Using Methods with a Get or Set Prefix 25
Error Handling 26
More on Data Types 30
Using Arrays 30
More EXamples.......ccoeiiiiiirrrrrre s s snsnsnsmsmsmsmsmsasasans 35
Using Microsoft Visio 35
Launching Internet Explorer 39

Lo Y X e L3 oY s Y 40

Introduction

How many times have you developed an application and had to implement functionality
similar to that provided by existing commonly available desktop applications? For
example, you may have had to develop an application that generates an attractive
looking report on Windows. You may have coded this yourself by making calls to various
Windows API functions or COBOL run-time routines. Or you may have purchased a
separate third-party package that provides calls you can make from your COBOL
application. However, there is an alternative if you know your users will have Microsoft
Word installed on their systems. You can simply make calls from your COBOL application
to Word to create the report and print it for you.

The technology that makes this possible is called Automation. Automation is a technology
based on Microsoft's Component Object Model (COM). Automation enables an
application to expose its functionality so that it can be utilized by other applications. This
means that parts of off-the-shelf packages can be used, in conjunction with custom
software, to create new applications. All of the applications in the Microsoft Office suite
expose their functionality via Automation, allowing parts of these applications to be
reused by your applications to perform common functions. Other Microsoft technologies
also support Automation.

When people think of using technologies such as Automati on, they usually think of using
programming languages such as Microsoft Visual Basic or C++. It is rare to find someone
who immediately thinks of COBOL. However, Micro Focus has supported the use of
Automation from COBOL for many years and, as this paper will show, COBOL can be a
very appropriate language for creating business applications and utilizing functionality
that has been exposed through Automation. Micro Focus Net Express 3.1 provides all the
support you need.

Automation Clients and Servers

When we talk about Automation, applications can be Automation clients, Automation
servers or both.

An Automation server is an application that exposes its functionality so that it can be
“controlled” by other applications. Examples of Automation servers are the Microsoft
Office applications such as Word, Excel, PowerPoint, as well as applications such as
Microsoft Visio and the application used for administration of Microsoft BackOffice
servers.

An Automation client is an application or programming language that controls other
Automation servers by accessing the functionality exposed by those servers. These include
Microsoft Visual Basic, Microsoft Visual C++ and, of course, Micro Focus COBOL as
supported by Net Express.

This paper will focus on COBOL as an Automation client. For information on creating
Automation servers in COBOL, see the paper “Developing Mixed Visual Basic/COBOL
Applications” at http://www.cobolportal.com/resources.

A Note on Terminology

Over the years, Microsoft has introduced many different names for their component-
based technologies and you will often see different names referring to the same
technology. Because Micro Focus Net Express has supported these technologies for many
years, you may see areas where the older terms are used. This section introduces the
different terminologies, but you do not a detailed understanding of these terms to read
and understand this paper.

Underpinning it all is the Microsoft Component Object Model (COM). A COM component
is simply an object that exposes specific interfaces that enable an application to query the
capabilities of the component and use it. All of the other technologies are based on COM
components.

There are two primary mechanisms used for accessing COM components — the vtable
mechanism and the Dispatch mechanism.

« A Vtable is the lowest level form of interface in to a COM component. A vtable is
basically a record structure containing a number of pointers to different functions in
the component. The COM specification lays out the format of these record structures.
Vtables are ideally suited for languages such as C++ where pointers to functions are
extensively used, but are not so useful for higher level languages such as COBOL and
Visual Basic. For these languages, the Dispatch mechanism was introduced.

¢ The Dispatch mechanism enables a programmer to call a function in the component
by name, rather than finding a pointer to the function and calling that function.

All components that support the dispatch mechanism also support the vtable mechanism
for accessing the component. However, the reverse is not true. Not all COM components
support Dispatch interfaces. Increasingly though, writers of COM components are being
encouraged to support both mechanisms to enable their components to be used from the
widest possible range of programming languages. This is important for COBOL, since
COBOL only supports the Dispatch mechanism for accessing a component. If the
component can be accessed from Visual Basic, you can be reasonably confident that you
will be able to use it from COBOL.

Applications that provide a Dispatch interface were initially called OLE Automation
servers. OLE stands for Object Linking and Embedding. It was the original name used by
Microsoft for their component technologies and you will see the term OLE Automation
used in Net Express. Now such components are simply referred to as Automation Servers.
You will also sometimes see them referred to as ActiveX servers. The term Automation
Server will be used for the rest of this paper.

Why Use the Object Oriented Syntax?

When you look at the examples later in this paper, you will see that Micro Focus has made
use of the new object oriented (OO) syntax that has been recently added to COBOL to
implement support for Automation. Even if you are not already familiar with these new
additions to COBOL, you'll see that it is very easy to use these powerful extensions to the
language.

So, why do you need to use the OO syntax at all? The reason is that the functionality of an
Automation Server is exposed through an object interface. Each function is accessed using
a combination of a reference to the object being used and the name of the function or
property being accessed. This would not be possible using the standard COBOL CALL
syntax. Instead, the new COBOL verb invoke is used, together with the new data type,
object reference.

The key point is that, although we are using the new syntax, most programs that use
Automation are unlikely to be object oriented programs. As you will see from the
examples in this paper, you can still use standard procedural programming techniques,
even though you are using the OO syntax to access Automation Servers.

A Simple Example Using Microsoft Word

The best way to get started with Automation is to look at a simple example. This
example will use Microsoft Word to create a new document, insert some text, make some
of the inserted text bold and then save the document.

Sset ooctrl (+P)

class-control.
MicrosoftWord is class "$OLESWord.Application".

working-storage section.

78 Automation-True value 1.

78 Automation-False value 0.

01 Word object reference.
01 Documents object reference.
01 Document object reference.
01 TextRange object reference.
01 BoldRange object reference.
01 StartBoldPoint pic 9(8) comp-5.
01 EndBoldPoint pic 9(8) comp-5.
01 Example-Text pic x(43) wvalue

z"This is an example document created using ".

procedure division.
* Startup Microsoft Word
invoke MicrosoftWord "new" returning Word
Make Word visible so that we can see what is
happening
invoke Word "setVisible"
using by value Automation-True

* Get the collection of documents
invoke Word "getDocuments" returning Documents
* Add a new document
invoke Documents "Add" returning Document
* Get a range object for the entire document
invoke Document "Range" returning TextRange
* Insert some text. This will extend the range object
invoke TextRange "InsertAfter" using Example-Text
* Store the end of the range
invoke TextRange "getEnd" returning StartBoldPoint
* Insert some more text

invoke TextRange "InsertAfter" using
z"Micro Focus COBOL and Microsoft Word."

* Get the end point of the range

invoke TextRange "getEnd" returning EndBoldPoint
* Finish with this range object

invoke TextRange "Finalize" returning TextRange

Adjust the starting point because this would have
* included the end-of-paragraph marker

subtract 1 from StartBoldPoint

Create a new range object that just refers to the

text "Micro Focus COBOL and Microsoft Word"

invoke Document "Range"
using by value StartBoldPoint
by value EndBoldPoint
returning TextRange
* Make this text bold
invoke TextRange "setBold"
using by value Automation-True

* Now save the document
invoke Document "SaveAs" using z"Example-Document"
* Finalize all of the objects

invoke TextRange "Finalize" returning TextRange
invoke Document "Finalize" returning Document
invoke Documents "Finalize" returning Documents

* Close Microsoft Word and finalize the Word object
invoke Word "Quit"
invoke Word "Finalize" returning Word
stop run.

Figure 1 shows this program being animated using Net Express.

= Y - R Mg - sl

FH o pEe P g o ek #_

B G e el Fped [eb U Sk e
Tl & B e o« Tl w1 | .
Foad oty v Py | D B (3 @ 00

P o as v ph docnmesr cvemd sy Minre Feows CUSTIL andl ¥k rog el

ST, b T |

L

Tm o mja

mwm|z = 1 8]
P 1 ¥l T R] []

Figure 1 — Animating the Program using Net Express

Note. All of the examples in this paper have been tested using Microsoft Office XP. Most
of them should work with Microsoft Office 2000 and Microsoft Office 97, but there have
been some changes in the way the Office applications handle Automation over the
years, so you should test with the versions of Office you will be expecting your users to
use.

Basic Concepts

The previous example shows many of the concepts involved when using Automation. The
following section will go through this program in detail.

The ooctrl(+P) directive

The first thing you will see in the program is the line:

$set ooctrl (+P)
This causes the ooctrl(+P) directive to be used when the program is compiled. This must
be specified for all programs that use Automation. It ensures that the data type of each

parameter in an invoke statement is available to the run-time. This is required to ensure
that any conversion between data types is carried out correctly.

The CLASS-CONTROL Section

The next new feature in the program is shown in the lines:

class-control.
MicrosoftWord is class "SOLESWord.Application™.

This is used to identify the Automation Servers that will be used by the application (if you
were writing an OO program, this section would also identify the COBOL classes used by
the application, but we don’t need to worry about that in this program).

The Automation Server we are using is Word.Application. The name to use here will be
specified in the documentation supplied with the Automation Server you are using.

The use of $OLES in the name is used to notify the COBOL Run-Time System that the class
being used is an Automation Server (Automation Servers used to be called OLE
Automation Servers, hence the use of the word ‘OLE’). If this is not specified, the COBOL
Run-Time System will search for a COBOL class of the specified name, so OLE should
always precede the name of the Automation Server you are using.

MicrosoftWord is the name that will be used for the class in the COBOL program. The
use of this is seen later in the example.

The Object Reference

Before we can use any Automation Server, we will need one or more data items declared
as type object reference. For example:

01 Word object reference.

This variable is used to hold a reference to an object in the Automation Server. There are
two ways to get a reference to an object, either by using the “new"” method or by it being
returned by a method call to another object. Both types are seen in this example.

Creating a New Instance of an Automation Server

The first line in the Procedure Division is:
invoke MicrosoftWord "new" returning Word

This is used to create a new instance of Microsoft Word. This means that a new copy of
Word is started and a reference to it is returned in the variable Word.

The New command (or method) is the only time you will use the name declared in the
Class-Control section. From now on, you will use the reference returned in the variable
Word.

Sending Commands to Word

Once you have a reference to an instance of the Automation Server you want to use, you
can use that reference to send commands to it. The remainder of the program is a series
of commands to Word to create a new document and insert some text. Many of these
commands involve getting references to other objects. We will look at the techniques
used in this section in more detail later.

Finalize the Objects

Finally, once you have completed using an object, you should ensure that any memory
used by that object is released by using the Finalize method. In the example, this is done
for the Word object using the following line:

invoke Word "Finalize" returning Word

To avoid memory leaks, you should ensure that you finalize every object you use.

Summary of the Basic Structure of an Automation Client

This example demonstrates the basic concepts of using COBOL as an Automation Client.
The steps common to all programs are:

= Use the compiler directive ooctrl (+P).

= Define a Class-Control section that includes the Automation Servers you will be
accessing.

*= Declare at least one variable of type object reference to be used when sending
commands to the Automation Server.

= Use the '‘New’ method to create a new instance of the Automation Server. This returns
a reference to the object.

* Send commands to the Automation Server using the object reference returned by the
‘New’ method.

= Finalize all objects before terminating the application.

Object Models

To use most Automation Servers, including all of the Automation Servers in Microsoft
Office, you must understand their object models. An object model is a representation of
an application’s functionality in terms of objects. An application has many different
objects that are organized into various levels. These can be thought of as tiers in a
hierarchy. The topmost tier is usually occupied by an object that represents the main
application — the Application object. The second tier consists of a high-level
categorization of objects. Lower tiers include additional objects used to access
functionality that the second tier objects contain. Your application traverses the tiers to
find the object you want to use.

Figure 2 shows the parts of the Word object model that are used by the previous example.

Aplizakon 0 bkech |

E-m.rr.:nm;cmdm
Docimenl(o Hec)
Rage (T hiech |
reerlaTier (Me bod) |
Eold Mropei |
Erd (Froper k) |
]
wEDE (Praer k) |

Gl {me had) |

Figure 2 — The Parts of the Word Object Model used by this Example

The complete object model for Microsoft Word can be found at:
http://msdn.microsoft.com/library/default.asp ?url=/library/en-
us/off2000/html/wotocObjectModelApplication.asp)

Note. You may see some examples of using Microsoft Word via Automation that use a
class called “Word.Basic”. This is an earlier, simpler Automation model used by Word.
Although Word.Basic is still supported by Word today, it is recommended that you use
Word.Application for new applications.

You can see that different terms are used: Collections, Methods and Properties. These
terms are described in the following sections.

Methods and Properties

Objects have methods and properties. Methods are actions that an object can perform.
For example, in the previous program, we used the method InsertAfter to insert a piece
of text in to the document. Properties are functions that access information about the
state of something in the Automation server. For example, the property Visible on the
application object indicates whether Word is visible or not.

In Micro Focus COBOL, both methods and properties are accessed using the COBOL
invoke statement. To distinguish between them, to set a property, you prefix the property
name with “set” and to retrieve the value of a property, you prefix the name with “get”.

In the earlier example, you saw that the Visible property was set on the Application
object, using the following line:

invoke Word "setVisible"
using by value Automation-True

You might be wondering how you call a method if the method name begins with “set” or
“get”. To do this, you need to override the default behavior of the invoke verb. We will
see how this is done in a later section.

Note. All of the examples in this paper set the Visible property for the application to true
so that you can see what is happening. If you do not set the Visible property to true in
Microsoft Office applications, they will run hidden.

Collections

In many applications, objects are grouped into collections. In the previous example, we
retrieved the collection of documents currently loaded into Word using the following line:

invoke Word "getDocuments" returning Documents

Note that “Documents” is prefixed by the word “get”. This is because collections are
treated by most Automation Servers as properties of the object that contains the
collection, so we have to prefix the name with “get” as described in the previous section.

We create a new document by using the Add method on the collection of documents:

invoke Documents "Add" returning Document

To access a particular element in a collection, use the Item property and specify the
number of the element for which you want to obtain a reference. For example, to obtain
a reference to the second document in a collection, you would use:

invoke Documents "getItem”
using by value 2 returning Document

To determine the number of items in a collection, use the Count property. For example:
01 DocumentCount pic 9(4) comp-5.
invoke Documents "getCount” returning DocumentCount

By using the item and count properties, you can loop through a collection. For example,
to loop through the collection of documents, you could use:

01 DocumentCount pic 9(4) comp-5.
01 CurrentDocument pic 9(4) comp-5.

10

invoke Documents "getCount” returning DocumentCount
move 1 to CurrentDocument
perform until CurrentDocument > DocumentCount
invoke Documents “getItem”
using CurrentDocument
returning Document

*> Perform whatever functions are needed on the
*> document and then finalize the reference
*> to the document

invoke Document “Finalize” returning Document
add 1 to CurrentDocument
end-perform

Basic Data Types used with Automation Servers

When using Automation servers, you are limited in the types of data you can pass as
parameters to the Automation server. Because Automation servers can be written in any
programming language, you are restricted to data types that are common to all major
programming languages.

Numeric Data Types
All integer variables that will be used in calls to Automation servers should be declared as
a 2 or 4 byte COMP-5 item. For example:

* 2-byte integers
01l Parameterl pic xx comp-5.
01 Parameter? pic 9(4) comp-5.

* 4-byte integers
01 Parameter3 pic x(4) comp-5.
01 Parameter4 pic 9(9) comp-5.

If you want to use signed items, declare them as follows:

01 Parameter3 pic s9(4) comp-5.
01 Parameterd pic s9(9) comp-5.

If the Automation Server is expecting a Boolean parameter, it should be declared as a one
byte COMP-5 item as follows:

01 Boolean pic x comp-5.

A value of 0 is used to indicate False. A value of 1 is used to indicate True.

Non-integer numeric data should be passed as either COMP-1 or COMP-2.

Strings

Strings require some care. In most cases, strings are handled internally by COM using a
type called a BSTR. This is a null-terminated string that is prefixed by the number of
characters in the string. There is no COBOL data type that corresponds to this, so the
COBOL Run-Time System handles the conversion between BSTR and PIC X fields

11

It is recommended that any string that is going to be passed to an Automation server be
zero-terminated. This means that the last character in the string must be a null character
(X"00). To do this in COBOL, either append a null character to the string or use the 'z’
prefix. For example:

01 Example-Text pic x(43) wvalue
z"This is an example document created using ".

invoke TextRange "InsertAfter" using
z"Micro Focus COBOL and Microsoft Word."

It is also important to remember that any string returned from an Automation server
should be zero-terminated. This means that you should normally check for a null
character and remove it before using the string in the COBOL program.

The following code segment shows how a string returned from an Automation Server can
be converted into a standard COBOL space-terminated string. By moving low-values to
the string before invoking Word to get the name of the application, we ensure that every
character after the name will be null. This also ensures that no previous data will be left in
the string since only the part of the string that is affected will be updated.

01 AppName pic x(70).

move low-values to AppName
invoke Word "getName" returning AppName
inspect AppName replacing all X"00" by space

We will take a more detailed look at data types and how you choose which one to use
later in this paper

Example Using Excel

To show a more complex example of using an object model and different data types, the
following example uses Microsoft Excel. This program reads a COBOL file containing
fictional target and actual sales information for a company that does business in different
European countries. An Excel worksheet is updated with this information and a chart is
created to display the information graphically. This chart is then printed. You will see that
the structure of this application is very similar to the previous one.

$set ooctrl (+P)
file-control.
select Sales-File assign "SALESDAT.DAT"
organization indexed
access sequential
record key Country.

class-control.
MicrosoftExcel is class "SOLESExcel.Application".

data division.

file section.
fd Sales-File.

01 Sales-record.

03 Country pic x(20).
03 Sales-Target pic 9(8).
03 Sales-Actual pic 9(8).

12

working-storage section.

01 Excel object reference.
01 WorkBooks object reference.
01 WorkBook object reference.
01 WorkSheets object reference.
01 WorkSheet object reference.
01 Cell object reference.
01 CellRange object reference.
01 Charts object reference.
01 Chart object reference.
01 ColumnIndex pic xx comp-5.

01 FloatValue comp-1.

01l EndOfFile pic 9 value 0.

78 Automation-True value 1.

78 Automation-False value 0.

78 x13DColumn value -4100.

procedure division.
Create a new instance of Microsoft Excel
invoke MicrosoftExcel "new" returning Excel
Make Excel visible
invoke Excel "setVisible"
using by value Automation-True
Get the collection of WorkBooks
invoke Excel "getWorkBooks" returning WorkBooks
Add a new WorkBook to the collection
invoke WorkBooks "Add" returning WorkBook
invoke WorkBook "getWorkSheets"
returning WorkSheets
invoke WorkSheets "getItem"
using by value 1
returning WorkSheet
Set the first column to the titles for the rows
invoke WorkSheet "getCells" using by value 2
by value 1
returning Cell
invoke Cell "setValue" using z"Target"
invoke Cell "Finalize" returning Cell
invoke WorkSheet "getCells" using by value 3
by value 1
returning Cell
invoke Cell "setValue" using z"Actual"
invoke Cell "Finalize" returning Cell
Now, read the sales file, filling in the columns in
the worksheet
open input Sales-File
move 2 to ColumnIndex
perform until EndOfFile = 1
read Sales-File
at end move 1 to EndOfFile
end-read
if EndOfFile = 0
invoke Excel "getCells"
using by value 1

13

by value ColumnIndex
returning Cell
invoke Cell "setValue" using Country
invoke Cell "finalize" returning Cell
invoke Excel "getCells"
using by value 2
by value ColumnIndex
returning Cell
move Sales-Target to FloatValue
invoke Cell "setValue"
using by value FloatValue
invoke Cell "finalize" returning Cell
invoke Excel "getCells"
using by value 3
by value ColumnIndex
returning Cell
move Sales-Actual to FloatValue
invoke Cell "setValue"
using by value FloatValue
invoke Cell "finalize" returning Cell
add 1 to ColumnIndex
end-1if
end-perform
* Select the first 3 rows of cells
invoke Excel "getRows" using z"1:3"
returning CellRange
invoke CellRange "Select"
* Get the collection of charts
invoke Excel "getCharts" returning Charts
Add a new chart to the collection. This will create

* a chart using the 3 rows we selected above
invoke Charts "Add" returning Chart
* Set the chart type to be 3D-Column

invoke Chart "setType" using by value x13DColumn
* Print the chart
invoke Chart "PrintOut"

* Close the WorkBook, discarding the contents
invoke WorkBook "Close" using by value 0
* Finalize all objects

invoke Chart "finalize" returning Chart

invoke Charts "finalize" returning Charts

invoke CellRange "finalize" returning CellRange

invoke WorkSheet "finalize" returning WorkSheet

invoke WorkSheets "finalize" returning WorkSheets

invoke WorkBook "finalize" returning WorkBook

invoke WorkBooks "finalize" returning WorkBooks
* Exit Excel

invoke Excel "Quit"

invoke Excel "Finalize" returning Excel

stop run.

Figure 3 shows the Excel display just before the chart is printed:

14

Figure 3 — The chart that will be printed by the example

15

Where Do I Find More Information on
Automation Servers?

Hopefully, by now, you have seen that using Automation servers from COBOL is not
difficult. However, how do you find out what functions are provided by the Automation
server and the parameters they require? The answer to this question is not so easy for
COBOL programmers since most documentation for Automation servers is written with
Visual Basic programmers in mind. This section focuses on how to find the information
you need and how to interpret it so that you can call the server from COBOL.

Documentation

For Microsoft applications, the best source of information is the Microsoft Developer

Network (MSDN) Library CD available from Microsoft Corporation. This information can
also be found on Microsoft’s web site at http:/msdn.microsoft.com/library. This provides
information on the object models used in Microsoft Office and other Microsoft products.

For Microsoft Office, look in the Microsoft Office documentation for the Visual Basic
Reference guide for the application you are interested in. All of the Microsoft Office
applications use Visual Basic for Applications as their macro language. The language
reference will list all of the objects, methods and properties for the application.

Translating from Visual Basic to COBOL

Once you have found a description of the method or property you want to use, how do
you determine how to use it from COBOL? In order to do this, we need to look at how
Automation servers are used from Visual Basic and then take a look at the COBOL
equivalent. In the following sections, any reference to Visual Basic also includes Visual
Basic for Applications.

Basic method calls

From Visual Basic, you would call a method using the following syntax if there was no
return value:

Call object.method (parameters)

object.method (parameters)

From COBOL, you would use:

Invoke object “method” using parameters

If the method has a return value, you would use the following from Visual Basic:

RetVal = object.method (parameters)

From COBOL, you would use:

Invoke object “method” using parameters
returning RetVal

Pass numeric parameters using BY VALUE. Use BY REFERENCE to pass strings as
parameters. For example:

16

invoke WorkBook "Close" using by value 0
invoke TextRange "InsertAfter"
using by reference Example-Text

Note. BY REFERENCE is the default, so if neither BY VALUE or BY REFERENCE is specified,
then BY REFERENCE is assumed.

So, the following two lines behave identically

invoke TextRange "InsertAfter"
using by reference Example-Text

invoke TextRange "InsertAfter"
using Example-Text

Properties

In Visual Basic, you can move values to a property of an object and you can move the
value of a property to a variable. For example:

object.Property = 5

avalue = object.Property
In COBOL, you make explicit method calls, prefixing the property name with “set” or
"get”, for example:

invoke object “setProperty” using by value 5
invoke object “getProperty” returning avalue

Method Chaining

In Visual Basic, if a method returns an object, you can chain that object by directly calling
another method on it. For instance:

MyRange.Find.Execute

The “Find” property method returns another object, and the method “Execute” is then
called on that object, after which the temporary “Find” object is automatically released.
This is equivalent to:

Dim findObject As Object

findObject = MyRange.Find

findObject.Execute

Set findObject = Nothing

In COBOL, this must be done explicitly, as follows:
01 findObject object reference.
invoke MyRange “getFind” returning findObject

invoke findObject “Execute”
invoke findObject “finalize” returning findObject

In each case, both the Visual Basic Run-Time System and the COBOL Run-Time System are
making the same number of calls to the Automation server.

Default Methods and Properties

For a particular collection of objects, one method or property may be declared as the
“default”. Visual Basic may allow the programmer to assume the default method when
chaining methods together. For example, in a Visual Basic program that uses Microsoft
Word you might see:

17

Documents (1) .Activate

This uses the default property, Item, for the Documents collection, which takes an integer
parameter and returns the specific Document object from the collection. Once again, this
object is chained by calling another method on it. If this was expanded out to show the
code that is being executed, you would see:

Dim Document as Object

Document = Documents.Item(1l)
Document .Activate
Set Document To Nothing

In COBOL, all of the methods assumed by Visual Basic should be invoked:

01 Document object reference.

invoke Documents “getItem” using by value 1
returning Document

invoke Document “Activate”

invoke Document “finalize” returning Document

Getting Information from Type Libraries

One of the most useful sources of information about the methods supported by an
Automation server and the parameters required for those methods is a type library. A
type library is a binary file that contains specifications of the objects, methods and
properties supported by an Automation server. Most Automation servers will provide a
type library, either as a separate file (usually with a file extension of .TLB or .OLB) or built-
in to the Automation server executable.

All of the Microsoft Office applications provide type libraries. They are installed in the
same directory as the Microsoft Office executables. For Office XP, they have the following

names:
MSACC.OLB Type library for Microsoft Access
MSOUTL.OLB Type library for Microsoft Outlook
MSPPT.OLB Type library for Microsoft PowerPoint
MSWORD.OLB Type library for Microsoft Word
XL5EN32.0LB Type library for Microsoft Excel

Micro Focus Net Express 3.1 includes a useful utility to read a type library and generate a
COBOL copy file containing equivalent COBOL definitions. This utility is called the Type
Library Assistant.

Running the Type Library Assistant

The Type Library Assistant can be found on the Tools menu in Net Express. When you run
it, you will see a window similar to that shown in Figure 4.

18

.l_' Twpoe Liir sy Bssichamt :.- j_l!j
Regisiened type hranies:
[ve T1LEID [o] | view.

Microsoll Diect? Trarafom 1 07y 1.0 {E4314010-S5FEA104 . BRI
Micrascit Dizk. Quots 1.0 10 [F9SRESACECES-iicld.
Micresci DT DD Typelib 2 10 BOEI4TEOCE1140.-.-—i LT
Microseit DT DD Fom 0 HOSREODO-9EFT 1100
Microsoh DTC Framescrk 10 (EY3FDDE-08S1-1100. . . il i
Microscll DTS Custom Tasks Obiec.. 1.0 (GFDIBFFCRE-1IDZ... _
Microach DTSDateFunp Sorptng . 20 [10010200-7406-1100-.
Microaoh DT5Packags Object b 20 (10010001 €B1C-11CF-

T4 {DO020E1 300000000
Microzoll Excel 5.0 Obect Libesry 1.0 (0002061 30000-0000.C.
Miciosoh Evchangs Evert Serdce . 1.0 {2FE2CRA3CRA-1100-..
Miciosoll Fiesfid Conbal B O[SFS 1.0 {BSTZ2054 IEBC-44C0-.
Miciogol FlesGid Conl B O[SF3 10 {SESETBA0S31E-11F-..
Miciogoll Forms 20 Object Lbeary 20 {4C20EEZ1-3542-11CF-
Micogoll Forns 20 Obect Lbery 20 {0D4SEE1EGF1MA. =
1] |

=

Figure 4 — The Type Library Assistant

This window shows all of the type libraries that are registered on your computer — there
may be a lot of them. Type libraries are normally registered when the corresponding
applications are installed. Microsoft Office is no exception. You can see that the type
library for Microsoft Excel 10.0 has been selected.

If you want to use a type library that has not been registered, you can select Browse to
search for the type library you want to use. If you press View, you will see the window
shown in figure 5.

Ty Libeary Actishant T++ j_l!j
Conterts of Ippe g
S COBOL
& |Fdeilata:
fl=
+ - Fuitomahon Inledaces S
+ Emumerstiors IE:'l.Aumﬂi:ﬂ'nEm:ﬂ:n;.-
¥ Shuchaes f
Modules r Audd [ko propcl
F- Collase: i CLIM Jncrraitomation] sppof ——
+- Typedsiz |
v riors | T Generate fnterface Claies
1
{ IT Geneiss [l ntefaces
i
Generaln

Figure 5 — Generating the copy file

Don’t worry about the contents of the box labelled Contents of type library. This just
allows you to limit the amount of information produced in the copy file. In most cases,
you will just select the top level of the tree. Clicking Generate will generate the copy file
you have requested.

19

Determining the Parameters to Use for a Method

Although the file generated is a valid COBOL copy file, it is unlikely that you will use every
definition included in it unmodified. However, it is an excellent source of information for
helping to determine what parameters to use when calling a particular function and
which parameters are needed. For example, consider the Excel method SaveAs which can
be used on a Worksheet. If we look in the Office XP documentation for Excel, we find the
following description:

Saves changes to the chart or worksheet in a different file.

expression.SaveAs (FileName, FileFormat, Password,
WriteResPassword, ReadOnlyRecommended, CreateBackup, AddToMru,
TextCodepage, TextVisuallayout, Local)

expression Required. An expression that returns one of the above objects.

Filename Optional Variant. A string that indicates the name of the file to be saved. You
can include a full path; if you don't, Microsoft Excel saves the file in the current folder.

FileFormat Optional Variant. The file format to use when you save the file. For a list of
valid choices, see the FileFormat property. For an existing file, the default format is the
last file format specified; for a new file, the default is the format of the version of Excel
being used.

Password Optional Variant. A case-sensitive string (no more than 15 characters) that
indicates the protection password to be given to the file.

WriteResPassword Optional Variant. A string that indicates the write-reservation
password for this file. If a file is saved with the password and the password isn't supplied
when the file is opened, the file is opened as read-only.

ReadOnlyRecommended Optional Variant. True to display a message when the file is
opened, recommending that the file be opened as read-only.

CreateBackup Optional Variant. True to create a backup file.

AddToMru Optional Variant. True to add this workbook to the list of recently used files.
The default value is False.

TextCodePage Optional Variant. Not used in U.S. English Microsoft Excel.
TextVisualLayout Optional Variant. Not used in U.S. English Microsoft Excel.

Local Optional Variant. True saves files against the language of Microsoft Excel (including
control panel settings). False (default) saves files against the language of Visual Basic for
Applications (VBA) (which is typically US English unless the VBA project where
Workbooks.Open is run from is an old internationalized XL5/95 VBA project).

How do you convert this into the appropriate invoke statement from COBOL? The first
thing to do is look at the definition for SaveAs that was produced in the copy file:

Method: "SaveAs".

01l Filename BSTR.
01l FileFormat VARIANT.
01 Password VARIANT.

20

01 WriteResPassword VARIANT.

01 ReadOnlyRecommended VARIANT.

01 CreateBackup VARIANT.

01 AddToMru VARIANT.

01 TextCodepage VARIANT.

01 TextVisualLayout VARIANT.

01 Local VARIANT.

invoke using
by value Filename *> [IN]
by value FileFormat *> [IN][OPTIONAL]
by value Password *> [IN][OPTIONAL]
by value WriteResPassword *> [IN][OPTIONAL]
by value ReadOnlyRecommended *> [IN]J[OPTIONAL]
by value CreateBackup *> [IN][OPTIONAL]
by value AddToMru *> [IN][OPTIONAL]
by value TextCodepage *> [IN][OPTIONAL]
by value TextVisualLayout *> [IN][OPTIONAL]
by value Local *> [IN][OPTIONAL]

The first thing to notice is the comment “[OPTIONAL]"” next to all of the parameters
except the first one (Filename). This means that every parameter except the first one is
optional and does not need to be specified. However, if you wish to specify one of the
optional parameters, you must specify all previous parameters. For example, if you want
to specify Password, you must also specify Filename and FileFormat in the list of
parameters you pass to the method.

Next, notice that all of the parameters are specified as “[IN]”. This means that they are all
input parameters. If the method returns a value, you would see a returning clause on the
invoke statement in the copy file.

Now we have to determine what types to use for the parameters. Any parameter
specified as BSTR is a string. In COBOL, this means that a variable defined as pic x(n) or a
string constant is used.

Important Note. Even though the parameters in the definition are specified as BY VALUE,
you ALWAYS pass strings to Automation servers BY REFERENCE. Strings cannot be
passed BY VALUE. The COBOL Run-Time System will handle the string correctly when
passing it to the Automation server.

The rest of the parameters have a type of VARIANT. A variant is a COM data type that
can contain different types. In COBOL terminology, it is similar in concept to a REDEFINES
statement where a variable can be redefined as a different type. For example:

01 VarA pic x(4).
01 VarB redefines VarA pic 9(9) comp-5.

VarA and VarB refer to the same area of memory, but that piece of memory can be used
as a string or a 4-byte value depending on whether it is accessed using the name VarA or
VarB. A variant type is similar, but it uses a type indicator to determine the type of the
data stored in the variant.

Net Express includes a COBOL class to create and manipulate variants (look at the
definition of the class OLEVariant in the Net Express documentation). However, you
should very rarely need to use this class since the COBOL Run-Time System handles the
conversion of COBOL data types to variants automatically when the method is called and
converts any variant returned into the appropriate COBOL data type. So, if a variant is

21

specified, you should look at the description of the function to see the type of parameter
that is being expected.

For example, for the FileFormat parameter, it refers to the FileFormat property. If we
look up FileFormat in the Excel documentation, it references a type of xIFileFormat.
Looking up xIFileFormat in the copy file generated by the Type Library Assistant, we find
the definition:

01 X1FileFormat pic s9(9) comp-5 typedef.
88 x1AddIn VALUE 18.
88 x1CSV VALUE 6.
88 x1CSVMac VALUE 22.
88 x1CSVMSDOS VALUE 24.
88 x1CSVWindows VALUE 23.
88 x1DBEF2 VALUE 7.
88 x1DBF3 VALUE 8.
88 x1DBF4 VALUE 11.
88 x1DIF VALUE 9.
88 x1Excel?2 VALUE 16.
88 x1lExcel2FarEast VALUE 27.
88 x1Excel3 VALUE 29.
88 x1Exceld VALUE 33.
88 x1Excel5 VALUE 39.
88 xl1Excel7 VALUE 39.
88 x1Excel9795 VALUE 43.
88 x1ExceldWorkbook VALUE 35.

This tells us that the parameter to use for the FileFormat is a 4-byte signed integer (pic
s9(9) comp-5) and it gives us the values of the constants used to specify different file
formats.

If we look at the description of the Password parameter, we see that it says that it is a
string. Therefore, we use a null-terminated pic x(n) field or string constant.

We can determine the types of the remaining parameters in a similar fashion.

So, this means that the following are all valid invokes of SaveAs:

01 Worksheet object reference.
01 X1FileFormat pic s9(9) comp-5.
88 x1Excel9795 value 43.

78 x1Excel9795c value 43.

invoke WorkSheet "SaveAs" using FileName

invoke WorkSheet “SaveAs” using
by reference z”C:\Temp\data.xls”
by value x1Excel9795c

set x1Excel9795 to true

invoke WorkSheet “SaveAs” using
by reference z”C:\Temp\data.xls”
by value x1FileFormat
by reference z”Password”

It might take a bit of investigation to determine exactly the right parameters for a
method call, but by using a combination of the documentation for the Automation server

22

and the copy file produced by the Type Library Assistant, you can find the information you
need.

As another example, the following line was used in the first Excel example in this paper:

invoke Chart "setType" using by value x13DColumn
where x13DColumn is defined as:

78 x13DColumn value -4100.

How did we determine the value for this constant? If we look in the Excel documentation
for chart types, we will find a long list of different types. Here is just a subset, showing the
types of column chart available:

Description Constant

Clustered Column xIColumnClustered

3D Clustered Column

xI13DColumnClustered

Stacked Column

xlColumnStacked

3D Stacked Column

xI13DColumnStacked

100% Stacked Column

xIColumnStacked 100

3D 100% Stacked Column

xI3DColumnStacked100

3D Column xI3DColumn

You will notice that for each type, there is a named constant. If we search the copy file
generated by the Type Library Assistant for the value xI3DColumn, we will find the
following definition:

01 X1lChartType pic s9(9) comp-5 typedef.

88 x1lColumnClustered VALUE 51.
88 x1ColumnStacked VALUE 52.
88 x1ColumnStackedl00 VALUE 53.
88 x13DColumnClustered VALUE 54.
88 x13DColumnStacked VALUE 55.
88 x13DColumnStackedl00 VALUE 56.
88 x1BarClustered VALUE 57.
88 x1BarStacked VALUE 58.
88 x1BarStackedl00 VALUE 59.
88 x13DBarClustered VALUE 60.
88 x13DBarStacked VALUE 61.
88 x13DBarStackedl00 VALUE 62.
88 xlLineStacked VALUE 63.
88 x1LineStackedl00 VALUE 64.
88 xlLineMarkers VALUE 65.
88 xlLineMarkersStacked VALUE 66.
88 xlLineMarkersStackedl00 VALUE 67.
88 x1PieOfPie VALUE 68.
88 x1PieExploded VALUE 69.
88 x13DPieExploded VALUE 70.

23

88 x1BarOfPie VALUE 71.

88 x1XYScatterSmooth VALUE 72.

88 x1XYScatterSmoothNoMarkers VALUE 73.

88 x1XYScatterLines VALUE 74.

88 x1XYScatterLinesNoMarkers VALUE 75.

88 x1AreaStacked VALUE 76.

88 x1AreaStackedl00 VALUE 77.

88 x13DAreaStacked VALUE 78.

88 x13DAreaStackedl00 VALUE 79.

88 xl1lDoughnutExploded VALUE 80.

88 x1RadarMarkers VALUE 81.

88 x1RadarFilled VALUE 82.

88 x1lSurface VALUE 83.

88 x1SurfaceWireframe VALUE 84.

88 xlSurfaceTopView VALUE 85.

88 xlSurfaceTopViewWireframe VALUE 86.

88 x1Bubble VALUE 15.

88 x1Bubble3DEffect VALUE 87.

88 x1StockHLC VALUE 88.

88 x1StockOHLC VALUE 89.

88 x1StockVHLC VALUE 90.

88 x1StockVOHLC VALUE 91.

88 x1CylinderColClustered VALUE 92.

88 x1CylinderColStacked VALUE 93.

88 x1CylinderColStackedl00 VALUE 94.

88 x1lCylinderBarClustered VALUE 95.

88 x1lCylinderBarStacked VALUE 96.

88 x1lCylinderBarStackedl00 VALUE 97.

88 x1CylinderCol VALUE 98.

88 x1ConeColClustered VALUE 99.

88 x1ConeColStacked VALUE 100.
88 x1ConeColStackedl00 VALUE 101.
88 x1ConeBarClustered VALUE 102.
88 x1ConeBarStacked VALUE 103.
88 x1ConeBarStackedl00 VALUE 104.
88 x1ConeCol VALUE 105.
88 x1PyramidColClustered VALUE 106.
88 x1lPyramidColStacked VALUE 107.
88 xl1lPyramidColStackedl00 VALUE 108.
88 xlPyramidBarClustered VALUE 109.
88 x1PyramidBarStacked VALUE 110.
88 x1PyramidBarStackedl00 VALUE 111.
88 x1PyramidCol VALUE 112.
88 x13DColumn VALUE -4100.
88 x1Line VALUE 4.

88 x13DLine VALUE -4101.
88 x13DPie VALUE -4102.
88 x1Pie VALUE 5.

88 x1XYScatter VALUE -4169.
88 x13DArea VALUE -40098.
88 x1Area VALUE 1.

88 xl1lDoughnut VALUE -4120.
88 x1Radar VALUE -4151.

You will see that xI3DColumn is defined with a value of -4100. You can use this entire
definition in your program and use the following code to set the chart type:

01 ChartType x1ChartType.

24

set x13DColumn of ChartType to true
invoke Chart "setType" using by value ChartType

Alternatively, you could use the approach taken in the earlier program and define a
constant (a level 78 item) of the appropriate value and use that constant directly. Either
approach will work.

Using Methods with a Get or Set Prefix

Earlier, in the discussion on methods and properties, we said that you prefixed the name
of a property with get to retrieve the value of a property or with set to set the value of a
property. However, what happens if the Automation server provides a method name that
begins with set or get? For example, Microsoft Excel provides a method
GetSaveAsFileName that prompts the user for the filename to be used to save the file.
Since this method begins with Get, the COBOL Run-Time System will try to retrieve the
value of a property called SaveAsFileName and will fail.

To overcome this, we need to use a method in a COBOL support class, olesup, to override
the default behavior. This method is called setDispatchType. The following program
shows this in use:

Sset ooctrl (+P)

class-control.
MicrosoftExcel is class "$SOLESExcel.Application"
AutomationSupport is class "olesup".

data division.

working-storage section.

01 Excel object reference.
01 WorkBooks object reference.
01 WorkBook object reference.
01 WorkSheets object reference.
01 WorkSheet object reference.
01 Cell object reference.
01 CellRange object reference.
78 Automation-True value 1.
78 Automation-False value O.
01 FileFilter pic x(46) value
z"Excel Files (*.xls),*.xls,All Files (*.*),*.*",
01 FileName pic x(100).
procedure division.
* Create a new instance of Microsoft Excel
invoke MicrosoftExcel "new" returning Excel
* Make Excel visible
invoke Excel "setVisible"
using by value Automation-True
* Get the collection of WorkBooks
invoke Excel "getWorkBooks" returning WorkBooks
* Add a new WorkBook to the collection

invoke WorkBooks "Add" returning WorkBook
invoke WorkBook "getWorkSheets"
returning WorkSheets

25

invoke WorkSheets "getItem" using by value 1
returning WorkSheet

* Set the first cell to "Example Sheet"
invoke WorkSheet "getCells" using by value 1
by value 1

returning Cell
invoke Cell "setValue" using z"Example Sheet"
invoke Cell "Finalize" returning Cell
Override the default behavior of a method prefixed
by "get"
invoke AutomationSupport "setDispatchType"
using by value 0
move low-values to FileName
* Get the filename to be used to save the file
invoke Excel "GetSaveAsFileName"
using by reference z"Sample"
by reference FileFilter
returning FileName

* Use the name we just retrieved to save the file
invoke WorkSheet "SaveAs" using FileName
* Close the WorkBook, discarding the contents
invoke WorkBook "Close" using by value 0
* Finalize all objects

invoke WorkSheet "finalize" returning WorkSheet
invoke WorkSheets "finalize" returning WorkSheets
invoke WorkBook "finalize" returning WorkBook
invoke WorkBooks "finalize" returning WorkBooks

* Exit Excel
invoke Excel "Quit"
invoke Excel "Finalize" returning Excel
stop run.

A new class has been added to the Class Control section, as follows:

AutomationSupport is class "olesup".

This class is a COBOL class provided with Net Express. It provides a number of methods
that support the use of COM and Automation from COBOL. Note that this class is a
standard COBOL class and so the name is not prefixed with “OLE”. More information
on this class can be found in the Net Express documentation. The method we need in this
program is setDispatchType. We use this just before the invoke of
GetSaveAsFileName as follows:

invoke AutomationSupport "setDispatchType"
using by value O

This overrides the default behavior of the Get prefix for the next invoke of an
Automation method. Therefore, GetSaveAsFileName will be handled as a method call,
rather than a property get.

The same call would be used before a method that begins with the prefix Set.

Error Handling

You will notice that there has been no error handling in the examples shown in this paper
so far. If an error occurs in any of the calls to the Automation servers, the COBOL Run-
Time System will simply display an error on the screen and give you an opportunity to
stop the program. Obviously, for real-life applications, we need to ensure that errors that

26

occur when using the Automation server are handled correctly. To do this, we need to
install an exception handler to handle the error appropriately.

The following program installs an exception handler and then attempts to start up an
Automation server that does not exist. Rather than stopping with a run time error, the
error is trapped by the exception handler.

Sset ooctrl (+P)

class-control.
AutomationServer is class "SOLES$Unknown"
EntryPointCallback is class "entrycll"
ExceptionManager is class "exptnmgr"
AutomationExceptionManager is class "oleexpt".

working-storage section.

01 AutomationObject object reference.

01 NullReference object reference value null.
01 HandlerObject object reference.

01 ErrorOccurred pic 9 value 0.

An empty local-storage section is needed to ensure
that the program is re-entrant.
local-storage section.

*

* Parameters for Exception Callback
linkage section.

01 ErrorNumber pic x(4) comp-5.
01 ErrorObject object reference.
01l ErrorText object reference.

procedure division.
Register an exception handler
invoke EntryPointCallback "new"
using z"AutomationException"
returning HandlerObject
invoke ExceptionManager "register"
using AutomationExceptionManager
HandlerObject
* Attempt to startup the Automation Server
invoke AutomationServer "new"
returning AutomationObject

*

if ErrorOccurred = 1
display "Unable to load the Automation Server"
stop run

end-1if

invoke AutomationObject "finalize"
returning AutomationObject
stop run.

Callback section.
entry "AutomationException"
using by reference ErrorObject
by reference ErrorNumber
by reference ErrorText.
move 1 to ErrorOccurred

27

display "Error number: " ErrorNumber
invoke ErrorText "display"
exit program returning NullReference.

The first thing you will notice is that three extra classes are defined in the class control
section.

EntryPointCallback is class "entrycll"
ExceptionManager is class "exptnmgr"
AutomationExceptionManager is class "oleexpt".

These classes are COBOL classes that are used to handle exceptions. For more information
on these classes, refer to the Net Express documentation.

Next we define an empty local storage section and a linkage section. The presence of a
local storage section indicates to the COBOL Run-Time System that the program is
allowed to be recursive, that is, calls can be made back to itself (by default, COBOL is not
recursive). The linkage section defines the three parameters that will be passed to the
exception handling routine when an exception occurs.

The first thing you see in the procedure division is the two lines of code that register the
COBOL entry point, AutomationException, which will handle any exceptions:

invoke EntryPointCallback "new"
using z"AutomationException"
returning HandlerObject
invoke ExceptionManager "register"
using AutomationExceptionManager
HandlerObject

This means that, from that point on in the program, if any error occurs in an Automation
server, the entry point AutomationException will be called. This entry point will be
passed three parameters

¢ A number identifying the error that occurred
e The object that caused the error
* Areference to an ordered collection that contains a description of the error. You can

use methods on the ordered collection object to get the different lines of the
description. In this example, we simply invoke the method to display the text.

Note. The “Distributed Computing” book in the Net Express 3.1 documentation contains
errors in its description of exception handlers. It only mentions the first two parameters.
However, a third parameter containing the error text is always passed through to the
exception handler routine.

In this program, we simply set a flag (ErrorOccured) to indicate that an error occurred.
When the exception handler finishes, control is returned to the statement immediately
after the statement that caused the problem. In this case, it is the line:

if ErrorOccurred = 1

that tests the flag and stops execution if an error occurred.

In the example above, we mentioned that the error text is returned as an ordered
collection containing multiple lines. In most cases, you will only want the first line. The

28

29

More on Data Types

Using Arrays

Some functions exposed by Automation Servers require that you pass an array to the
function. For example, if you want to populate a range of cells in an Excel spreadsheet in
one single Invoke, you would need to use an array. These arrays are called SafeArrays.

Net Express includes an Object COBOL class that provides you with the functionality to:
= Create a Safe Array

= Add data to a Safe Array

»= Retrieve data from a Safe Array

= Destroy a Safe Array

The following example shows how Safe Arrays can be used in Excel to populate ranges of
cells:

Sset ooctrl (+P)

class-control.
MicrosoftExcel is class "$SOLESExcel.Application"
OleSafeArray is class "olesafea”.

working-storage section.
copy "olesafea.cpy".

01 Excel object reference.
01 WorkBooks object reference.
01 WorkBook object reference.
01 WorkSheets object reference.
01 WorkSheet object reference.
01 CellRange object reference.
01 Charts object reference.
01 Chart object reference.
01 LoopCount pic xx comp-5.
01 saBound SAFEARRAYBOUND.
01 bstrSafeArray object reference.
01 intSafeArray object reference.
01 saIndex pic x(4) comp-5.
01 hResult pic x(4) comp-5.
01 ivalue pic x(2) comp-5.
01 dPointer pointer.

78 Automation-True value 1.
78 Automation-False value 0.
78 x13DBar value -4099.

procedure division.

* Create a new instance of Microsoft Excel
invoke MicrosoftExcel "new" returning Excel
* Make Excel visible

30

invoke Excel "setVisible"
using by value Automation-True
Get the collection of WorkBooks
invoke Excel "getWorkBooks" returning WorkBooks
Add a new WorkBook to the collection
invoke WorkBooks "Add" returning WorkBook
Get a reference to the first WorkSheet
invoke WorkBook "getWorkSheets"
returning WorkSheets
invoke WorkSheets "getItem" using by value 1
returning WorkSheet
Select the range of cells to populate
invoke WorkSheet "getRange" using z"Al:C1l"
returning CellRange
Create a 3-element safearray containing strings
move 3 to cElements of saBound
move 0 to 11Bound of saBound
invoke OleSafeArray "new"
using by value VT-BSTR size 2
by value 1 size 4
by reference saBound
returning bstrSafeArray
move 0 to salndex
invoke bstrSafeArray "putString"
using by reference salndex
by value 4 size 4
by reference "Dogs"
returning hResult
move 1 to salndex
invoke bstrSafeArray "putString"
using by reference salndex
by value 4 size 4
by reference "Cats"
returning hResult
move 2 to salndex
invoke bstrSafeArray "putString"
using by reference salndex
by value 6 size 4
by reference "Horses"
returning hResult
Populate the range of cells from the safearray
invoke CellRange "setValue"
using by value bstrSafeArray
invoke bstrSafeArray "Finalize"
returning bstrSafeArray
invoke CellRange "Finalize" returning CellRange
Get a new range to populate
invoke WorkSheet "getRange"
using z"A2:C2"
returning CellRange
Create a 3-element safearray containing 2-byte
integers
move 3 to cElements of saBound
move 0 to 11Bound of saBound
invoke OleSafeArray "new"
using by value VT-I2 size 2
by value 1 size 4
by reference saBound

31

returning intSafeArray
set dPointer to address of iValue
move 34 to iValue
move 0 to salndex
invoke intSafeArray "putElement"
using by reference salndex
by value dPointer
returning hResult
move 53 to iValue
move 1 to salndex
invoke intSafeArray "putElement"
using by reference salndex
by value dPointer
returning hResult
move 12 to iValue
move 2 to salndex
invoke intSafeArray "putElement"
using by reference salndex
by value dPointer
returning hResult
* Populate the range from the safearray
invoke CellRange "setValue"
using by value intSafeArray
invoke intSafeArray "Finalize"
returning intSafeArray
invoke CellRange "Finalize" returning CellRange
* Get range to select and select it
invoke WorkSheet "getRange"
using z"Al:C2"
returning CellRange
invoke CellRange "Select"

* Get the collection of charts
invoke Excel "getCharts" returning Charts
* Add a new chart to the collection
invoke Charts "Add" returning Chart
* Set the chart type to be 3D-Bar
invoke Chart "setType" using by value x13DBar
* Remove the legend

invoke Chart "setHasLegend"
using by value Automation-False

* Print the chart
invoke Chart "PrintOut"
* Close the WorkBook, discarding the contents

invoke WorkBook "Close"
using by value Automation-False
* Finalize all objects
invoke Chart "finalize" returning Chart
invoke Charts "finalize" returning Charts
invoke CellRange "finalize" returning CellRange
invoke WorkSheet "finalize" returning WorkSheet
invoke WorkSheets "finalize" returning WorkSheets
invoke WorkBook "finalize" returning WorkBook
invoke WorkBooks "finalize" returning WorkBooks
* Exit Excel
invoke Excel "Quit"
invoke Excel "Finalize" returning Excel
stop run.

The following sections describe what you must do to use Safe Arrays:

32

Use the Class OleSafeArray

Your class control section should include a definition of the OleSafeArray class as follows:

OleSafeArray is class "olesafea"

This class is fully documented in the online help and in the “Distributed Computing” book
supplied with Net Express. You should refer to the “Distributed Computing” book for
more information on using safe arrays.

Include OleSafeA.cpy

Add the following line to your working storage section:

copy "olesafea.cpy".

This file includes all of the type definitions and constants needed when using Safe Arrays.
Define a Safe Array of the Appropriate Type and Size

When you need to use a Safe Array, you create a new array by sending the “New” method
to the class OleSafeArray. The following information needs to be provided as parameters
to the call:

* The type of the element stored in the array. This is specified by using the constants
defined in OleSafeA.cpy that have the prefix VT-. In the example above, two arrays
are created. One contains strings (VT-BSTR) and the other array contains 2-byte
integers (VT-12).

* The number of dimensions in the array.

* The lower and upper bounds for each dimension. These are specified in a
SAFEARRAYBOUND structure.

The New method returns an object reference to the array.
Populate the Safe Array

Methods are provided to put data into the elements in a Safe Array. In this program,
"PutString” is used to place a string into an array that contains strings and “PutElement” is
used to place numbers into the array that holds integers. For example:

move 1 to salndex
invoke bstrSafeArray "putString"
using by reference salndex
by value 4 size 4
by reference "Cats"
returning hResult

and:

set dPointer to address of iValue
move 34 to iValue
move 0 to salndex
invoke intSafeArray "putElement"
using by reference salndex
by value dPointer
returning hResult

33

Destroy the Safe Array

When you have finished using the Safe Array, you should destroy it by sending the Finalize
method to the array. For example:

invoke intSafeArray "Finalize"
returning intSafeArray

34

More Examples

Here are more examples showing what is possible using Automation.

Using Microsoft Visio

This program shows a different way of representing the sales data used in the first Excel
example using Microsoft Visio. Visio is a diagramming tool that can be used to help
visualize information. This program uses the data to colorize a map of Europe with data
from the different countries, showing graphically whether they are performing above or
below target.

$set ooctrl (+P)
file-control.
select Sales-File assign "SALESDAT.DAT"
organization indexed
access dynamic
record key Country
status File-Status.

class-control.
MicrosoftVisio is class "$OLESVisio.Application".

data division.

file section.
fd Sales-File.

01 sales-record.

03 Country pic x(20).
03 Sales-Target pic 9(8).
03 Sales-Actual pic 9(8).

working-storage section.

01 VSDFile pic x(35) wvalue
z"e:\Automation\VisioDemo\ Europe.VSD".

35

01 Visio object reference.

01 Docs object reference.
01 Doc object reference.
01 PagesObj object reference.
01 PageObj object reference.
01 Shapes object reference.
01 Shape object reference.
01 ShapeCount pic 9(9) comp-5.
01 ShapeIndex pic 9(9) comp-5.
01 ShapeName pic x(20).

01 file-status.

03 file-status-1 pic x.

03 file-status-2 pic x.

01 Percent-Difference pic s9(8).

procedure division.
Main section.
Open a new instance of Visio
invoke MicrosoftVisio "new" returning Visio
Open the map drawing
invoke Visio "Documents" returning Docs
invoke Docs "Open"
using VSDFile
returning Doc
Get the first page in the drawing
invoke Doc "Pages" returning PagesObj
invoke PagesObj "getItem" using by value 1
returning PageObj
Get the collection of shapes
invoke PageObj "GetShapes" returning Shapes

For each of the country shapes, find its record in
the data file and determine which color to fill it
with based on the sales performance
open input Sales-File
perform varying ShapeIndex from 2 by 1
until ShapeIndex > 13
invoke Shapes "GetItem"
using by value ShapeIndex
returning Shape
move spaces to Country
invoke Shape "GetName" returning Country
inspect Country replacing all X"00" by space
read Sales-File
compute Percent-Difference =
(Sales—-Actual - Sales-Target) /
Sales-Target * 100

36

evaluate true
when Percent-Difference <= -20
invoke Shape "SetFillStyle"
using z"Red fill"

when Percent-Difference <= -5 and
Percent-Difference > -20
invoke Shape "SetFillStyle"
using z"Magenta fill"

when Percent-Difference > -5 and
Percent-Difference < 5
invoke Shape "SetFillStyle"
using z"Blue fill"

when Percent-Difference >= 5 and
Percent-Difference < 20
invoke Shape "SetFillStyle"
using z"Yellow fill"

when Percent-Difference >= 20
invoke Shape "SetFillStyle"
using z"Green fill"

end-evaluate

invoke Shape "Finalize" returning Shape
end-perform
invoke Shapes "Finalize" returning Shapes
invoke PageObj "Finalize" returning PageObj
invoke PagesObj "Finalize" returning PagesObj
close Sales-File
Print the document
invoke Doc "print"
Set the 'saved' flag so that we can close the
document without being prompted for a save
invoke Doc "SetSaved" using by value 1
Close the document
invoke Doc "Close"
Finalize the remaining objects
invoke Doc "Finalize" returning Doc
invoke Docs "Finalize" returning Docs
Close Visio
invoke Visio "Quit"
invoke Visio "Finalize" returning Visio
stop run.

37

Figure 6 shows the Visio window just before the drawing is printed:

E)pe gk gew et o Tk Fwpe Wodw b

N-FEHAH SRY L RBY o B9

e - i - - B 7 U EE]E
i T F; 5 f

Figure 6 — The Visio Drawing created by the program

38

Launching Internet Explorer
The following code could be used by your application to launch a copy of Microsoft
Internet Explorer and navigate to a particular URL:

$set ooctrl (+P)
class-control.
IE is class "$OLES$InternetExplorer.Application".

working-storage section.
01 IEObject object reference.

procedure division.

* Create a new instance of Internet Explorer
invoke IE "new" returning IEObject
* Make Internet Explorer visible
invoke IEObject "setVisible" using by value 1
* Navigate to the reguired URL

invoke IEObject "Navigate"
using by reference z”http://www.microfocus.com

r”

* Cleanup. This will leave Internet Explorer running
invoke IEObject "Finalize" returning IEObject
stop run.

39

Conclusion

Hopefully, you have now seen the opportunities made possible to you by the use of
Automation from your programs. Automation makes an incredible range of functionality
available to you that can be easily exploited from your applications. If you need to
provide similar functionality in your application and you know your users have the
relevant Automation Server on their workstations, consider using Automation as an
alternative to writing the code yourself.

About the author: Wayne Rippin is a self-employed consultant. Previously, he worked for
Micro Focus for 16 years, first as a systems programmer and later as a product manager.
His most recent role there was director of product management, leading a team of
product managers responsible for Net Express, Mainframe Express and UNIX compiler
products.

40

Micro Focus

Choosing the right partner is as critical as choosing the right technology. As you move
forward to meet these demands and the demands of your customers, Micro Focus
continues to move forward with you as your strategic ally for legacy change. Unlike other
e-business vendors, our approach starts with your enterprise legacy system and is designed
to leverage, integrate and build upon your legacy assets. We have no computers or
applications to sell. Our focus is to build the best tools to make your legacy system better.
For more information on this approach or any of the supporting Micro Focus
technologies, please contact your Micro Focus representative, or use the contact
information listed.

© 2002 Micro Focus. All Rights Reserved. Micro Focus and Net Express are registered
trademarks of Micro Focus. Other trademarks are the property of their respective owners.

41

