VAPOR INTRUSION

State Bar of Michigan

Environmental Law

Section

September 18, 2014

Matthew Williams

Vapor Intrusion Specialist Remediation & Redevelopment Division

Vapor Intrusion!

Objectives

- Introduce VI concepts and issues
- Sampling Media
- Issues that affect VI
- Helpful hints
- Installing a soil gas point

Terms

Concentrations in the soil, soil gas, and groundwater that generate vapors =

Vapor Source

Migration of vapors from contaminated groundwater or soil *into* an overlying building =

Vapor Intrusion

 stack effects wind effects utility line vapor intrusion through cracks in foundation slab vapor intrusion through floor-wall cracks water table soil vapor migration groundwater plume of VOCs soil contaminated with VOCs **Environmental** Septem

Figure 1. Migration of Soil Vapors to Indoor Air

Screening Distances

Typical VI Scenarios

How do we investigate VI?

Advantages and Disadvantages Associated with Sampling Media

Media	Pros	Cons			
Groundwater sampling	Commonly collected during the course of an investigation	when sources are present in the vadose zone			
	Helps assess potential downgradient impacts of VI				
	Can be performed at properties having no existing buildings				
Soil sampling	Commonly collected during the course of an investigation	VOC loss on sampling may be significant, which can mean vapor concentrations may be			
	Can be performed at properties having no existing buildings				
	Detections may indicate VI issues	May not accuratly represent vapor concentration when sources are present adjacent to collected sample			
Soil gas sampling	Can provide an estimate of vapor concentrations near the source or near buildings	Lateral and vertical spatial variability			
	Collected near buildings; can be performed without entering the structure	Results may not be representative of vapor concentrations under a building			
	Can be performed at properties having no existing buildings	May not reflect how soil gas concentrations will change if a building is subsequently built on a currently vacant property			
Sub-slab sampling of vapors beneath buildings	Can provide measure of vapor concentration directly below indoor air space	Method is intrusive			
	Closest subsurface sample to receptors	Cannot be performed at properties having no existing buildings			
Indoor air sampling		Indoor contaminants and lifestyle sources may bias the data			
	Can provide direct measurement of Indoor air	Method is intrusive			
	concentrations	Cannot be performed at properties having no existing buildings			
		Varies significantly over time			

Environmental Law

Soil Samples and VI

- "Generally" not a good predictor
- Where the sample is collected matters

Soil (cont)

• PROs

- Commonly collected during the course of an investigation
- Sampling methodology is well accepted

• CONs

- May not accurately represent vapor concentrations when sources are present adjacent to collected sample
- VOC loss on sampling may be significant

Groundwater

• PROs

- Commonly collected during the course of an investigation
- Can be performed at properties having no existing buildings

• CONs

- May not accurately represent vapor concentrations when sources are present in the vadose zone
- Modeled indoor air concentration

Soil Gas

PROs

- Can provide an estimate of vapor concentrations near the source or near buildings
- Can be performed without entering the structure

CONs

- Results may not be representative of vapor concentrations under a building
- May not reflect how soil
 gas concentrations will
 change if a building is
 subsequently built on a
 currently vacant property

Subslab Soil Gas

• PROs

- Can provide measure of vapor concentration directly below indoor air space
- Closest subsurface sample to receptors

CONs

- Method is intrusive
- Cannot be performed at properties having no existing buildings

Why not indoor air?

- Highly variable
 - Seasonal
- TWA vs. grab
- Expensive
 - Relocation
 - Prep/post
- Expect indoor air concentrations

Variability of Indoor Air

EPA 2011 Indoor Air Study

Figure 4. Total percent detections of common VOCs in background indoor air compiled from 15 studies conducted between 1990 and 2005. Range of reporting limits is shown in parentheses.

Some are easy to figure out. . .

PCE > 95% by weight Can also include:

- TCE
- Toluene
- Acetone
- More...

Can include:

- TCE
- Toluene
- Acetone
- More...

PCE

Some aren't

- Naphthalene (31 μg/m³)
- 1,4 Dioxane (2,100 μg/m³)
- Toluene (120 μg/m³)
- Ethanol (600,000 μg/m³)
- And a bunch of others . . .

Contains:

- TCE
- PCE (up to 95% by weight)

Contains:

- Ethylbenzene (3,400 μg/m³)
- Toluene (660 μg/m³)
- TPH (390,000 μg/m³)
- And more . . .

1,2 DCA

Grilling with flavor. . .

Why not OSHA values?

- Not designed for the "non-worker"
- Requires awareness training, PPE, and/or medical monitoring

- "Simply complying with OSHA's antiquated PELs will not guarantee that workers will be safe." - David Michaels, Assistant Secretary of Labor for Occupational Safety and Health
- OSHA may be acceptable
- NOT RESIDENTIAL

Indoor Air

PROs

 Can provide direct measurement of indoor air concentrations

CONs

- Method is intrusive
- Indoor contaminants and lifestyle sources may bias the data
- Varies significantly over time
- Cannot be performed at properties having no existing buildings

What does the data mean?

 $attenuation factor = \frac{Indoor Air Concentration}{Source Concentration}$

attenuation factor = α

 α X (Source Concentration) > Indoor Air Concentration

Johnson and Ettinger (1991)

$$\alpha = \left(\frac{C_{\text{indoor}}/C_{\text{source}}}{\left[\frac{D_T^{\text{eff}} A_B}{Q_{\text{building}} L_T} x \exp\left(\frac{Q_{\text{soil}} L_{\text{crack}}}{D^{\text{crack}} A_{\text{crack}}}\right)\right]}$$

$$\alpha = \left[\exp\left(\frac{Q_{\text{soil}} L_{\text{crack}}}{D_{\text{crack}} A_{\text{crack}}}\right) + \left(\frac{D_T^{\text{eff}} A_B}{Q_{\text{building}} L_T}\right) + \left(\frac{D_T^{\text{eff}} A_B}{Q_{\text{soil}} L_T}\right) \left[\exp\left(\frac{Q_{\text{soil}} L_{\text{crack}}}{D^{\text{crack}} A_{\text{crack}}}\right) - 1\right]\right]$$

*Johnson, P. C, and R. A. Ettinger. 1991. Heuristic model for predicting the intrusion rate of contaminant vapors in buildings. Environ. Sci. Technol. 25: 1445-1452

Empirical Evidence

http://www.epa.gov/oswer/vaporintrusion/vi data.html

Over 1,600 "paired" data points

Interpreting the Results

- Variability (spatial and temporal)
 - Construction
 - Size of structure
 - Slab-on-grade vs crawlspace
 - Heating and cooling systems
 - Precipitation and weather
 - Measurement method

Interpreting the Results (cont)

- Distance to source
 - Assumes knowledge of the extent of source of vapors
- Depth to water (if a source)
- Soil characteristics
 - bulk density, total porosity, water filled porosity, soil water content, grain size
- System temperature (north vs south)
- Air exchange rate

Building Construction

Building Size and Source Location

Measured Soil Gas Profile for TCE – Phase 2

Figure 2-2. Soil gas and groundwater concentrations below a slab (Schumacher et al., 2010).

Soil Types

Quateriary Geology of Michigan

• Sand – 39.4%

• Loam – 36.7%

• Clay – 15.9%

• Other – 8.0%

Environmental Law Section September 18, 2014

Temperature

- Assign temp based on identified county average
 - Data based on 72Stations
 - Daily average
 - Up to 15 years of data

Multiple Lines of Evidence

- Soil gas spatial concentrations
- Groundwater spatial data
- Building construction
- Sub-slab soil gas data
- Indoor air data
- Soil stratigraphy
- Temporal patterns

Investigate vs. Presumptively Mitigate

Extra time and cost required for investigation

VS.

Cost to presumptively mitigate the site (allowed for under Part 201)

Response Actions

- Source Area Remediation
- Institutional Controls
- Building Controls

APPENDIX 1 Recommended Parameters for Common Petroleum Products

Parameters	Leaded Gasoline ¹	Unleaded Gasoline ²	Petro. Solv ³	Light Distillate Oils ⁴	Residual Oils ⁵	Used Motor Oils ⁶	Waste Oils ⁷	Unknown
BTEX	X	Х	Х	Х		Х	Х	Х
Trimethylbenzene Isomers (TMB) ⁸	×	х	х	х	х	х	х	Х
MTBE		×						Х
1,2-Dibromoethane ¹ (ethylene dibromide)	×					×	×	Х
1,2-Dichloroethane ¹	×					Х	x	X
PNAs ⁹			х	х	x	Х	х	х
Naphthalene/ 2-methylnaphthalene	x	×						х
Cadmium ¹⁰						Х	×	×
Chromium ¹⁰						Х	х	х
Lead ¹⁰	х					Х	x	х
Volatile Halocarbons ¹¹						х	х	×
PCBs							×	×

PNAs with HLC $> 10^{-6}$

- Naphthalene
- 2-methylnaphthalene
- Acenaphthene
- Acenaphthylene
- Fluorene

- Anthracene
- Phenanthrene
- Ethylene Dibromide (1,2-Dibromoethane)
- Fluoranthene
- Pyrene

*TO-15 can't analyze everything . . .

Common Soil Gas Methods

- TO-15
- TO-17
- TO-13A
 - (via Low-Flow)
- NIOSH
- EPA

NOTE:

JUST LIKE SOIL AND GROUNDWATER, MORE THAN ONE METHOD MAY BE REQUIRED!

Typical Soil Gas Concentrations

- SG concentrations can create headaches!
 - Typical Soil Gas Concentrations
 - Benzene near gasoline spill: >100,000 μg/m³
 - TPH vapor: >1,000,000 μg/m³
 - TCE near a degreaser: >75,000 μg/m³
 - PCE under dry cleaner: >100,000 μg/m³

Something else to think about. . .

- How Fast Do Vapors Move?
 - Distance = $(2 * D_e * t)^{1/2}$

where:

D_e is the effective diffusivity.

t is time

How Fast Do Vapors Move (cont)?

- For many vapors, the gaseous diffusion coefficient is approximately 0.1 cm²/s
- Soil porosity varies depending on the type of soil
 - Several equations are available to calculate the effect of air-filled and total porosity on the diffusivity
 - Conservative approximation is that the porosity reduces the gaseous diffusivity by a factor of 10
 - $-D_e$ can be approximated as 0.01 cm²/s

How Fast Do Vapors Move (cont)?

Distance

~1 inch | day = $(2 * 0.01 \text{ cm}^2/\text{s} * 31,536,000 \text{ s})^{1/2}$

 \sim 800 cm = \sim 25 feet per year

Into and through the groundwater in a year: 3 inches

*Assumes liquid diffusion

*Assumes liquid diffusion, not gaseous diffusion, coefficient for compounds is approximately 0.00001 cm²/s

Consider when sampling:

- Site geology
- Sample volume
- Sample collection vacuum
- Sample probe purging
- Soil gas equilibration
- Sampling interval
- Sampling method
- Weather?

Quality of the Data

GOAL is to collect reliable data!

- How much to collect?
 - number of samples vs volume
 - Greater the volume, greater the uncertainty
 - More samples, better characterization
- Where will they be collected?
 - Closer to surface, harder to collect
 - 5' bgs generally considered stable (building?)

Quality of the Data (cont)

- When to collect
 - Weather
 - Seasonal effects
 - Extreme temperature variations
 - Heating/cooling of structure
 - Heavy periods of rain
- New vs old vs modified
- Will it change the concentrations?

Reliable Data Requires

- Just like soil and groundwater
 - Good sampling techniques
 - Good analytical methods
 - Good CSM (where is the source)
 - Understanding what the data means
- Experience with vapor sampling
 - Have they done this before?
 - Quality/experience of field staff? Sr or Jr?

Chain of Custody. . .

Breakthrough. . . NOT a lab issue, a sampling issue

0-15 (70-15)			A	Nguot 10: 515	10.461	Matrix: Air	Analyst		
(Symulater)	Result 0	ONS	Reporting Limit	DIMIN	Prep Date	Prep Batch	Analysis Date	Analysis Balo	
L'Acetone (NN)	398	pby	- 51	.10	08/27/12	VA12H27B	06/25/12	VAXDH278	
2 Berzere (VV)	€.0	ydqv .	2.8	10	06/27/12	VA12H21B	08/25/12	VAIZHOTE	
3. Berzyl Chloride (NN)	0	ppbv	67	340	08/31/12	VATZHOTA	06/31/12	VAX2H31A	
4 Bromodichioromethane (NN)	U	ppby	2.8	10	08/27/12	VA12H278	08/28/12	VAIZHZTE	
5 Bromotom (NN)	U	ppby	61	240	05/31/12	VATZHETA	06/31/12	VATZHZTA	
6. Bromomethane (NN)	U	ppby	2.6	10	08/27/12	VA12H278	05/25/12	WATZHQ78	
7.1,3-Butatiene (NN)	Ų	pptv	.55	10	06/27/12	VAISH278	05/25/12	VAIGHOTE	
6.2-Butanone (NN)	U	ppby	12	10	080712	VA12H278	08/25/12	VAIGHER	
S Carbon Deutlion (NN)	18	ppbv	13	10	08/27/12	VAI2H276	08/25/12	VAXDHZTE	
10 Carbon Tetrachionde (NN)	U.	ppby	2.7	10	08/27/12	VA12H276	06/25/12	VAIDHOTE	
11. Chomberzene (NN)	U	ppby	67	240	083112	VAIZHUM	08/31/12	VAIDHOU	
12 Chloroethane (NN)	U	ppby	1.3	10	06/27/12	VA12H278	08/28/12	WAIGHOTE	
The same and	- 22	CODY	2.6	10	08/27/12	VA12H278	08/28/12	VAIDHOTE	
4 Chortmetiane (NY)	73 J.L+	pov	27	10	08/27/12	VA12H27B	05/25/12	VAIZHZTE	
***		eev .	28	. 10	58/27/12	VA12H278	06/26/12	VAIGHZTE	
16 Dipromodhipromethane (NN)	υ	pppy	2.9	10	08/27/12	VA12H278	06/25/12	VAIZHOTE	
17. 1.2-Okthorobenzene (NN)	U	ppby	67	240	0631112	VA12H01A	08/31/12	VAIZHSIA	
Iš. 1.3-Oktroroperzene (NN)	U	ppby	67	240	0831/12	VA12HD1A	06/31/12	VAIDHOU	
19 1.4-Olchioroberzene (NN)	U	ppbv	67	240	0601/12	VA12H01A	08/31/12	VAIQHOU	
25 Dioniorodifluoromethane (NN)	U	ppby	2.6	10	06/07/12	VA12H278	08/28/12	VAIZHOTE	
21. 1,1-Oktrorpetrane (NV)	U	poby	2.6	10	08/27/12	VA12H276	06/25/12	VAIGHETE	
22 1,2-Oktyproethane (NN)	U	ppby	2.8	10	08/27/12	VA12H278	05/25/12	VAIGHER	
23 1,1-Dichloroethene (NN)	U	998V	2.6	10	06/27/12	VA12H278	08/28/12	VAIGHOTE	
24 ds-1,2-Dichloroethene (NN)	U	0004	2.8	10	08/27/12	VA12H27B	06/26/12	VAIZHZTE	
25 trans-1,2-Dictioroethere (NN)	U	ppbv	2.8	10	08/27/12	VA12H276	06/25/12	VAIGHOTE	
26.1.2-Olohoropropane (NN)	U	pppy	5.5	10	06/07/12	VA12H278	06/26/12	VAIZH278	
27. dti-1,3-Dichloropropene (NN)	U	ppby	1.5	30	08/27/12	VA12H078	08/25/12	VAIGHOTS	
25 trans-1.3-Dichloropropene (NN)	U	poby	1.2	10	08/27/12	VA12H278	06/25/12	VAIZHZTS	
29 1,4-Oloxane (NN)	U	ppbv	5.5	10	06/27/12	VA12H278	08/28/12	VAIGHOTE	
3G Ethyl Apelate (NN)	U	ppby	28	10	9897112	VA12H278	08/28/12	VAIZHZTE	
31 Etryberzene (NN)	u u	ppby	67	240	0601/12	VATZHOTA	08/31/12	VAIDHOU	
12 Ethylene Dibromide (NN)	U	ppby	2.8	10	08/27/12	VA12H278	06/25/12	VAIGHOTE	
33.4-Ethyloniene (NV)	U	poby	130	240	08/31/12	VAIZHUIA	08/31/12	VAIZHOU	
34 n-Heptane (NN)	U	ppby	67	240	08/31/12	VATZHIJIA	05/31/12	VAIZHBIA	
35 riexachiorobutadiene (NV)	U.	pobv	67	240	08/31/12	VAIZHOIA	06/31/12	VAIDH31A	
36. n-Hiesane (NN)	U	ppby	2.8	10	08/27/12	VA12H278	06/25/12	VAIDHOTE	
ST Sussessons (NAC)	- 6	opby	29	10	0807/12	VA12H278	06/26/12	VAIDHOTE	
iš istoropanoi (Revi)	150000 E	obv	3200	1100	08/31/12	VA12H01A	09/01/12	VAIDHDIA	
O Klastina or Charles (1991)		oby	13	10	08/27/12	VA12H276	05/25/12	VAIDHOTE	

Environmental Law September 1

TARLE 4 SOIL VAPOR ANALYTICAL RESULTS

Soil Vapor Monitoring Point	Screened Interval	Sample Date	Explosive Limit (LEL)	Oxygen	Hydrogen Sulfide	Benzene	Toluene	Ethyl- benzene	m & p- Xylene	o-Xylene	Total Xylenes	Total Hydrocarbons as Gas	Carbon Dioxide	Methane	2-Propanol 1
ELINATE CO.	feet bgs	W-10.4 (10.0) T	%	76	ppm	ppbv	ppbv	ppbv	ppby	ppbv	ppby	ppby	96	*	ppby
SVMP-1S	4.96-5.00	7/31/2012	NM		NM	2.6	7.1	<1.0	3.2	<1.0	NA.	1,580	<1.7	2.4	
SVMP-1S	4.96-5.00	3/06/2013	0	19.1	0.0	< 0.74	< 0.74	< 0.74	2.3	0.88	. NA	365	NA	<4.0	
SVMP-1S	4.96-5.00	6/05/2013	0	14.8	0.0	<16.1	77.1	68.0	NA.	NA.	2,950	219,000	NA	<4.7	N/
SVMP-11	8.46-8.50	7/31/2012	NM	NM	NM	<20.5	<20.5	64.3	261	108	NA.	4,050	4.2	<2.2	***
SVMP-11	8.46-8.50	3/06/2013	1	20.0	0.0	< 0.80	<0.80	<0.80	<1.6	<0.80	NA	1,040	NA.	<4.4	117
SVMP-11	8.46-8.50	6/05/2013	0	17.2	0.0	<64.4	<64.4	<64.4	NA.	NA.	260	10,300	NA.	<7.0	
SVMP-1D	11.96-12.00	7/31/2012	0	19.2	0.0	42.4	109	<42.4	531	60.5	NA	82,000	45.7		
SVMP-1D	11.96-12.00	3/06/2013	0	5.0	0.0	<1,330	<1,330	<1.330	9.560	<1,330	NA NA	The second second second	10.2	323	<42.4
SVMP-1D	11.96-12.00	6/05/2013	0	-	0.0	<15.5	<15.5	<15.5	NA.	NA NA	869	580,000 108,000	NA NA	<5.8 <7.0	<1,330 N/
SVMP-2S	4.96-5.00	7/31/2012	0	19.3	0.0	1.5	<1.0	3.7	4.8	<1.0	AVA.	4 252			
SVMP-2S	4.96-5.00	3/06/2013	0	the second secon	0.0	<0.80	<.80	<.80	<1.6	<0.80	NA NA		4.3	<2.0	
SVMP-2S	4.96-5.00	6/05/2013	0		0.0	1.0	11.0	3.8	NA.	NA.	NA 29.2	358 5,230	NA NA	7.3	299.0 N/
SVMP-21	0.40 0.50	*******										5,450	1401	-9.0	THE
SVMP-21	8.46-8.50	7/31/2012	0		0.0	<2.4	<2.4	<2.4	<4.8	<2.4	NA.	1,510	7.9	<2.1	8.7
SVMP-21	8.46-8.50	3/06/2013	0		0.0	<83.1	<83.1	<83.1	<166	<83.1	NA	9,290	NA.	<5.7	<83.1
SVMP-21	8.46-8.50	6/05/2013	0	19.3	0.0	4.3	38.9	7.7	NA.	NA.	42.2	2,900	NA	<7.0	N/
SVMP-2D	11.96-12.00	7/31/2012	0	18.0	0.0	<2,590	<2,590	2.720	40.900	<2.590	NA.	1.630,000	11.0	202	<2.590
SVMP-2D	11.96-12.00	3/06/2013	0	10.2	0.0	11,200	7,070	24.800	787.000	18,000	NA.	15.900,000	NA.	<3.6	<665
SVMP-2D	11.96-12.00	6/05/2013	0	18.4	0.0	6,830	<1,030	6,990	NA	NA.	276,000	20,200,000	NA	<6.8	N/
SMVP-3S	4.96-5.00	7/31/2012	0	19.5	0.0	<1.0	4.2	<1.0	<2.0	<1.0	NA.	814	2.8	e3.0	- 455
SMVP-3S	4.96-5.00	3/06/2013	0	- Contraction of the Contraction	0.0	<0.78	<0.78	<0.78	<1.6	<0.78	NA.	81.9	The second second second	<2.0	
SMVP-3S	4.96-5.00	6/05/2013	. 0	20.9	0.0	1.9	1.3	6.2	NA.	NA.	34.8	4,500	NA NA	<4.2	8.5 NA

Questions that should be asked

- What level of uncertainty is acceptable?
 - Owner
 - Consultant
 - Financial institution/Other?
- Who is doing the sampling?
- Does my site conditions currently match the future?
 - If not what can be done?

Questions that should be asked

- What are the specific chemicals of concern need to be identified?
 - What methods are necessary and available?
 - Is there more than one method?
 - Is it an air method?
 - Is there a standard available?
 - Pros/Cons
 - What analytical method reporting limits are required?

Questions that should be asked

- Am I going to sample more than once?
 - How will that impact the data?
- What, where and when of sampling. . .

Closing

Soil Gas Wells

Also called:

- Soil GasMonitoringPoint
- VaporMonitoringPoint
- Others

Environmental Law Section September 18, 2014 DE

Sub-Slab Monitoring Point

Environmental Law Section September 18, 2014

Slide 54

Questions?

Matthew Williams

Vapor Intrusion Specialist RRD-Superfund Section Michigan Department of Environmental Quality

Phone: 517-284-5171

Email: williamsm13@michigan.gov

