
Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 1

I) Overview

1. Solutions and Projects

In Visual COBOL for Visual Studio, the main unit of work is called a solution. Solutions can contain multiple
projects. These projects can be managed code COBOL projects or native code COBOL projects or can be
C# projects or VB.NET projects, etc. Visual COBOL projects can contain only COBOL programs or classes
but these programs and classes can interact with the programs or classes contained within projects
written in a different language like C#.

There are two basic types of projects, Application projects and Library projects. Normally, a solution
would contain a main Application project like a Windows Forms Application, WPF Application or a Console
Application. Application projects generate an output file with the .EXE extension and contain the main
entry point of an application. Library projects, like a Class Library or a Link Library typically contain
programs and classes that are called by the main application project. Library projects generate an output
file with the .DLL extension.

Each project can contain one or more source programs or class programs. In managed code, each project
is compiled into a single output file called an assembly. In native code COBOL Application and Library
projects you can also select to have multiple output files. In this case, each individual program within the
project will be compiled into its own .EXE or .DLL.

2. Problems with Calling Programs Located in Different Projects

Each project specifies an output folder into which its generated output files will be stored. The default
name of this folder varies depending on the project CPU settings and which build type you are using such
as DEBUG or RELEASE. The default location is in a subfolder which is relative to the projects main folder,
i.e., .\bin\x86\debug. This default name of the output folder is configurable under the COBOL tab of the
Project Properties page.

There are two issues that need to be addressed when a program in one project calls a program in another
project.
1. Programs that are called cannot be found.
When an application is started in Visual Studio the output folder in which the main application resides will
become the current folder. Programs that are called must either be placed in this startup folder or all
programs must be placed in a different folder or they must reside in a folder that is locatable via
environment variable PATH.
2. Entry points that are called that are different from the name of the .DLL cannot be found.
When the name of the program in the call statement matches the name of the .DLL on disk then it will be
found as long as the conditions in 1 above are true. But if calling an entry point which is the name of
another program within the .DLL or the name of an entry point specified in an ENTRY statement within a
program in the .DLL, the .DLL containing the program to be called must be preloaded in order to make its
entry points visible to the run-time system. This can be done using one of the following methods.
 - set proc-pointer to entry “dllname”
 - Micro Focus Entry Name Mapper (MFENTMAP)
 - Interop Preload section of app.config file (managed code only)
All of these scenarios will be covered in the tutorials that follow.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 2

II) Working with Native Code Calling Managed Code (COM Callable Wrapper CCW)

The .NET Framework provides for several techniques and classes that allow managed code to interact with
native code and vice versa. These techniques and classes are known as Interop classes.

In this tutorial you will be shown how to setup and use a Visual COBOL solution containing a native code
Application project that calls a class in a managed code Class Library project. The technology that allows
managed code classes to be called from native code is called COM Callable Wrapper or CCW for short.

Visual COBOL does a lot of work under the covers to make this somewhat complicated technology seem quite
simple. The managed code assembly is registered as a COM object which makes all of its public methods
available to COM client programs.

The native code COBOL programs use the COM client support provided by Visual COBOL to invoke the
methods in the managed classes as if they were standard COM methods. Native COM data types like integers
and strings can be passed between native COBOL and managed COBOL using these techniques. Even COBOL
group items can be passed using these same techniques.

Since the managed code class is registered as COM, the native program that calls it is not required to be in the
same solution, although in this tutorial the two projects are in the same solution for ease of use.

In order to register the managed assembly for COM Interop, Visual COBOL must be run as Administrator. To
do this, navigate to the Windows Start MenuAll ProgramsMicro Focus Visual COBOL group and right click
on Visual COBOL for Visual Studio 2010 and select the option Run as administrator as shown below:

If prompted by UAC to allow this click “Yes”.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 3

When Visual COBOL starts, from the main menu select NewProject as shown below:

On the New Project Dialog select Managed under COBOL, highlight Class Library and then change the Project
Name and Location to managedClass and C:\managedClasse respectively. Also uncheck the option for Create
Directory for Solution so that your project will have the same folder structure as shown in this tutorial. Click
OK to create the new project.

Visual COBOL will automatically create a solution with the same name as your project file and will add a new
Class1.cbl file to the project. If you do not see the Solution Explorer Window or the Properties Window you
can select to display them under the View menu item.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 4

To simplify this demo we will create the client and server projects both as x86 (32-bit) so we must change the
CPU type of the managed project from anyCPU to x86.

Start the Configuration Manager by right clicking on the Solution name in Solution Explorer, (first item) and
selecting Configuration Manager from the list.

Open up the drop down list underneath the Platform heading and select <New…>

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 5

Select x86 from the list so it looks like below and then click on OK.

Open the drop down list underneath Active solution platform and select <New…>

 Select x86 from the list so it looks like below and then click on OK.

The Configuration Manager dialog should now look like below:

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 6

Click Close to finish.

We must now modify the project properties so that this project will generate the necessary resources to allow
it to register its assembly as a COM server. Double click on the Properties header under the managedClass
project in Solution Explorer and select the COBOL tab. Under the Additional Directives field click the Advanced
button.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 7

On the Advanced COBOL Settings dialog check the box next to Register for COM interop and click OK.

Click the save all icon on the Visual Studio toolbar and then close the properties page by clicking the X on the
editor tab next to its name.

Edit Class1.cbl so that it looks like below.

Build the Solution by selecting “Build Solution” from the Visual Studio Build menu item. If you get an error that
the class cannot be registered then you probably are not running Visual COBOL as Administrator and you will
have to restart Visual COBOL by right-clicking and selecting Run As administrator.

Now we will create the native COBOL program that will call our managedClass through a COM interface.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 8

Right-click on the Solution name (top entry) in Solution Explorer and select AddNew Project.

Select Native under COBOL and then Console Application as the project type. Change the name of the project
to callmanagedClass and leave the Location set to c:\managedClass so that the new project will be in a
subfolder of the main solution. Click Add to add the new project to the solution as shown below:

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 9

The new project callmanagedClass will be created and the default program Program1.cbl will be added to it.

Modify the source code to Program1.cbl in the editor so that it looks exactly like the image below:

Notice that this native program uses object-oriented syntax but it is different than the OO syntax used in
managed code program. The native syntax is the old style OO syntax that Visual COBOL inherited from Net
Express. In the class name "OLEmanagedClass.Class1" the OLE tells the run-time that this is a COM server
and managedClass.Class1 is the name of the class which is derived from the program-id of the COB class we
are calling.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 10

To debug this program we must change the native project callmanagedClass to be the startup program.
Right-click on the callmanagedClass project name in Solution Explorer and select Set as Startup Project.

Press F11 to start stepping through the callManagedClass program. After you step the line invoking
managedMethod, control returns to the next statement instead of debugging the source code to the
managedClass program. This is due to the restriction that you can debug a native program or a managed
program in a single session but you cannot debug both simultaneously.

Check the values of the data parameters returned from the invoke to show that they have been modified by
the called program.

Finish stepping through the program to completion. To debug the managed code side we need to make a
couple of changes to the project properties of managedClass.

First right-click on the managedClass project name in Solution Explorer and select Set as Startup Project.

Open up the project properties for the managedClass project by double-clicking on Properties under the
managedClass project header in Solution Explorer.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 11

Click on the ellipsis (…) to the right of the Start external program field so that we can select the program to
start when we begin debugging. This will be the native code program callmanagedClass.exe that calls the
managed program.

Navigate to c:\managedClass\callmanagedClass\bin\x86\debug, select callmanagedClass.exe and click Open.

Click on the Visual Studio save icon to save the change and close the property page

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 12

Open up Class1.cbl in the editor and set a breakpoint on the first statement in the procedure division by
clicking the mouse in the first position of the line. Click where the red stop icon is displayed in the image
below.

Press F11 to start debugging and the callmanagedClass.exe program will be run at full speed and the current
line in Class1.cbl will be highlighted and will be ready to debug. Step though the rest of the code until
complete.

This completes the section on calling managed code from native code using CCW.

Visual COBOL for Visual Studio Getting Started with Solutions, Projects and the
COBOL CALL Statement

Page 13

III) Summary

We have covered a number of different scenarios here in the preceding tutorials, some of which may or may
not be applicable to your particular application.

The chart below summarizes the techniques that we covered in these pages and outlines under which
scenarios each can be used.

 All
Native

INT/GNT All
Managed

Managed
to Native
P/Invoke

Native to
Managed
CCW

Common Output Folder X X X X NA

PATH in app.config X X X NA

COBPATH in app.config X NA

MFENTMAP X X X X NA

Cobconfig required for MFENTMAP X X NA

Preload section in app.config X NA

Add reference to projects X NA

Add reference to .dlls X X NA

Multiple Output Projects X X X NA

SET PROC-POINTER TO ENTRY X X X X NA

