Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the

1)

COBOL CALL Statement

Overview

1.

Solutions and Projects

In Visual COBOL for Visual Studio, the main unit of work is called a solution. Solutions can contain multiple
projects. These projects can be managed code COBOL projects or native code COBOL projects or can be
C# projects or VB.NET projects, etc. Visual COBOL projects can contain only COBOL programs or classes
but these programs and classes can interact with the programs or classes contained within projects
written in a different language like C#.

There are two basic types of projects, Application projects and Library projects. Normally, a solution
would contain a main Application project like a Windows Forms Application, WPF Application or a Console
Application. Application projects generate an output file with the .EXE extension and contain the main
entry point of an application. Library projects, like a Class Library or a Link Library typically contain
programs and classes that are called by the main application project. Library projects generate an output
file with the .DLL extension.

Each project can contain one or more source programs or class programs. In managed code, each project
is compiled into a single output file called an assembly. In native code COBOL Application and Library
projects you can also select to have multiple output files. In this case, each individual program within the
project will be compiled into its own .EXE or .DLL.

Problems with Calling Programs Located in Different Projects

Each project specifies an output folder into which its generated output files will be stored. The default
name of this folder varies depending on the project CPU settings and which build type you are using such
as DEBUG or RELEASE. The default location is in a subfolder which is relative to the projects main folder,
i.e., .\bin\x86\debug. This default name of the output folder is configurable under the COBOL tab of the
Project Properties page.

There are two issues that need to be addressed when a program in one project calls a program in another
project.

1. Programs that are called cannot be found.

When an application is started in Visual Studio the output folder in which the main application resides will
become the current folder. Programs that are called must either be placed in this startup folder or all
programs must be placed in a different folder or they must reside in a folder that is locatable via
environment variable PATH.

2. Entry points that are called that are different from the name of the .DLL cannot be found.

When the name of the program in the call statement matches the name of the .DLL on disk then it will be
found as long as the conditions in 1 above are true. But if calling an entry point which is the name of
another program within the .DLL or the name of an entry point specified in an ENTRY statement within a
program in the .DLL, the .DLL containing the program to be called must be preloaded in order to make its
entry points visible to the run-time system. This can be done using one of the following methods.

- set proc-pointer to entry “dliname”

- Micro Focus Entry Name Mapper (MFENTMAP)

- Interop Preload section of app.config file (managed code only)

All of these scenarios will be covered in the tutorials that follow.

Page 1

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the

)

COBOL CALL Statement

Working with Native Code Calling Managed Code (COM Callable Wrapper CCW)

The .NET Framework provides for several techniques and classes that allow managed code to interact with
native code and vice versa. These techniques and classes are known as Interop classes.

In this tutorial you will be shown how to setup and use a Visual COBOL solution containing a native code
Application project that calls a class in a managed code Class Library project. The technology that allows
managed code classes to be called from native code is called COM Callable Wrapper or CCW for short.

Visual COBOL does a lot of work under the covers to make this somewhat complicated technology seem quite
simple. The managed code assembly is registered as a COM object which makes all of its public methods
available to COM client programs.

The native code COBOL programs use the COM client support provided by Visual COBOL to invoke the
methods in the managed classes as if they were standard COM methods. Native COM data types like integers
and strings can be passed between native COBOL and managed COBOL using these techniques. Even COBOL
group items can be passed using these same techniques.

Since the managed code class is registered as COM, the native program that calls it is not required to be in the
same solution, although in this tutorial the two projects are in the same solution for ease of use.

In order to register the managed assembly for COM Interop, Visual COBOL must be run as Administrator. To
do this, navigate to the Windows Start Menu—>All Programs—>Micro Focus Visual COBOL group and right click
on Visual COBOL for Visual Studio 2010 and select the option Run as administrator as shown below:

B Windows Upogate = -

D winZp Open

o XPS Viewer % Run as administrator
1-Zip Treubleshoot compatibility
Accessones Open fie location

Admunatrative Tooly

CintaNotes Scan for Viruges..

Dropbax 3 WinZlip

FileZia FTP Client Unpin from Taskbar
e P 1o Start Menu

HP

IBM DE2 Restore previous versans

Intpd -
Send to

JetBemers Omea Reader

Maintenance Cut
Micro Focut Liconsa Manager Copy
Micre Focus Net Express 51
Micro Focus Visusal COBOL Dslate
Documentation (Visusi Studia) % FReneme
v
R Semples Propentes

&y Visual COBOL for Visual Studio 201
Data Tools

Tools

Microsaft Office
Microzoft Office Live Meeting 2007
Microsolt Séverfight

Microsoft Séverlight 3 50K

If prompted by UAC to allow this click “Yes”.

Page 2

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

When Visual COBOL starts, from the main menu select New—>Project as shown below:

oo Start Page - Microsoft Visual Studio (Administrator) S—— S
File jEdit (Vieor Debug, Jeam. Dats Tools Test Window Help
New » (@ Project.. Ctrl+ Shift+N
Open * | @ WebSite.. Shift+Alt+N
Close Ljg Team Project...
Close Solution ‘ (] File.. Ctri+N
s SaveSelected ltems Ctrl+S ‘ Project From Existing Code...

On the New Project Dialog select Managed under COBOL, highlight Class Library and then change the Project
Name and Location to managedClass and C:\managedClasse respectively. Also uncheck the option for Create
Directory for Solution so that your project will have the same folder structure as shown in this tutorial. Click
OK to create the new project.

New Proect — — et
IR cccocoi - sonby vena e LI e st Terpin »
Installed Templates . p
8 | Windows Forms Application CoBoL Type=: COBOL
4 COBOL A project for creating classes usable by
Database H : ¢ G40 othet apphcatons
= | Windows Forms Control Library C L
Hsr ;
Native
' Web £ =;< Cless Library COBOL
Vsual Basic
Yaual (e q Console Apphication COBOL
Veual Ce e =
P e ere— -
Veual 3 o | Empty Project COoBoL 3
Databaze
Test Projects B | Windows Senice CoeoL
Other Project Types Bs
L: WCF Service Libeary CoBaL
Lcm | WPF Appication COBOL
J 3 | WPF User Control Library COBOL
I Marme: rmandgedClass
Location; ciimanagedClass . Srowse..,
Selution name: manragedCles: | Create gectory for soktion
Add 1o sewrce control

Visual COBOL will automatically create a solution with the same name as your project file and will add a new
Class1.cbl file to the project. If you do not see the Solution Explorer Window or the Properties Window you
can select to display them under the View menu item.

Page 3

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

on maragedClass - M Vizual Studio (Ade 9 —— = = |)
fie At Uww e fuid Ovbug Team Opte foch Te Windew iy
R R e 2P B NE SO UL N EL BTN e LA Detuy =1\ Any CPU 1B crenwine v"ij.:!'i_?‘/'"'
LB as Ty ;.*‘J‘ el 215 PSR R A | 3 2= T8 | Chengs Type « f = ._":i]v':' o - l‘o.:'l
Classl.cbl [Code] = Schtxn Expigre - x
= JalD
clasn-id sunay 0] Sclution ' managedCm’ {1 progect
4) managedClass

working-stocage sectioe. W Preperties
i Aeferences

method-18 Tnstwscetiethod, o Clossdeil

local-storage section.

procedure divisien,

goback,
end wethad,

oot clans,
' n '

&3 Soluti.

Ciaisl bl Comple Rem Propemies =

i

Buld Acbon Compile
Copy To Outpr Do not copy
Shorw cutput b | Genersl - &1 ad AR 1]_',] Custom Tool

Contom Toct $
-
mkm’
Action 1o be sescuted on buikd

7] Owtput

To simplify this demo we will create the client and server projects both as x86 (32-bit) so we must change the
CPU type of the managed project from anyCPU to x86.

Start the Configuration Manager by right clicking on the Solution name in Solution Explorer, (first item) and
selecting Configuration Manager from the list.

S T TRVEN Rrte Lhetts 8

Ll
e ting 1teowpe serties totsimnt w.me— promen
e id Cleer s we | SEE
“e " [T] pra oo
" e & 1P g eten e age
et A .
. e Sawtiiy Pramns
Open up the drop down list underneath the Platform heading and select <New..>
Configuration Manager A ;‘L"a"’;ﬂ
Active solution configuration: Active solution platform:
[Debug ~| [AnycPu -
Project contexts (check the project configurations to build or deploy):
Project Configuration Platform Build
managedClass Debug E iAny CPU E] @]
| Any CPU
[E}_
<Edit...>

Page 4

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Select x86 from the list so it looks like below and then click on OK.

- -
New Project Platform M

New platform:
Copy settings from:
| Any CPU -]

[} Create new solution platforms

[ok || cance |

Open the drop down list underneath Active solution platform and select <New...>

Configuration Manager - 8

Active solution configuration: Active solution platform:

Debug V] [M CPU v,l
- . . : : Any CPU
Project contexts (check the project configurations to build or dep_

Project Configuration <Edit...>

managedClass Debug IZJ xB86 [ZI

Select x86 from the list so it looks like below and then click on OK.
I ~ <
New Solution Platform =B

Type or select the new platform:

36 o
Copy settings from:
|Any CPU ~|

[Create new project platforms

[ok || cance |

The Configuration Manager dialog should now look like below:

Page 5

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Click Close to finish.

Configuration Manager m

Active solution configuration: Active solution platform:
Debug ~| [x86 -
Project contexts (check the project configurations to build or deploy):
Project Configuration Platform Build
|| | managedClass Debug [x] xe6 (] @]

Close

We must now modify the project properties so that this project will generate the necessary resources to allow
it to register its assembly as a COM server. Double click on the Properties header under the managedClass

project in Solution Explorer and select the COBOL tab. Under the Additional Directives field click the Advanced
button.

managedClass x QEESIRII{eT)]

Application
Configuration: ’Active (Debug) VI Platform: | Active (Any CPU) VI
SQL
3 Abin\Debug' Bi
Copybook Paths Sl g lﬂj 1
[T Generate directives file 7] Generate listing file
MNamespaces
Additional directives
COBOL
Debug
Resources
_
Settings Build settings 1

anim cobidy" \bin\Debug\" sourceformat"Variable" warnings"2" max-error"100" -
ilgen"sub” noint

Page 6

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

On the Advanced COBOL Settings dialog check the box next to Register for COM interop and click OK.

r Y
Advanced COBOL Settings PE——— @

General
Addttional copybook paths:

[] Verfiable code

[7] Generate 64bit pointers
i Output

[¥] Register for COM interop
[7] XML documentation file:

[ok][cCancel |
%

Click the save all icon on the Visual Studio toolbar and then close the properties page by clicking the X on the
editor tab next to its name.

Edit Class1.cbl so that it looks like below.

class-id managedClass.Classl.
working-storage section.
method-id managedMethod.
local-storage section.
@1l custRecord.
85 contact pic =(2@).
@5 company pic =(2a}.
@5 phone pic =x(15}.
procedure divisiocn using mystring as string.
set custRecord to mystring
mowve "John Smith" to contact
move "Micro Focus"™ to company
move "B88-632-6265" to phone
set mystring to custRecord
goback.
end metheod.

end class.

Build the Solution by selecting “Build Solution” from the Visual Studio Build menu item. If you get an error that
the class cannot be registered then you probably are not running Visual COBOL as Administrator and you will
have to restart Visual COBOL by right-clicking and selecting Run As administrator.

Now we will create the native COBOL program that will call our managedClass through a COM interface.

Page 7

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Right-click on the Solution name (top entry) in Solution Explorer and select Add—>New Project.

ass.Classl

class-id managedClass.Classl.
working-storage section.
method-id managedMethod.

local-storage section.

@1 custRecord.
@5 contact
@5 company
@5 phane
procedure divisig
set custRecon
move “John Sm
move “Micro F
move “B88-632
set mystring
goback.
end method.

end class.

pic x(2@).
pic x(2@).
pic ®(15).

|

Mew Project...
Existing Project...
New Web Site...
Existing Web Site...
New Iterm...
Existing Item...

Mew Solution Folder

Selution Explorer s
- | % managedMethod(mystring AS string) - _d
20 "3 solution 'managedClass' (1 pro,
Build Solution Ctrl+5hift+B nanagedClass
Rebuild Solution d Properties
Clean Solution 8 References
| Classl.chl

Ctrl+Shift+A
Shift+Alt+A

5

Batch Build...

Configuration Manager...

Add 3
Set StartUp Projects...

Project Details Window

Add Solution to Source Control...

Paste Ctrl+V
Rename lass Solution Properties
Open Folder in Windows Explorer |

Select Native under COBOL and then Console Application as the project type. Change the name of the project
to callmanagedClass and leave the Location set to c:\managedClass so that the new project will be in a
subfolder of the main solution. Click Add to add the new project to the solution as shown below:

Installed Templates

4 COBML
Database
Managed

" Web

’ Visual Basic
Visual G5
Visual C++

‘ Visusl F#
Database
Test Projects

Other Project Types

Daline Tomplates

| ()

B

s RS BE

callmanagedClass

cmansgedClass

NET Framenork 4

* | Sort by Detava o)) i1 L) earch Inszalled Tempiats »

Type: COB0L

Windows Apphcation CosoL e
A project for cresting » native command-
e apphcation

Console Apphicaton Co80L

EmV-y p".: cosose Apphication COo80L

Link Library coao

Micro Focus INT/GNT cosoL

Page 8

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the

COBOL CALL Statement

The new project callmanagedClass will be created and the default program Program1.cbl will be added to it.

Progremi_ctd [Code]

jontifice divisio B
srogram-id. Programl
s - e »

~figee .
o § storage acllio =
procedere jsion

Fohack

end program Progrem

Saiexe Drgacres o
=)
: Soluton ‘menegedClen’ {2 progec
s B alanagedClhs
 Propetes
4 frfeences
o Progemlobi
+ = managedCos
M Propetees
o References

0 Clend ot

Modify the source code to Program1.cbl in the editor so that it looks exactly like the image below:

Sset coctrl(+P)

identification division.

program-id. Programl.
envircnment division.

class-control.

managedClass is class "$0LE$managedClass.Classl”.

data division.

working-storage secticon.

81 managedObij object reference.
81 custRecaord.

@5 contact pic =x({28}).

@5 company pic =x({28}).

@5 phane pic x(15).

procedure division.

move "Bill Gates™

to contact

move "Microsoft™ to company
move "888-555-1111" to phone

invoke managedClass
invoke managedobj

display contact
display company
display phone
goback.

end program Programl.

"New" returning managedObj
"managedMethoed” using custRecord

Notice that this native program uses object-oriented syntax but it is different than the OO syntax used in
managed code program. The native syntax is the old style OO syntax that Visual COBOL inherited from Net
Express. In the class name "SOLESmanagedClass.Class1" the SOLES tells the run-time that this is a COM server
and managedClass.Class1 is the name of the class which is derived from the program-id of the COB class we

are calling.

Page 9

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

To debug this program we must change the native project callmanagedClass to be the startup program.
Right-click on the callmanagedClass project name in Solution Explorer and select Set as Startup Project.

vl ¥ managedOhbj

§set ooctrl(+P) £ 0 |4 Selution 'managedClass' (2 pro
identification division. i ol callmanagedClass
program-id. Programl. Build roperties
environment division. Rebuild cferences
class-control.

) . T o o rograml.chl

managedClass is class "$OLESmanagedClass.Classl". Clean

s s aged(Class

data division. Project Dependencies... :
working-storage section.]) roperties
81 managedObj ocbject reference. Project Build Order... eferences
81 custRecord. . Add y classl.chl

@5 contact pic x(2@). ;

@5 company pic x(28). Add Service Reference...

@5 phane pic x(15). Add Existing COBOL Items... o
procedure division. .

move "Bill Gates" to contact Set as StartUp Project

move "Microsoft™ te company Debug ¥

move "BB@-555-1111" to phone -

invoke managedClass "New" returning managedObj [Add Solution to Source Control.. lass Project Properties

Press F11 to start stepping through the callManagedClass program. After you step the line invoking
managedMethod, control returns to the next statement instead of debugging the source code to the
managedClass program. This is due to the restriction that you can debug a native program or a managed
program in a single session but you cannot debug both simultaneously.

Check the values of the data parameters returned from the invoke to show that they have been modified by
the called program.

raml vl W procedure division
@5 contact pic x(2@).
@5 company pic x(2@).
@5 phone pic x(15).

procedure divisien.
move "Bill Gates” to contact
move “"Microsoft™ to company
move “388-555-1111" to phone
invoke managedClass "New" returning managedObj
invoke managedObj "managedMethod” using custRecord
display conftact
display ca'r| ¥ contact| John Smith =+
display phone
goback.

end program Programl.

Finish stepping through the program to completion. To debug the managed code side we need to make a
couple of changes to the project properties of managedClass.

First right-click on the managedClass project name in Solution Explorer and select Set as Startup Project.

Open up the project properties for the managedClass project by double-clicking on Properties under the
managedClass project header in Solution Explorer.

Page 10

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the

Application

SQL

Copybook Paths
Marmespaces
COBOL

Debug
Resources

Settings

[EGELESEESE Programl.chl [Code]

Configuration:

Start Action

() Start project

COBOL CALL Statement

Classl.cbl [Code]

Active (Debug) -

Platform:

Active (x86)

@ Start external program:

() Start browser with URL:

Start Options

Command line arguments:

m

Solution Explorer
=

3 Solution 'managedClass' (2 pre
4 (2 callmanagedClass
=d| Properties
o] References
[Programl.chl
a @ managedClass
=d| Properties
» |3 References
=) Classl.chl

4| 11 |

Click on the ellipsis (...) to the right of the Start external program field so that we can select the program to
start when we begin debugging. This will be the native code program callmanagedClass.exe that calls the
managed program.

Navigate to c:\managedClass\callmanagedClass\bin\x86\debug, select callmanagedClass.exe and click Open.

E —_— e e "
o0 Select file [
v‘ <« managedClass » callmanagedClass » bin » x86 » Debug v|6,H Search Debug o
Organize v New folder b= il II@
“# Dropbox * Name E Date modified Type Si
| Recent Places — —
[=7] callmanagedClass.exe 8/29/20121:48 PM Application
4 Libraries
3 Documents
.J" Music E
k= Pictures
/% Computer l
&, Local Disk (C:)
#3 DVD RW Drive (D:) X16-816% « ¢ | [T »
File name: callmanagedClass.exe v [Executables (*.exe) v]
[Open lv} [Cancel]

= =

Click on the Visual Studio save icon to save the change and close the property page

Page 11

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Open up Classl.cbl in the editor and set a breakpoint on the first statement in the procedure division by
clicking the mouse in the first position of the line. Click where the red stop icon is displayed in the image
below.

Programl.chl [Code] Classl.cbl [Code]

%managed(lass.(lassl 'l % managedMethod(mystring AS string)
= class-id managedClass.Classl.
= working-storage section.
method-id managedMethod.
= local-sterage section.
81 custRecord.
85 contact pic x(2@).
@5 company pic x(28).
@5 phone pic x(15).
= procedure division using mystring as string.
[] set custRecord to mystring|
move "John Smith" to contact
move “Micro Focus™ to company
move “88@-632-6265" to phone
set mystring to custRecord
goback.
end methed.

Press F11 to start debugging and the callmanagedClass.exe program will be run at full speed and the current
line in Class1.cbl will be highlighted and will be ready to debug. Step though the rest of the code until
complete.

L
—
L=
(=]
o
=]
=

I %managed(lass.(lasﬂ 'l ¥ managedMethod(mystring AS string)
= class-id managedClass.Classl.
= working-storage section.
method-id managedMethod.
- local-storage section.
@1 custRecord.
@5 contact pic =(2@). =
@5 company pic =(2@}).
@85 phane pic x(15}.
= procedure division using mystring as string.
(=] Fet custRecord to mystrind —
move "John Smith™ to contact
move “Micro Focus™ to company
move "B888-632-6265" to phone
set mystring te custRecord
goback.
end method.

[o lebel 4

W% - + 4

Mame Value Type -
i CUSTRECORD flength = 551 " GROUP
¥ MYSTRIMG "Bill Gates Microsoft @ -| Systemn.t

This completes the section on calling managed code from native code using CCW.

Page 12

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

1) Summary

We have covered a number of different scenarios here in the preceding tutorials, some of which may or may
not be applicable to your particular application.

The chart below summarizes the techniques that we covered in these pages and outlines under which
scenarios each can be used.

Page 13

