
Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 1

I) Overview

1. Solutions and Projects

In Visual COBOL for Visual Studio, the main unit of work is called a solution. Solutions can contain multiple
projects. These projects can be managed code COBOL projects or native code COBOL projects or can be
C# projects or VB.NET projects, etc. Visual COBOL projects can contain only COBOL programs or classes
but these programs and classes can interact with the programs or classes contained within projects
written in a different language like C#.

There are two basic types of projects, Application projects and Library projects. Normally, a solution
would contain a main Application project like a Windows Forms Application, WPF Application or a Console
Application. Application projects generate an output file with the .EXE extension and contain the main
entry point of an application. Library projects, like a Class Library or a Link Library typically contain
programs and classes that are called by the main application project. Library projects generate an output
file with the .DLL extension.

Each project can contain one or more source programs or class programs. In managed code, each project
is compiled into a single output file called an assembly. In native code COBOL Application and Library
projects you can also select to have multiple output files. In this case, each individual program within the
project will be compiled into its own .EXE or .DLL.

2. Problems with Calling Programs Located in Different Projects

Each project specifies an output folder into which its generated output files will be stored. The default
name of this folder varies depending on the project CPU settings and which build type you are using such
as DEBUG or RELEASE. The default location is in a subfolder which is relative to the projects main folder,
i.e., .\bin\x86\debug. This default name of the output folder is configurable under the COBOL tab of the
Project Properties page.

There are two issues that need to be addressed when a program in one project calls a program in another
project.
1. Programs that are called cannot be found.
When an application is started in Visual Studio the output folder in which the main application resides will
become the current folder. Programs that are called must either be placed in this startup folder or all
programs must be placed in a different folder or they must reside in a folder that is locatable via
environment variable PATH.
2. Entry points that are called that are different from the name of the .DLL cannot be found.
When the name of the program in the call statement matches the name of the .DLL on disk then it will be
found as long as the conditions in 1 above are true. But if calling an entry point which is the name of
another program within the .DLL or the name of an entry point specified in an ENTRY statement within a
program in the .DLL, the .DLL containing the program to be called must be preloaded in order to make its
entry points visible to the run-time system. This can be done using one of the following methods.
 - set proc-pointer to entry “dllname”
 - Micro Focus Entry Name Mapper (MFENTMAP)
 - Interop Preload section of app.config file (managed code only)
All of these scenarios will be covered in the tutorials that follow.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 2

II) Working with Managed COBOL Projects

In this tutorial you will be shown how to setup and use a Visual COBOL solution containing a main application
project and a Class Library project containing a program that will be called.

Start Visual COBOL and from the main menu select NewProject as shown below:

On the New Project Dialog select Managed under COBOL, highlight Console Application and then change the
Project Name and Location to managedmain and C:\managedmain respectively. Also uncheck the option for
Create Directory for Solution so that your project will have the same folder structure as shown in this tutorial.
Click OK to create the new project.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 3

Visual COBOL will automatically create a solution with the same name as your project file and will add a new
Program1.cbl file to the project. If you do not see the Solution Explorer Window or the Properties Window you
can select to display them under the View menu item.

Modify the source code to Program1.cbl in the editor so that it looks exactly like the image below:

Notice that there is a blue squiggle underneath myparams in the call statement. This is Intellisense in action. If
you position the mouse over this squiggle you will see an error message because there currently no program
named “program2” exists in the solution. This can be ignored.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 4

Now we will add a second program to our project. Right click on the Project name in Solution Explorer, which
is the managedmain in bold with the CBL icon next to it and select AddNew Item.

Highlight COBOL Program from the list and then click the Add button at the button to accept the default name
of Program2.cbl.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 5

Edit Program2.cbl so that it looks like below. Make sure that you change the program-id from Program2 to
Prog2 and then delete the end program statement at the bottom.

Press the F11 key to build the project and start debugging. The current statement should be highlighted as
shown below. Press the F11 key again to execute the current line.

Control should now be given to the called program, Program2 as shown below: Continue to press F11 to step
through the rest of the statements and return control to Program1. Press F11 on the goback statement in
Program1 to exit the debugger.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 6

Notice that the call statement was referencing program2 which is the name of the program on disk and not
the name of the program in the program-id.

Now change the name in the call statement from program2 to prog2 as show below and then press F11 to
start debugging again.

Press F11 to step through the call statement and into program2. Complete the debugging by pressing F5 to
run the rest of the program. This is the behavior of the CALL statement in Visual COBOL. You can call a
program by its name on disk or by its program-id, if the two happen to differ.

This works fine in this example because both the calling program and the called program both exist in the
same project. We will now place the two programs in separate projects to demonstrate a common scenario.

Right click on the Solution name in the Solution Explorer window and then Select AddNew Project as shown
below. Make sure that you right click on the Solution name which will be at the top and not the Project name
which will be under it.

Select Managed under COBOL and then Class Library as the project type. Change the name of the project to
program2 and leave the Location set to c:\managedmain so that the new project will be in a subfolder of the
main solution.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 7

Press Add to add the new project to the solution as shown below:

The new project program2 will be created and the default program Class1.cbl will be added to it.

Notice that the default when adding a native Link Library was to add a program named Program1.cbl to the
new project. In managed code a Class is the default type in a Class Library. In this example we are not using a
class so we will delete it from the project. Right click on Class1.cbl in the program2 project and select Delete as
shown below.

Confirm the deletion when prompted to do so.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 8

Now move the program2.cbl source from project managedmain to project program2 by dragging it from
managedmain to the project name program2 (with CBL project icon next to it) You could also do this by right
clicking on Program1.cbl in managedmain and selecting Cut and then right clicking on project name program2
and selecting Paste. Your solution should then look like the following:

Now Press F11 to rebuild the solution and start debugging again.

This time when you step the call statement it will fail and the debugger will stop. The call is generating an
Exception. It trap this Exception so that we can see the error message add exception handling code and make
the program look as follows:

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 9

Now press F11 to build the project and start debugging. When the call statement is executed the catch code
will be executed to handle the exception. Hover the mouse over the ex variable and you will see the contents
of the exception message. If you have the Autos window opened you will also see it displayed there.

The message is the same error that we saw in native code; Runtime Error 173. The Run-time System error 173
means that the name in the program name referenced in the call statement could not be found. Continue to
press F11 to step through the rest of program1 until it ends.

Change the name in the call statement from prog2 to program2 and debug again by pressing F11. The same
error occurs. So what has changed?

The difference is that program2 is now in a different project which has a different output folder than the
calling project.
managedmain.exe is in C:\managedmain\managedmain\bin\Debug
and
program2.dll is in C:\managedmain\program2\bin\Debug

When the application is started the folder containing the startup program becomes the current folder so any
programs that it calls, such as program2.dll must either also be in the startup folder or they must be in a folder
which is referenced in the PATH environment variable.

In managed code it s much easier to resolve the call as you can simply add a project reference from the main
project to the project that contains the program that you wish to call.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 10

In Solution Explorer, right click on the References folder under the managedmain project and select
Add.Reference.

On the Add Reference Dialog, click the Projects tab and then highlight program2 and click Add OK.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 11

If you highlight program2 in the References Folder you will see that it has the property called Copy Local set to
True. This means that when program2.dll is built it will automatically be copied into the output folder of the
project containing the reference which in this case is managedmain.

Press F11 to rebuild and start debugging again. Notice that the squiggle underneath myparams in the call
statement now disappears because the program is found at compile time. Keep pressing F11 to step into
program2 and then back into program1 until finished.

Change the call statement to reference “prog2” instead of “program2” and then step through again. The call
statement can reference either the program-id name or the program name on disk and both are resolved by
adding a reference.

Although, adding a project reference is the easiest way to resolve program names when calling between
projects the other methods demonstrated in the section “Working with Native Projects” will also work with
managed code. You may want to use one of the following methods if you have a large number of projects or if
you wish to call programs in assemblies that are not part of the current solution.

Let’s reset the project to try the other methods. Open the References folder under the managedmain project.
Right click on program2 in the References list and select Remove to remove the reference.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 12

Using Windows Explorer, navigate to the folder c:\managedmain\managedmain\bin\debug and delete the
files program2.dll and program2.pdb.

Change the name in the call statement of program1.cbl from “prog2” to “program2”.

Right click on the project name managedmain in Solution Explorer and select AddNew Item as shown below:

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 13

Select Application Configuration file from the list and accept the default name of App.config by clicking on
Add.

The file will be added to the managedmain project and loaded into the editor. Close the XML version of this
file by clicking on the X in the tab next to app.config name. Then right click on App.config in Solution Explorer
and select Edit.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 14

In the popup editor that appears add the value PATH in the name field and enter the location where the
program2.dll resides followed by “;%PATH% in the VALUE field and press SET. Then Press OK to save this.
The ;%PATH% portion tells it append the current setting of PATH to the new one.

Press F11 to start debugging again and when you execute the call “program2” statement it will now work,
although the squiggle error under myparams in the call statement remains because the call is being treated as
dynamic, i.e. resolved at run-time instead of compile time.

Stop debugging and change the name in the call statement from program2 to prog2 which is the program-id of
the program to be called. Now press F11 to step through the call statement again. It fails when trying to call
prog2.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 15

The reason that it worked when calling “program2” is that program2 is also the name of the .dll file on disk,
program2.dll. When the call statement is executed the run-time system first checks to see if an entry point
named “program2” has already been loaded. If it has then it will call that one. If it hasn’t been loaded, then it
next tries to find a program with that name on disk in the current folder. If that search fails it will search
through the folders specified in PATH, looking for a program called “program2”. In the case of this tutorial
“program2.dll” will be found and loaded and then “program2” will be called.

The reason why it failed when calling “prog2” instead of “program2” is that there is no program called
prog2.dll available on disk.

In this case where you wish to call an entry point of a program that resides within a .dll that has a name other
than the name of the .dll itself then the .dll must be preloaded in order for the call statement to find the entry
point. This is true when calling by program name of by the program-id name if they differ. This also applies to
programs that have multiple entry points by using the COBOL ENTRY statement. Of course, if you have already
called the main entry point of the .dll, in this case “program2” then the .dll will already be loaded and its entry
points made available.

There are a couple of methods that can be used to preload a .dll whose main entry point has not yet been
called when working with managed code.

First is by setting a procedure-pointer variable to the entry of the .dll name.

Add a variable called pp to the working-storage section of program1.cbl and then add the set statement as
show below before the existing call statement.

The set statement will preload “program2.dll” and make any entry points in it visible to the COBOL run-time
system. Remember that this will only work if the PATH in the app.config file includes the folder where
program2.dll resides.

Press F11 to start debugging and step through the call statement to show that it now works correctly.

The second method to preload a .dll is to use the Micro Focus Entry Point Mapper or MFENTMAP. This is more
complicated to configure than simply using a procedure-pointer but we will include it here for the sake of
completeness.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 16

First, comment out the set statement in our current program by placing an asterisk in column 7 of its source
line as shown below so that the program2.dll will not be preloaded.

Open up Notepad or any text editor and create a file containing the following three lines:

[ENTRY-POINT] prog2
[PROGRAM-NAME] *
[SUBPROGRAM-NAME] program2

Save this file in your managedmain project folder using the name “mfentmap.dat”.
If using Notepad, ensure you change the file type to All Files so that it will not add the extension .txt to the file.
So the file will be called C:\managedmain\managedmain\mfentmap.dat.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 17

When using MFENTMAP you would create the three entries shown in the file for each of the entry points that
you would like to make known to the run-time system.

[ENTRY-POINT] prog2 - This is the name of the entry point used in the call statement.
[PROGRAM-NAME] * - This is the name of the calling program. Use * to mean any program.
[SUBPROGRAM-NAME] program2 - This is the name of the program that contains the entry point.

In our case when calling “prog2” the run-time system will first load “program2” if required in order to find
“prog2”.

To complete the setup we must set the environment variable ENTRYNAMEMAP to point to the location of the
mfentmap.dat file. In managed code it is not necessary to set COBCONFIG so we can ignore that step.

Right click on the app.config file in Solution Explorer and select Edit.

Add the new environment variable ENTRYNAMEMAP with the value of the mfentmap.dat file that we saved
previously. Press Set and then OK to Save it.

Start debugging by pressing F11 and step through the call statement. “prog2” will now be found via
mfentmap.dat.

In managed code there is a third method that can be used to preload a class library assembly.
To reset the project so mfextmap.dat will not be used, right click on app.config and select Edit again.

Remove the ENTRYNAMEMAP environment variable by highlighting it and clicking Delete. Press OK to save it.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 18

Double click on app.config in Solution Explorer to open the XML file up in the Editor.
We need to add two new sections to the existing file. They are highlighted below:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <configSections>
 <!--The following code declares a section group for application configuration -->
 <sectionGroup name="MicroFocus.COBOL.Application">
 <section name="Switches" type="System.Configuration.NameValueSectionHandler" />
 <section name="Environment" type="System.Configuration.NameValueSectionHandler" />
 <sectionGroup name="Interop">
 <section name="PreLoad" type="System.Configuration.NameValueSectionHandler" />
 </sectionGroup>
 </sectionGroup>
 <!--The following code declares a section group for run-time configuration -->
 <sectionGroup name="MicroFocus.COBOL.Runtime">
 <section name="Tunables" type="System.Configuration.NameValueSectionHandler" />
 <section name="Switches" type="System.Configuration.NameValueSectionHandler" />
 </sectionGroup>
 </configSections>
 <MicroFocus.COBOL.Application>
 <Switches />
 <Environment>
 <add key="PATH" value="C:\managedmain\program2\bin\Debug;%PATH%" />
 </Environment>
 <Interop>
 <PreLoad>
 <add key="program2.dll" value="managed"/>
 </PreLoad>
 </Interop>
 </MicroFocus.COBOL.Application>
</configuration>

Save the file using the Save icon on the toolbar and then close app.config.

Press F11 to step thru the application and the call to “prog2” should now be resolved by using the Interop
PreLoad section of app.config.

If you have a large number of Class Library projects in your solution it may become a hassle to have to set the
PATH to include the output folders of every project. In this case it may be advantageous to change the output
folders of all projects to point to a common location such as the output folder of the main application or a new
common folder. You must remember that when doing so you must change the output folder for each build
type as these specify different locations.

Let’s give this a try.

First right click on the app.config file under Solution Explorer and select Delete to remove it from the project.
Uncomment the set pp to entry “program2” statement in program1.cbl so that it will again be executed.

In Solution Explorer double-click on Properties under the managedmain project heading to display the
Properties page below. Click on the COBOL tab to the left and scroll down until you see the entry for Output
Path:

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 19

Change the current value to ..\compiledprogs\bin\debug. This will place the project output into folder
c:\managedmain\bin\debug. It is best to use the relative paths like “..\” instead of hardcoding the names in
case the solution is moved to another folder. Click on the save icon to save the changes.

Close the managedmain property page and open up the property page for the program2 project and make the
same changes that you made to managedmain using the same Output Folder name of
..\compiledprogs\bin\debug

Save this and start debugging again by pressing F11 and “program2.dll” will be loaded by the run-time without
the need for the PATH to be set because “program2.dll” now resides in the same folder as the startup program
managedmain.exe.

We have now completed the section on Managed Code development. The next section will go through the
same exercise using a managed code project that calls programs in a native code project.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 20

III) Summary

We have covered a number of different scenarios here in the preceding tutorials, some of which may or may
not be applicable to your particular application.

The chart below summarizes the techniques that we covered in these pages and outlines under which
scenarios each can be used.

 All
Native

INT/GNT All
Managed

Managed
to Native
P/Invoke

Native to
Managed
CCW

Common Output Folder X X X X NA

PATH in app.config X X X NA

COBPATH in app.config X NA

MFENTMAP X X X X NA

Cobconfig required for MFENTMAP X X NA

Preload section in app.config X NA

Add reference to projects X NA

Add reference to .dlls X X NA

Multiple Output Projects X X X NA

SET PROC-POINTER TO ENTRY X X X X NA

