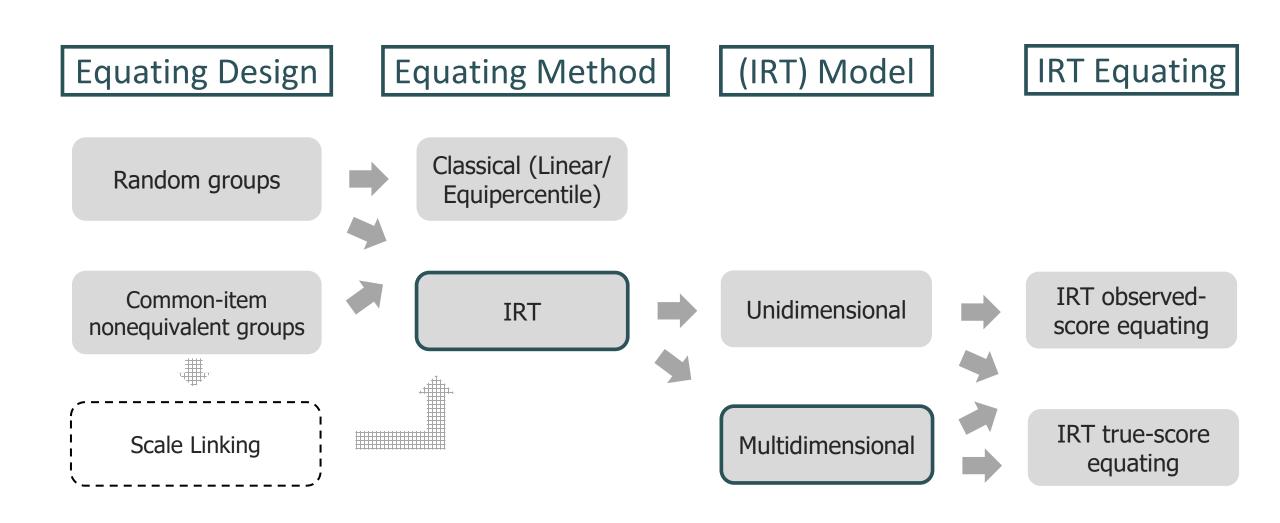
Multidimensional Item Response Theory Equating

Stella Y. Kim

University of North Carolina at Charlotte


- Explain benefits of using multidimensional IRT equating
- List multidimensional IRT models that have been applied to equating in the literature
- Describe the current literature on multidimensional IRT equating
- Conduct multidimensional IRT observedscore equating
- Examine potential research topics in multidimensional IRT equating

Learning Objectives

Prerequisite Knowledge

- Basic knowledge in IRT
 - 1. Unidimensionality assumption
 - 2. 3 parameter logistic model
 - 3. Lord-Wingersky formula
 - 4. IRT scale linking
- Basic knowledge in equating
 - 1. Equating designs
 - 2. IRT equating (observed-score equating and true-score equating)

Multidimensional IRT Equating is...

Useful Other Resources

ITEMS Modules

- 1. Module 6: Equating methods in classical test theory (Kolen)
- 2. Module 10: Equating methods in item response theory (Cook & Eignor)
- 3. Module 21: Multidimensional item response theory (Ackerman)
- 4. Digital Module 25: Testlets models (Jiao & Liao)
- NCME Youtube Channel
 - 1. <u>Introduction to Equating</u> (by Dr. Robert Brennan)
 - 2. <u>IRT Equating Methods</u> (by Dr. Jaime Malatesta)

Introduction to MIRT Equating

1 Introduction to MIRT Equating

Section Learning Objectives

Describe the unidimensionality assumption required by IRT

List potential sources of multidimensionality of a test

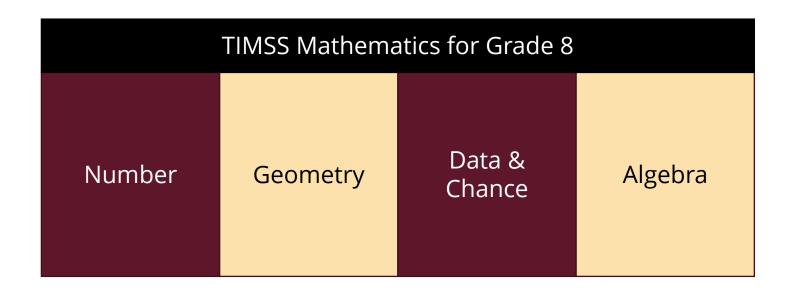
Explain benefits of using multidimensional IRT in the context of equating

Unidimensionality Assumption

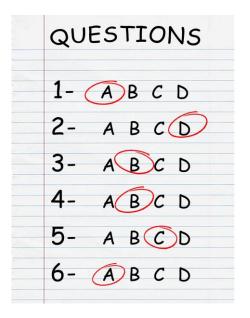
• Only a single ability is measured by items in a test

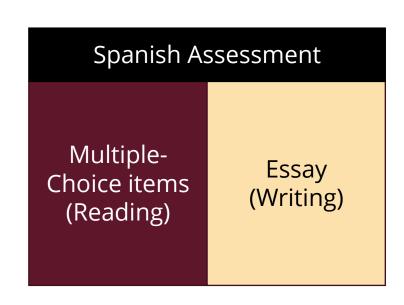
Psychological and educational processes are very complex

(Reckase, 2009)

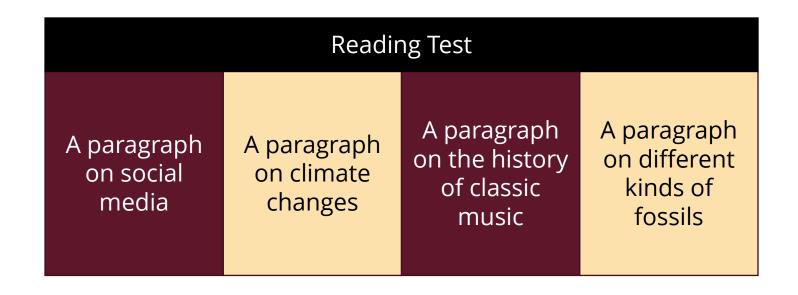

To what extent is a test multidimensional ?

• Content domains (Reise, 2012)


Multiple item formats (Bridgeman, 1992)


• Testlets (Jiao & Liao, 2021; Wainer et al., 2007)

- Content domains (Reise, 2012)
- Multiple item formats (Bridgeman, 1992)
- Testlets (Jiao & Liao, 2021; Wainer et al., 2007)


- Content domains (Reise, 2012)
- Multiple item formats (Bridgeman, 1992)
- Testlets (Jiao & Liao, 2021; Wainer et al., 2007)

- Content domains (Reise, 2012)
- Multiple item formats (Bridgeman, 1992)
- Testlets (Jiao & Liao, 2021; Wainer et al., 2007)

Applications of MIRT

Application of MIRT

- · Differential item functioning (Ackerman, 1992)
- · Test construction (Reckase, et al., 1988)
- · Computerized adaptive testing (Segall, 1996)
- · Scale linking (Davey, et al., 1996)
- · Equating (Lee & Brossman, 2012)

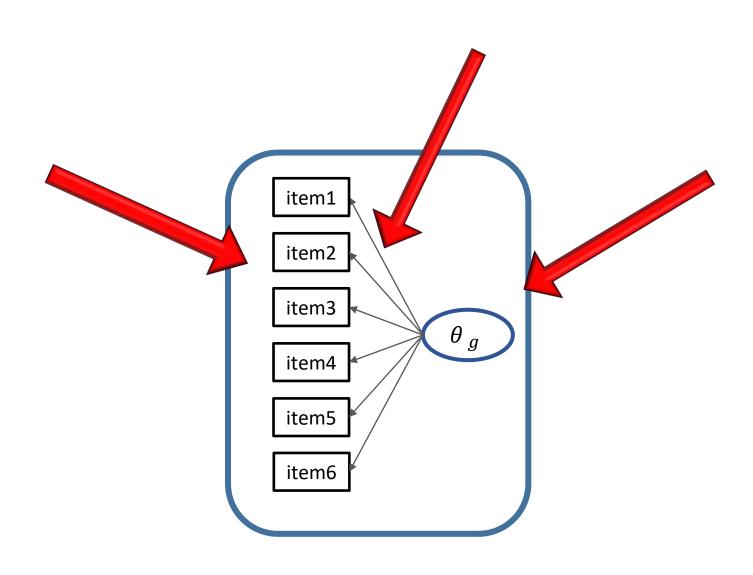
Impacts of Violation on Equating

· Inaccurate item and person parameter estimates (Ansley & Forsyth, 1985)

· MIRT equating methods provide fewer equating errors than UIRT equating methods (Lee & Brossman, 2012)

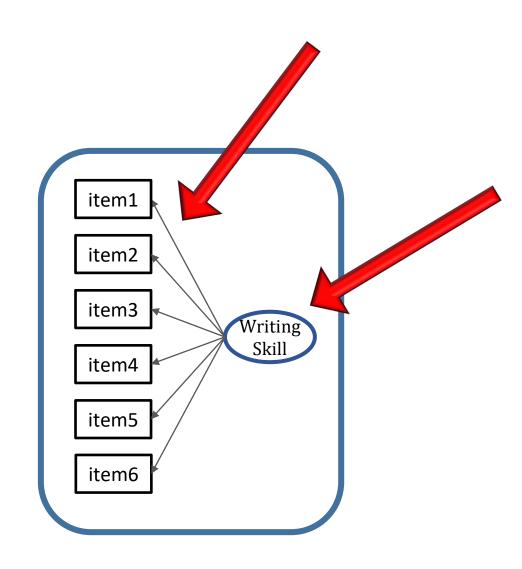
Multidimensional IRT Models

2 Multidimensional IRT Models

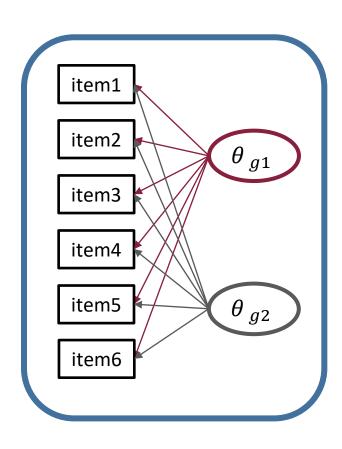

Section Learning Objectives

List multidimensional IRT models that have appeared in the equating context

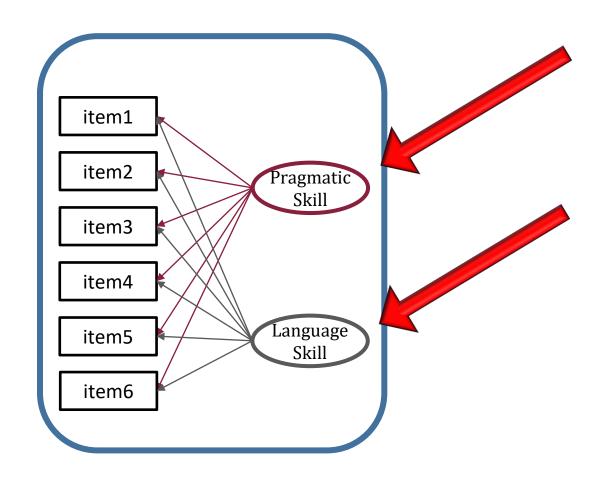
Describe characteristics of each MIRT model


Give examples in which each model is appropriate to be used

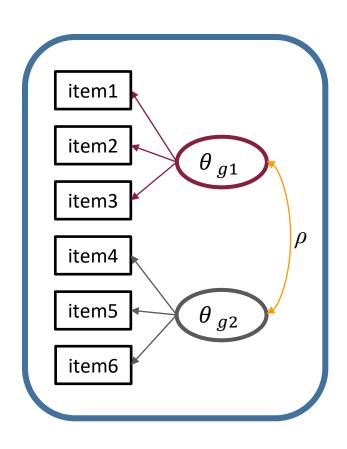
Unidimensional IRT



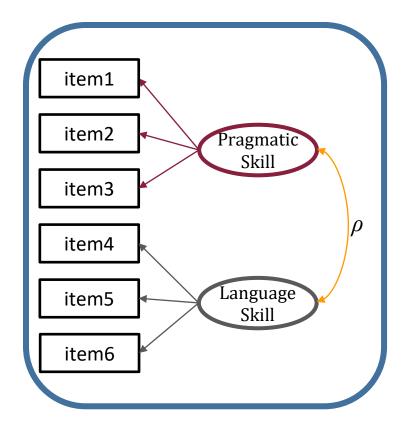
Unidimensional IRT



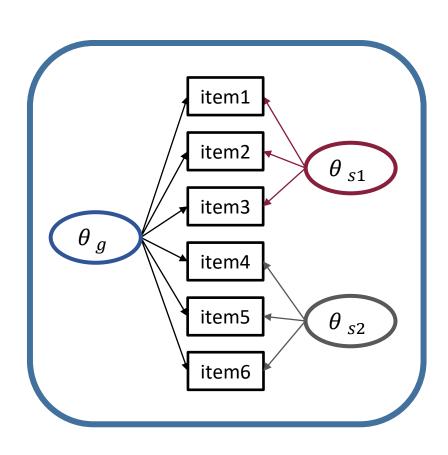
Full MIRT



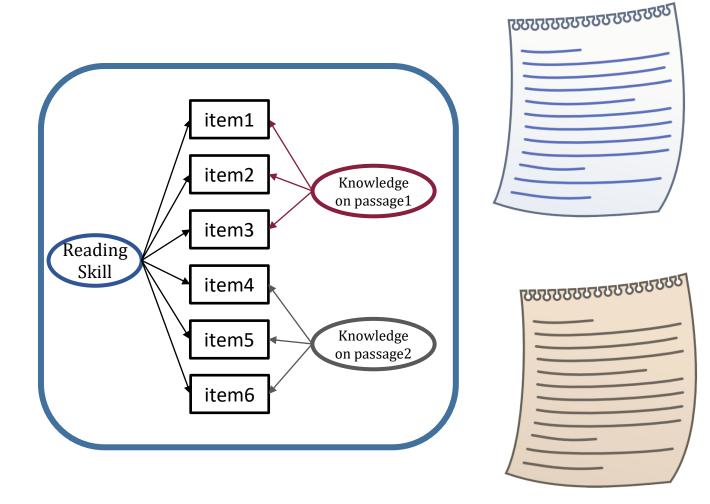
Full MIRT



Simple-Structure MIRT



Simple-Structure MIRT



Bi-Factor MIRT

Bi-Factor MIRT

Literature on MIRT Equating

3

Literature on MIRT Equating

Section Learning Objectives

Explain the history of MIRT equating research

Summarize the major findings on MIRT equating reported by previous studies

Articulate the gap in the MIRT equating literature

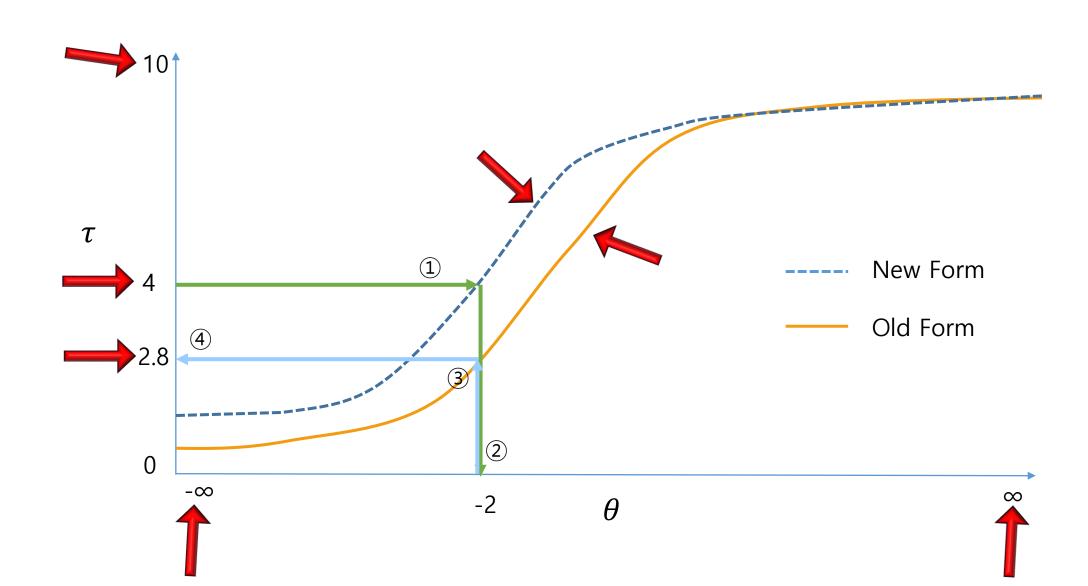
Explain challenges associated with MIRT true-score equating

Literature Review: Development

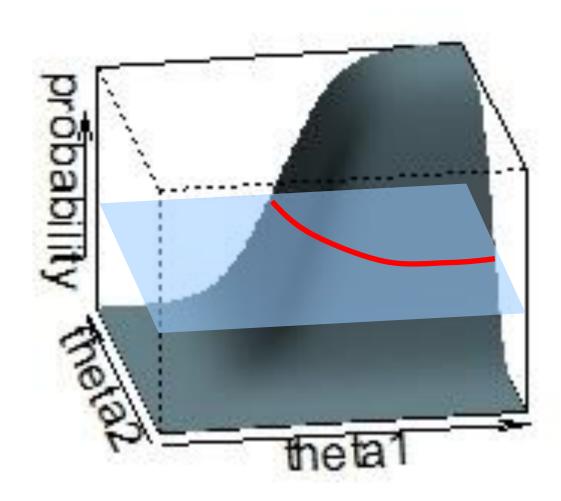
Author(s) / Year	Purpose	Equating Design	Equating Methods	Data
Lee & Brossman (2012)	Random Development groups of MIRT equating methods		Simple-structure MIRT observed	· Real
Brossman & Lee (2013)		Full MIRT observed Uni Approx. of MIRT observed Uni Approx. of MIRT true	· Real · Simulated	
Lee & Lee (2016)			Bi-factor MIRT observed	Pseudo-formsSimulated
Tao & Cao (2016)		Testlet-response MIRT observed Testlet-response MIRT true	·Simulated	
Lee et al. (2016)			Bi-factor MIRT true	· Real · Simulated
Kim & Cho (2020)			Projective bi-factor MIRT true	·Simulated
Kim, Lee, & Kolen (2020)		Random Groups CINEG	Simple-structure MIRT true	RealPseudo-formsSimulated

Literature Review: Comparison

Author(s) / Year	Purpose	Equating Design	Equating Methods	Data
Peterson & Lee (2014)		Random groups	Full MIRT observed Bi-factor MIRT observed	Pseudo-formsEquating back to itself
Lee, Lee, & Brennan (2014)		Random groups	Full MIRT observed Uni Approx. of MIRT observed Uni Approx. of MIRT true	· Simulated
Kim, Lim, & Lee (2019)	Comparison of equating methods	Random groups	Bi-factor MIRT observed Bi-factor MIRT true Testlet-response MIRT observed Testlet-response MIRT true	· Simulated
Choi (2019)		CINEG/NEAT	Simple-structure MIRT observed Bi-factor MIRT observed Full MIRT observed	· Real · Pseudo-forms
Panidvadtana et al.(2021)		CINEG/NEAT	Full MIRT observed	· Simulated


Summary of the Literature

- Multidimensional approaches provided more accurate equating results for multidimensional data (e.g., r < .8) (Kim et al., 2020; Peterson & Lee, 2014).
- A disattenuated correlation tells the relationship between two thetas with a higher value indicating less multidimensionality of data.
- For instance, under the simple-structure model, if the correlation is high (e.g., .95), then the test is essentially unidimensional as the two traits are not distinguishable and are almost the same or similar construct.


Summary of the Literature

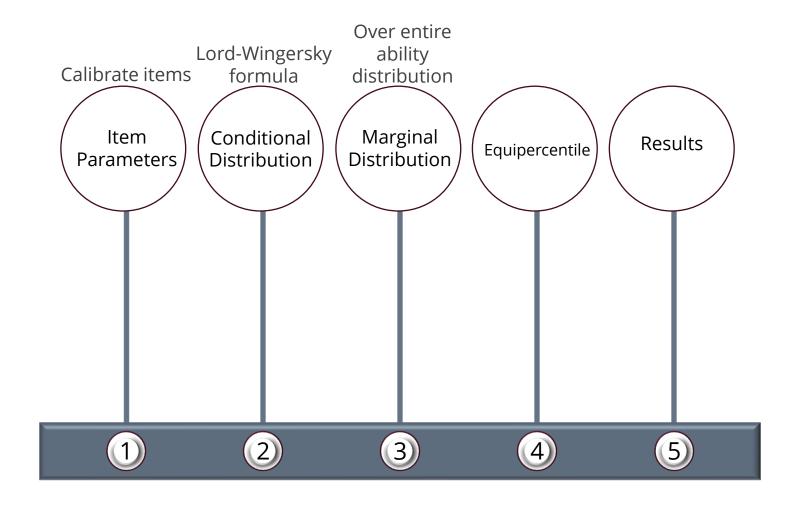
- Study factors examined included a) degree of multidimensionality, b) test length, c) sample size, d) form difference, e) sources of dimensionality, and f) the number of dimensions.
- Most research was conducted under the random groups design, except for a few recent works.
- More attention has been paid to observed-score equating.

True Score Equating on UIRT

Challenges with MIRT True-Score Equating

Which pair of $\theta_1 \& \theta_2$ to be used?

MIRT Observed-Score Equating


4 MIRT Observed-Score Equating

Section Learning Objectives

Describe how observed-score equating is performed with MIRT models

Identify differences between MIRT observed-score equating and UIRT observed-score equating

Procedure of MIRT Observed-Score Equating

Under 3 parameter-logistic model (*Note*. Item-specific and person-specific notations are omitted for simplicity)

Item Response Functions With Two Dimensions

Items tapping 1st dimension:

$$P(\theta_1) = c + \frac{1 - c}{1 + e^{\{-1.7a[\theta_1 + b]\}}}$$

Items tapping 2nd dimension:

$$P(\theta_2) = c + \frac{1 - c}{1 + e^{\{-1.7a[\theta_2 + b]\}}}$$

Under 3 parameter-logistic model

Item Response Functions With Two Dimensions

Items tapping 1st dimension:

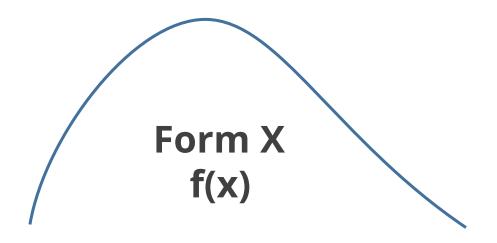
$$P(\theta_1) = c + \frac{1 - c}{1 + e^{\{-1.7a[\theta_1 + b]\}}}$$

Items tapping 2nd dimension:

$$P(\theta_2) = c + \frac{1 - c}{1 + e^{\{-1.7a[\theta_2 + b]\}}}$$

Lord-Wingersky formula with multiple abilities:

$$f_r(x|\mathbf{\theta}) = f_{r-1}(x|\mathbf{\theta})(1 - P_r),$$
 $x = 0$
= $f_{r-1}(x|\mathbf{\theta})(1 - P_r) + f_{r-1}(x - 1|\mathbf{\theta})P_r, 0 < x < r$
= $f_{r-1}(x - 1|\mathbf{\theta})P_r$ $x = r$

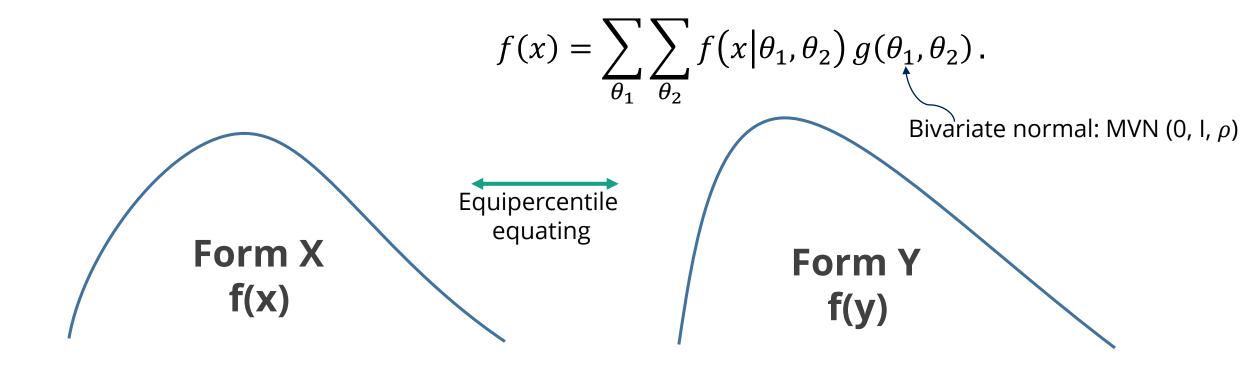

Under 3 parameter-logistic model

Marginal observedscore distribution:

$$f(x) = \iint_{-\infty}^{\infty} f(x|\theta_1, \theta_2) g(\theta_1, \theta_2) d(\theta_1) d(\theta_2)$$

From the previous slide

$$f(x) = \sum_{\theta_1} \sum_{\theta_2} f(x|\theta_1, \theta_2) g(\theta_1, \theta_2) g(\theta_1, \theta_2) g(\theta_2, \theta_2) g(\theta_1, \theta_2) g(\theta_2, \theta_2) g(\theta$$


1	А	В	С
1	theta1	theta2	р
2	-4	-4	3.08E-06
3	-4	-3.8	2.87E-06
4	-4	-3.6	1.47E-06
5	-4	-3.4	4.13E-07
6	-4	-3.2	6.36E-08
7	-4	-3	5.37E-09
8	-4	-2.8	2.48E-10
9	-4	-2.6	6.29E-12

Bivariate normal: MVN (0, I, ρ)

Under 3 parameter-logistic model

Marginal observedscore distribution:

$$f(x) = \iint_{-\infty}^{\infty} f(x|\theta_1, \theta_2) g(\theta_1, \theta_2) d(\theta_1) d(\theta_2)$$

Future Research

5

Future Research

Section Learning Objectives

Recognize practical constraints or considerations in applying MIRT equating to practices

Describe how to evaluate usefulness and appropriateness of MIRT equating in operational settings

Examine potential research topics

Practical Considerations

- Dimensionality Assessment
 - > Scree plot
 - Parallel analysis
 - Latent trait correlations or disattenuated correlations
- Multidimensionality benchmark
 - > r < .8

```
42
                                                          2.37
      43
                                                          2.42
Simple-structure MIRT item calibration
Example file for SS-MIRT
Group Latent Variable Means:
   Group
                       Label
                      Group1
                                                          0.00
Latent Variable Variance-Covariance Matrix for Group 1: Group1
                  s.e. P# Theta 2
   P# Theta 1
          1.00
         0.47
                  0.02
  151
                                1.00
```

Practical Considerations

- Number of Dimensions specified
 - > Substantial reduction in estimation efficiency (with +4 dimensions)
 - ➤ The use of 41 quadrature points for 2 dimensions leads to 41² (=1,681) quadrature points to be evaluated
 - ➤ Metropolis-Hastings Robbins-Monro (MH-RM; Cai, 2010)
- Confirmatory nature of some MIRT models
 - Simple-structure, bi-factor, testlet-response, etc.
 - Model determined by the table of specifications

Potential Research Areas

- Common-item Nonequivalent Groups Design (CINEG)
 - > For UIRT, several linking procedures exist including the Stocking-Lord method, Haebara method, the mean-mean and mean-sigma methods
 - ➤ For MIRT, the rotation and the orientation of the coordinate axis need to be adjusted
 - ➤ The rotation issue can be resolved by setting correlations to zero while adjusting the orientation of the axis is more complex to achieve
 - Most research conducted using concurrent calibration
 - ➤ MIRT linking with separate calibration (Oshima, Davey, & Lee, 2000)

Potential Research Areas

- Number of Dimensions
 - ➤ Mostly 2-3 dimensions in the current literature
 - Quadrature points and weights dramatically increases as the number of dimensions increases
 - > Parameter estimation process needs to be enhanced

- Differential multidimensionality
 - More than 2 dimensions (unequal level of multidimensionality across dimensions)
 - ➤ Between groups (very multidimensional for one group and essentially unidimensional for the other group)

Potential Research Areas

- True-score equating
 - ➤ How to approximate the relationship between a set of thetas on two forms?
- Practical implications
 - Multidimensionality due to group characteristics or form (test) characteristics?
 - > Impact on reported scores, classification decisions, etc.

You have reached the end of this section

Kim, S. Y. (2022). Multidimensional Item Response Theory Equating [Digital ITEMS Module 29]. *Educational Measurement: Issues and Practice, 41*(3), 85-86.