This 12 station virtual training program allows you to refresh your CP skills, keep up with current practical techniques, and prepare for your CP classes and exams by working through step-by-step, real-life testing scenarios that you could encounter in a live CP environment.

With this interactive program, students can practice their CP skills at home, from the office, or on the go.

Individual Pricing:
- Member - $379.00 $284.25
- Non-Member - $429.00 $321.75

Discount available through 9/30/2020
Use promo code VTS25

Group Pricing:
To learn more about options, please contact FirstService at +1 800-797-6223.

To start working in the program, visit: nace.org/vts
Course Descriptions

Station 1: Measuring Structure-to-Electrolyte Potential
Identify each of the test wires (structures) by obtaining structure-to-electrolyte potential measurements using a multi-meter and reference electrode.

Station 2: Casing and Carrier Pipe-to-Electrolyte Potential
Identify each of the test wires (structures) by obtaining structure-to-electrolyte potential measurements using a multi-meter and reference electrode.

Station 3: Soil Resistivity Measurements
Using the equipment provided, obtain soil resistivity measurements using the Wenner 4-pin method, the Soil Box method, and the Collins Rod.

Station 4: Metallic Submersion Board
Using metals identified as the reference, measure and record the structure-to-reference potential and build a practical galvanic series.

Station 5: Electrical Isolation Testing
Determine the location of the isolating flange short(s) and determine the effectiveness of underground isolating unions.

Station 6: Current Shunt Measurements
Use shunts to measure a millivolt (mV) drop across the shunt pins and calculate the current by utilizing ratio, Ohm's Law or shunt factor.

Station 7: Electrical Circuits
Measure the resistance of resistors, connect resistors in parallel with the voltage source, and measure the course voltage.

Station 8: Current Interrupter
Determine if your structure is adequately cathodically protected by using a current interrupter to obtain "on" and "interrupted" structure to soil potential measurements.

Station 9: Rectifier Measurements
Record information from the rectifier data provided and perform a diode check.

Station 10: Polarity Board
Measure and record the potential differences between each pair of banana jacks and use the data gathered to order the banana jacks from the most negative to the least negative polarity.

Station 11: UST Test Station
Estimate which of the structures provided may be electrically continuous or shorted, by taking potentials to a single cell position (fixed cell) and measure the structure-to-electrolyte potential of each structure provided.

Station 12: Calculation Station
Convert potential measurements and apply electrical theory.