

Are Boat Pumpouts Compatible with Onsite Sewage Systems?

Marcia J. Degen, Ph.D., P.E. Virginia Department of Health Division of Water and Wastewater Services Marcia.Degen@vdh.virginia.gov

AGENDA

- Characteristics of Boat Pump Outs
- Comparison of Boat Pump Out (BPO) Waste to Domestic Sewage
- Options for Treating BPO Waste
- Limitations of Onsite Sewage Systems

Characteristics of Boat Sewage

						-	I			
	1	1	Ι	1		FECAL	ENTERO	GAL		
DATE	BOD	COD	NO2,3	TKN	TP	COLIFORM	coccus	PUMPED	Calls	
	Mg/l	mg/l	mg/l	mg/l	mg/l	# / 100ml	# / 100ml	Gallons		REMARKS
6/8/07						***************************************		75	1	
6/9/07								13	3	
6/10/07	2,890	5,000	0.20	2,290	113	29,000,000	>24,200	5	1	See note 1
6/29/07								0	0	
6/30/07								20	1	
7/1/07*	1,360	2,910	0.20	623	46	37,000	>24,200	60	3	See notes 1,2
7/6/07								0	0	
7/7/07								3	1	
7/8/07	3,740	8,660	0.44	1,670	141	46,000	>24,200	37	2	
7/13/07								75	1	
7/14/07	2,320	5,690	0.20	1,140	115	350,000	>24,200	68	1	See notes 1
7/15/07								15	1	
7/20/07	5,590	15,800	1.00	2,700	313	2,800,000	2,420,000	34	2	See note 3,4
7/21/07								8	2	
7/22/07	3,120	7,030	1.00	1,490	56	42,000,000	2,420,000	70	2	See note 3,5
7/27/07	1,850	4,590	1.00	1,230	118	42,000	1,200,000	25	2	See note 3
7/28/07	1,070	3,160	1700.00	2,860	56	10,800	166,000	25	2	
7/29/07								0	0	
8/3/07	2,880	6,260	1.00	1,320	84	1,310,000	308,000	90	3	See note 3
8/4/07	5,240	53,200	3.79	721	98	1,000	78,400	25	2	See notes 6,7
8/5/07								15	1	
8/10/07								0	0	
8/11/07								20	2	
08/12/07	2,940	6,410	40.00	1,360	50	230,000	687,000	50	3	See note 8
08/17/07							-	0	0	
08/18/07								0	0	
08/19/07	3,250	6,700	40.00	1,500	146	100,000	2,420,000	25	1	See note 9
Avg	3,172	11,136	163	1,662	117	7,578,980	1,212,425			
Total	-, -	,		.,		1,213,000	.,,	758	37	
						:				Avg
								20.5		Gals/boat

Summary

BOD, mg/l	COD, mg/l	NO2,NO3, mg/l	TKN, mg/l	TP, mg/l
3,172	11,136	163	1,662	117
1,700-3,500*				
Fecal Coliform,	Enterococcus Col/100 ml	Total gallons	Calls	Number of Samples
Col/100 ml		pumped		·
Col/100 ml 7,578,980	1,212,425	pumped 758	37	12

Microbial Contamination

• EPA: The most frequent sources of diseasecausing microorganisms in water

are: -

- sewage overflows
- polluted storm water runoff
- sewage treatment plant malfunctions
- boating wastes
- malfunctioning septic systems

Pathogens in Sewage cause Recreational Water Illnesses

Bacteria

Gastroenteritis (diarrhea, nausea, abdominal pain),
 Salmonellosis (food poisoning), cholera.

Viruses

 Fever, common colds, gastroenteritis, diarrhea, respiratory infections, hepatitis.

Protozoa

 Gastroenteritis, cryptosporidiosis and giardiasis (diarrhea, abdominal cramps), dysentery.

Worms

 Digestive disturbances, vomiting, restlessness, coughing, chest pain, fever, diarrhea.

Effects Associated with the Discharge of Raw & Partially Treated Sanitary Waste From Vessels

Public Health Concerns

- Transmit diseases like hepatitis, typhoid, and cholera to swimmers.
- Contaminate shellfish beds so shellfish become unsafe for human consumption.
- Make water visually repulsive and decreases the use of waterbodies for recreation.

Environmental Concerns

- Seep into groundwater—potentially contaminating drinking water.
- Harmful to wildlife and may result in fish kills.
 - nutrients can fertilize algae which results in the reduction of light penetration thereby killing grasses which provide nursery areas for young fish
 - Organic matter is decomposed by bacteria resulting in oxygen depleteion, which is then not available to fish and other aquatic animals that need oxygen to survive
 - coral reef communities particularly sensitive to untreated sewage.

Main Impacts

- Pathogens → Disease
- High BOD → Oxygen Demand → Reduced DO
- Nutrients (N&P) → Eutrophication

Types of Marine Sanitation Devices

Device	Vessel Length	Standard
Type I- Flow-through device (maceration and disinfection)	equal to or less than 65 feet in length	fecal coliform bacteria count < 1000 per 100 milliliters and have no visible floating solids.
Type II- Flow-through device (maceration and disinfection)	greater than 65 feet in length	fecal coliform bacteria count < 200 per 100 milliliters and suspended solids not greater than 150 milligrams per liter.
Type III- Holding tank	any length	No overboard discharge of treated or untreated sewage.

Boat Waste vs Domestic Sewage

	BOD mg/l	COD mg/l	TN mg/l	TP mg/l	Fecal Col/100ml
Boat Waste	3,172	11,136	1,662	117	7,500,000
Raw Sewage	242 110-400	463	38	5.7	NA
Ratio Boat Waste: Raw Sewage	13.11	24.05	43.74	20.53	NA

Options to Treat?

Haul to large central sewage facility

 Haul to a land based onsite sewage treatment system

Central Sewage Facility

Sewage treatment plants typically have excess capacity and are treating hundreds of thousands if not millions of gallons a day.

- >Highly regulated
- >Operators on site
- >Remote monitoring

- 500,000 gpd
- 80% of capacity (400,000 gpd)
- Excess capacity = 100,000 gpd

BOD

- 1 gallon boat waste= 13 gallon raw sewage
 Nitrogen
- 1 gallon boat waste = 43 gallons raw sewage
 Phosphorus
- 1 gallon boat waste = 20 gallons raw sewage

Boat Waste to Central STP

	BOD	Nitrogen	Phosphorus
Boat Waste:	13	43	20
Raw Sewage			

Excess capacity (domestic sewage) 100,000 gpd

Capacity for Boat Waste in Gallons			
BOD	Nitrogen	Phosphorus	
7,692	2,326	5,000	

Gallons of STP Capacity Required for 2,000 gallons of Boat Waste

BOD	Nitrogen	Phosphorus
26,000	86,000	40,000

Gallons of STP Capacity Required for 4,000 gallons of Boat Waste

BOD	Nitrogen	Phosphorus
52,000	172,000	80,000

- Final dispersal is to soil
- Volumes treated are much lower
- Operators on site intermittently
- Remote monitoring rare
- Excess capacity may be there, but not as much

- 20,000 gpd
- 80% of capacity (16,000 gpd)
- Excess capacity = 4,000 gpd

BOD

- 1 gallon boat waste= 13 gallon raw sewage
 Nitrogen
- 1 gallon boat waste = 43 gallons raw sewage
 Phosphorus
- 1 gallon boat waste = 20 gallons raw sewage

Boat Waste to Onsite STP

	BOD	Nitrogen	Phosphorus
Boat Waste:	13	43	20
Raw Sewage			

Excess capacity (domestic sewage) 4,000 gpd

Capacity for Boat Waste in Gallons				
BOD	Nitrogen	Phosphorus		
308	93	200		

Options to Make it Work

- The daily load must be reduced so that it operates within the available capacity
 - Pretreat the boat waste
 - Feed the boat waste to the treatment unit over multiple days
- Design for it

Outcome if Overloaded

Onsite STP

- Upset of sewage treatment process
- Under staffed to address
- Odors
- STP recovery in weeks
- Solids to drainfield
- Clogging of drainfield
- Potential to lose drainfield

Central STP

- Upset of sewage treatment process
- Staff onsite to manage
- Odors
- Recovery in days
- Solids to stream with aquatic impacts

Summary

 A large Central STP generally has more excess capacity and can absorb the extra load easier

 An onsite system is limited in excess capacity and the excess load can result in a catastrophic failure of the drainfield

 Options are available to mitigate the effects of the extra load, but it requires upfront design and more frequent onsite operation (\$\$)

Questions?

Marcia J. Degen, Ph.D. PE Marcia.Degen@vdh.virginia.gov

