

Marine corrosion and extreme environment capabilities for basic and applied research for NACE consortia

Homero Castaneda, FNACE
Associate Professor
Director of the National Corrosion and Materials Reliability
Laboratory, email: hcastaneda@tamu.edu
Texas A&M University

National Corrosion and Materials Reliability Laboratory TEXAS A&M UNIVERSITY.

National Corrosion and Materials Reliability Laboratory (NCMRL) How can we help industry?

- Being a World Class Corrosion Education and Research Center
- Bridging the gap between fundamental research (science) and technology (engineering)
- Corrosion Minor and certificate

NCMRL-Main Laboratory

Marine/Maritime corrosion

Basic and Applied Research Capabilities for the following topics:

- VOC Reduction for Maritime Coatings (Design of coatings)
- Biofouling Technology in the Marine Industry
- Effect of Ballast Water Treatment on PSPC-compliant Coating in Ballast Water Tanks
- Characterization and quantification in harsh environments
- Reliability, Life time prediction Models based on deterministic-probabilistic approach (Artificial intelligence)- corrosion management
- Sensors use and development for marine applications

Corrosion control and protection for Maritime coatings

Design and trends for anti-corrosion-performance of substrates/coatings

Graphene at Work Preventing Corrosion

- The four main modes of corrosion inhibition by graphene include:
 - Barrier protection
 - Tortuous path
 - Establishment of a Schottky barrier
 - Providing an alternative electronic pathway
- These modes help to impede or cut-off the electrochemical processes required for corrosion to occur

-Dennis, R. V.; et al. Graphene Coatings for the Corrosion Protection of Base Metals In Graphene Technology. Wiley-VCH, Weinheim, Germany. 2016 (in press).
-Dennis, R. V.; Patil, V.; Andrews, J. L.; Aldinger, J. P.; Yadav, G. D.; Banerjee, S. Mater. Res. Express 2015, 2, 032001.

Poly(ether imide) (PEI) systems containing nanostructured magnesium and graphene*

Barrier Protection

Barrier Protection + Oxygen inhibition

Sacrificial Protection

New Paradigm

^{*}In collaboration with Dr. Sarbajit Banerjee and Rachel Davidson

What information can be extracted from 2D impedance model?

- Proposed to characterize the degradation mechanism of a multilayered coating/metallic substrate system.
- Determined the ratio of penetration/wetness of coating

Design based on material heterogeneous

Multivariate Control Process

- The distribution of physical properties is proposed to understand the non-ideal responses of coatings.
- Understanding methods and techniques response through local physical properties
- A unique attempt to apply jointly multivariate physical properties to the field of research from analytical and electrochemical methods

1) Cho et. al., in Review, Corrosion Science 2019

2D schematic in different harsh environments

- Substrate-characteristics
- Pretreatment characteristics—thickness material
- Primer characteristics- thickness- material
- Topcoat characteristics
 — thickness material
- Additives
- Pressure
- Temperature
- Electrolyte concentration and conditions (cyclic or full immersion)
- Environmental parameters (ionic species, Cl, SO4=, HCO3-, H2SO4, etc..)

The schematic of 2D networks of electrochemical impedance elements for layer-by-layer composite coating system based on charge and energy conservation

RELLIS CAMPUS/TEES CENTERS

Offshore technology center

Towing carriage

Current Generator

Wave boards

Extreme Environments

- Capable of strain rate from 10⁻⁵ to 10⁻⁷ s⁻¹
- Adapted for use with H₂S containing
- Cells available for tests using electrochemical instrumentation

Cortest Autoclave system:

A 4-liter autoclave vessel, which is made from Hastelloy© C-276.

This autoclave system is designed for a MAWP of 350 bar (about 5000 psi), and it can withstand a maximum working temperature of 300°C

Testing and characterization

At 16 h At 136 h

At 232 h

Laboratory testing

Accelerating testing and characterization simulating Marine conditions real time monitoring

os287296

OS287297

no corrosion indication

OS287299

corrosion indication

O\$287296

OS287297

corrosion indication

OS287299

corrosion indication

OS287296 corrosion indication

OS287297

corrosion indication

OS287299

corrosion indication

Antifouling and MIC

MIC testing set-up in an anaerobic chamber

Castaneda et al, Corrosion Science , 2008

Ref. www

Quantification of degradation mechanisms

Cr (VI) coating/aluminum 2024 system

SEM morphology of CCC in the Interface of primer/substrate after exposure for 260 days

Chromium Conversion: $Cr_2O_7^{2-} + 8H^+ + 6e^- \rightarrow 2Cr(OH)_3 + H_2O$

Aluminum Oxidization: Al \rightarrow Al³⁺ + 3e⁻ 1) S. Cho et al (2017) – Electrochimica Acta

Simulation and design of Performance

Electrochemical Impedance Modeling Based on Nodal Analysis

Various electrode probe positions in the condition of evenly distributed current (grid CE)

Electrochemical Impedance Modeling Based on Nodal Analysis

Effect of defect size

- This calculation does not consider interfacial electrochemical process which will be considered with experimental results later.

Reliability Models

We have proposed a rational characterization and quantification concept of damage/performance evolution that incorporate modular elements corresponding to deterministic and probabilistic modeling approach.

Distinctive modes of corrosion inhibition, self-healing, and mass transfer blocking based on different properties of the coatings. The presentation includes a versatile library of multifunctional coatings that each bring about a distinctive mode of corrosion control and deploy an experimental-theoretical-driven approach to rapidly leading to the performance of the systems in different corrosive-harsh environments.

The effort seeks to combine distinctive aspects of coating design with deterministic and probablilistic damage/performance modeling in extreme environments and predicting operational lifetime for the design coatings/substrate system.

Reliability Modeling

Ivan Karayan et al, Journal of Alloys and compounds, 2016

Validation for Modeling

The effect of electrolyte conductivity in the condition of concentrated current probe

Sensors for Marine conditions

Experimental test for various curved structures of marine applications

- <u>Two-electrode system in the dry condition</u>
 - ✓ A symmetrical two-electrode sandwich-like cell (area of 2.25 cm²)
 - ✓ Metal substrates (WE) and a stainless-steel panel with silver paste (CE/RE)
 - √ Test sequences
 - Potential difference between two electrodes: 5
 min
 - EIS range of 10⁵ Hz to 10 Hz and an amplitude of 50 mV rms

Measure Current

Probabilistic life prediction model

The probabilistic approach considers the laboratory and field exposure samples correlation.

The image of an anticipated final outcome for probabilistic life prediction

Detection and Location of Early Corrosion Substrate/Coating with Electromagnetic Reflectometry

Pipeline

Paradigm Shift

Current-based approach

Detection and Location of Early Corrosion Substrate/Coating with Electromagnetic Reflectometry

Defects have been successfully detected, located and excavated with EM reflectometry on different kind of pipeline coating (coal tar, somastic, tape coating...)

Thanks to our corrosion group

Sponsors for the NCMRL

