Evaluation of Fever in the Returning Traveler

Susan L. F. McLellan
MD, MPH
Tulane University
School of Medicine
School of Public Health and Tropical Medicine

Fever in Travelers

- What is common?
- What is an emergency?
- What do I need to look out for?
- How do I approach work-up (without wasting lots of money and time)
 - Developing the differential
 - Laboratory diagnostic approach
- Specific diseases of importance
- Therapeutic considerations

Moderated by

Prof. Eli Schwartz
Center for Geographic Medicine & Tropical Diseases
Sheba Medical Center, Tel-Hashomer
Sackler School of Medicine, Tel Aviv, Israel
Common causes of fever in travelers

Undifferentiated
- Malaria
- Dengue
- Enteric fever (typhoid, paratyphoid)

With focal complaint
- Diarrheal disease
- Respiratory infections
- UTI

GeoSentinel CID 2007

6958 returning travelers with fever as chief c/o (28% of ill travelers)
- Malaria 21%
 - 33% of deaths in febrile pts
- Dengue
- Enteric Fever
- Rickettsioses
- No specific dx in 22%

Other noted causes of fever

"Exotic"
- Other arboviruses (WNV, Chikungunya, Zika)
- Acute schistosomiasis (Katayama fever)
- Leptospirosis
- Hepatitis A and B (less since vaccines)
- African trypanosomiasis
- Histoplasmosis
- Coccidiomycosis

Not so exotic
- Influenza
- STDs including acute HIV
- Tuberculosis
- Measles
- Mononucleosis
What is an emergency?
i.e. what might kill the patient

Diseases with the potential to be rapidly fatal

<table>
<thead>
<tr>
<th>No specific interventions (other than supportive)</th>
<th>Specific therapies may be lifesaving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow fever</td>
<td>Malaria</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Rickettsial disease</td>
</tr>
<tr>
<td>Other arboviral encephalitides</td>
<td>Meningococcemia</td>
</tr>
<tr>
<td>Dengue (Shock Syndrome)</td>
<td>Leptospirosis</td>
</tr>
<tr>
<td>Ebola and most other hemorrhagic fevers</td>
<td>African Trypanosomiasis</td>
</tr>
<tr>
<td></td>
<td>Lassa fever</td>
</tr>
<tr>
<td></td>
<td>Amoebiasis</td>
</tr>
<tr>
<td></td>
<td>Typhoid</td>
</tr>
<tr>
<td></td>
<td>Avian flu</td>
</tr>
</tbody>
</table>

What do I need to watch out for?
i.e. what might kill me???

Diseases which require rapid public health response

- Hemorrhagic fevers
- Meningococcemia
- Measles
- Tuberculosis
- Diseases with potential application for bioterrorism
- Avian flu

Developing the differential

- Evaluate exposure - thorough travel history
 - itinerary
 - mode of travel
 - food and drink
 - accommodations
 - activities
 - exposure to people, animals, insects
 - timing
Food and Water Exposure

| Undercooked meat or fish | Toxoplasmosis
Hepatitis A
Trichinella |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsanitary food or water</td>
<td>Enteric fever, Hep A or E, bacterial enteritis, amoebiasis</td>
</tr>
<tr>
<td>Unpasteurized milk products</td>
<td>Brucellosis, Enteric fever, bovine TB, other Salmonella</td>
</tr>
</tbody>
</table>

Arthropod exposure

<table>
<thead>
<tr>
<th>Mosquitoes</th>
<th>Malana, dengue, Chik, Zika, filariasis, loa, YF, other arboviruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticks</td>
<td>Tick typhus, RMSF, CCHF, Lyme, Relapsing fever, tularemia, babesiosis, ehrlichia</td>
</tr>
<tr>
<td>Sandflies</td>
<td>Leishmaniasis, sandfly fever, Oroya fever</td>
</tr>
<tr>
<td>Blackflies</td>
<td>Onchocerciasis</td>
</tr>
<tr>
<td>Tse-tse flies</td>
<td>Afr. trypanosomiasis</td>
</tr>
<tr>
<td>Reduvid bugs</td>
<td>Am. trypanosomiasis</td>
</tr>
<tr>
<td>Chiggers</td>
<td>Scrub typhus</td>
</tr>
</tbody>
</table>
Other exposures

- Caves: Rabies, histoplasmosis
- W. Hemisphere desert: Coccidiomycosis
- Animals: Brucella, rabies, tularemia, Q fever, anthrax, plague, VHF
- Sex: HIV, HBV, STDs
- Bloodborne: HBV, HIV, HCV
- People: Menigococcal, flu, TB, SARS, VHF, Hep A
- Fresh water contact: Schistosomiasis, leptospirosis
- Chickens, feathers: Avian flu
- Camels: MERS

Developing the differential - 2

- Evaluate preventive measures
 - vaccines
 - prophylactic medications
 - behavior

Efficacy of vaccines

- immunizations: efficacy:
 - yellow fever: > 95%
 - hepatitis A: > 95%
 - hepatitis B: 80-95%
 - typhoid fever: 70%
 - meningococcal meningitis: > 90%
 - Japanese encephalitis: > 90%
Medications

Malaria chemoprophylaxis:
• drug
• dose
• compliance
• duration
Other medications

Developing the differential - 3

- Seasonal and Geographic Distribution – use resources!
 • CDC Traveler's Health Web site
 • WHO International Travel and Health site
 • GeoSentinel (ISTM)
 • Wilson’s World Guide to Infections (oldie but goodie!)
 • Several commercial apps

Developing the differential – 4
Incubation period

<table>
<thead>
<tr>
<th>Incubation period</th>
<th>< 10 days</th>
<th>10-21 days</th>
<th>> 21 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dengue</td>
<td>Malaria</td>
<td>Typhoid</td>
<td>Typhoid</td>
</tr>
<tr>
<td>Typhus</td>
<td>Typhus</td>
<td>Typhoid (typical)</td>
<td>Q fever</td>
</tr>
<tr>
<td>Typhoid (maybe)</td>
<td>Bacterial TD</td>
<td>East African</td>
<td></td>
</tr>
<tr>
<td>Marburg/Ebola</td>
<td>Typhus</td>
<td>trypanosomiasis</td>
<td>Influenza</td>
</tr>
<tr>
<td>Marburg/Ebola</td>
<td>Brucellosis</td>
<td>Malaria</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>(malaria rarely)</td>
<td>Leptospirosis</td>
<td>Typhoid</td>
<td>HIV</td>
</tr>
<tr>
<td></td>
<td>Lassa</td>
<td>Viral hepatitis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malaria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tuberculosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schistosomiasis</td>
<td></td>
</tr>
</tbody>
</table>
Laboratory Diagnostic Approach
- Start with the bad, common things
 - MALARIA
 - thick (to find it) and thin (to speciate it) smears
 - turnaround time
 - lab proficiency
 - rapid dipstick assays

Laboratory Diagnostic Approach
- The basics
 - CBC
 - High WBC with neutrophils
 - pneumonia, uti, leptospirosis, Borrelia, brucella
 - Low WBC with neutrophils
 - typhoid, other Salmonella
 - Low WBC with lymphs
 - viral, rickettsial, malaria
 - Eosinophils
 - helminth, drug rx
 - NOT likely bacterial

Laboratory Diagnostic Approach
- LFTs
 - very high transaminases
 - viral hepatitis, yellow fever, toxin
 - high bili, only moderate transaminases plus renal dysfunction
 - leptospirosis
- U/A
- Stool O&P
- blood, urine, stool, sputum cultures
- CXR
Laboratory Diagnostic Approach - 4

- Some quick, cheap tests
 - Rapid strep
 - Rapid flu test
 - Monospot
 - RPR
 - DFA of ulcerative lesion (HSV, VZV)
 - Gram stain of skin lesion (GC, meningococcemia)
 - Rapid HIV
 - Pneumococcal urinary Ag
 - Rapid malaria test

Laboratory Diagnostic Approach - 5

- Resist the urge to order lots of (exotic) specific stuff with a long turn-around time
 - (at least at first)
 - Many serologic assays
 - know sensitivities and specificities
 - Know what rapid tests are available locally

Specific Diseases of Importance

- MALARIA
- Enteric fever
- Dengue
- Leptospirosis
- Rickettsial infections
- Acute schistosomiasis
- East African trypanosomiasis
- Viral hemorrhagic fevers
- Other Arboviruses
Malaria in travelers

- Up to 30,000 cases/yr
 - Potentially rapidly fatal
- Species varies according to geography
 - P. vivax – India, Central America
 - P. falciparum – Africa, Haiti, New Guinea
 - Both – S. E. Asia, Oceania, S. America
- Geographic risk varies
 - 2% per month in W. Africa without prophylaxis

Malaria in travelers

However, if minimal precautions in a high risk place:

- Summer 2003: American troops in Liberia for 2 weeks
 - Of the 157 troops who spent at least one night ashore, 69 became infected – an attack rate of 44 percent
 - By blood levels, <5% taking prophylaxis correctly

Malaria in travelers - 2

- 1,688 cases of imported malaria in US in 2010 (10% severe, 9 fatal)
- 123 deaths in travelers between 1963-2001
 - most taking no prophylaxis, inappropriate prophylaxis, or taking inappropriately
- Falciparum malaria:
 - MOST COMMON CAUSE of infectious disease death in travelers
 - 90% of imported is from Africa
Malaria in travelers

- Diagnosis frequently missed or delayed
 - New York – dx not considered in majority of cases presenting to community physician
 - Canada – mean time from 1st presentation to community MD to 1st malaria smear = 6.2 days
 - Delay in dx associated with mortality

Why is malaria missed?

- “Not classic fever pattern”
 - Falciparum usually isn’t
 - Others take days – weeks to settle in
- “On prophylaxis”
 - wrong or taken wrong prophylaxis is common
 - No travel hx taken
 - Travel was not recent
 - falciparum usually w/in 1st weeks (but)
 - vivax can be years later

Presentation of traveler’s malaria

- Incubation – usually at least 10 d
 - falciparum as short as 7
 - 98% of falciparum presents w/in 2 mos
- Very nonspecific!!!
- Diarrhea: 17-44%
 - N/V even more often
- Cough, sore throat: 14-16%
- Common: HA, myalgias, abd pain
- Classic rigors – more common w vivax
Malaria: Diagnostic Approach

Most important: LOOK FOR IT!

- Smears: thick (to find it) and thin (to speciate it)
- Know about your lab:
 - turnaround time
 - lab proficiency
 - rapid dipstick assays
 - Great for falciparum, pretty good for vivax

Lab findings in traveler’s malaria

- MAY BE PRETTY NORMAL
- About ½ of patients:
 - mild thrombocytopenia
 - mild anemia
 - minimally decreased WBC
- May see:
 - increased TB and LDH
 - mildly increased transaminases
- Severe malaria – looks like DIC, encephalitis, hemorrhagic fever, etc

NO SYMPTOM, SIGN, OR LAB TEST, OR CONSTELLATION OF ALL 3, IS USEFUL IN PREDICTING MALARIA

- Except a high quality malaria test!
Binax NOW

P. Falciparum HRP II
Pan-malarial aldolase

Tx of malaria

- Check updated recs CDC
 - Artesunate from CDC if severe
 - Coartem now available in US
 - Call CDC if need to!
- Consider empiric tx if lab slow or bad, pt looking bad
 - don’t keep doing it in face of multiple negative smears – look for other etiologies
- HYPOGLYCEMIA
Enteric fever (Typhoid, Paratyphoid)
- Incidence in travelers: $1/10^4$ - $1/10^5$
 - 70% from Indian subcontinent, Mexico, Haiti, Philippines
 - 77% in persons visiting friends and family
- Most cases occur 7-14 days after exposure
 - rarely up to 8 weeks

Initial Presentation of Enteric Fever
- Initially a non-specific fever
 - classically non-remitting, step-wise increase
- Constipation more common than diarrhea
 - initial loose stools fairly common
- Relative bradycardia only in 1st week
- Maybe evanescent rash (rose spots)
Diagnosing enteric fever

- Cultures
 - Blood 1st week
 - Stool, urine, may stay positive longer
 - Bone marrow most reliable

- Serologies in general not sensitive or specific
 - Widal, newer IH, IFA, ELISAs very variable

Dengue

- Epidemic in Latin America and South-east Asia
 - Most cases in travelers come from Asia
- No vaccine, no specific prophylaxis or tx

Full Moon Party, Koh Phangan
Dengue Presentation

- Short incubation: 3-8 days
- Undifferentiated fever
 - sudden onset
 - myalgias ("breakbone fever")
 - headache
- Rash: 30-44% appearing day 2-5
- DHF / DSS: occur 5-7 d into illness after initial improvement
 - severe thrombocytopenia, capillary leak

Dengue rash

(The above photos are courtesy of CDC, Tan Tock Seng Hospital, Singapore)

Leptospirosis

- Wide distribution in tropics and temperate zones
- Risk: exposure to fresh surface water, rodents (urine)
 - Sports events
 - River rafting
 - Rescue efforts after flooding

Leptospirosis presentation

- Incubation: 1-4 wks
- Initial non-specific febrile illness
 - Acute onset
 - Myalgias, especially legs
 - Abd pain, n/v, diarrhea
 - Conjunctival suffusion
- Mild cases resolve and are never recognized
Leptospirosis – more severe

- Biphasic – initial improvement, then return of fever/malaise
 - host immune response
- Weil’s disease
 - hepatic and renal involvement
 - profound jaundice, conjunctival suffusion/hemorrhage on PE
 - Lab – high bilirubin, mod transaminitis, elevated creatinine
 - can be fulminant

Rickettsial Infections

- RMSF, typhus (all types), tick typhus, Q fever
- Travelers – tick typhus
 - Mediterranean – R. conori
 - Africa – R. africae
 - vectors are rapid feeders
 - short exposure can result in infx
 - exposure – walking through brush, cattle areas
Tick typhus - Presentation

- Incubation period: 7-28 d
 - most in 2 wks
- Nonspecific fever initially
- headache, adenopathy, RUQ pain
- Maculopapular rash
 - less common w R. africae
 - R. africae may be vesicular
- Eschars
 - R. conori – single
 - R. africae – multiple (clustered)

Acute Schistosomiasis in travelers

- Katayama fever: acute serum-sickness like illness
 - 2-6 weeks after exposure
 - Starts before eggs are produced!
 - So need serology, not stool/urine exams
- Exposure: fresh still water
 - rafting
 - swimming
 - snorkeling (Lake Malawi)
- In travelers often occurs in clusters
- Severe disease can be fatal
East African Trypanosomiasis

- T. brucei rhodiense
 - acute, rapidly fatal form of “sleeping sickness”
 - vector: Tse-tse fly

- In travelers, exposure is game parks in East Africa
 - increasing cases in travelers recently
 - sentinel for failing disease control locally

Other (than dengue) Arboviruses

- Chikungunya – fever, arthritis, rash
- Zika – rash, maybe fever (80% no sx!)
- West Nile – fever, maybe rash, encephalitis
- O’nyong nyong – fever, arthritis, rash
- Ross River – fever, arthritis
- Murray Valley Fever – fever, encephalitis
- Rift Valley Fever – fever, maybe HF
- Oropouche – fever and rash
- Crimean-Congo hemorrhagic fever – fever, HF

- And many more!
Chikungunya Fever

- Historically Africa and Asia
- Major recent outbreak from Indian Ocean area
 - Comoros, Mauritius, Reunion and Seychelles
 - Affected many travelers
- Recent autochthonous transmission in Italy, Singapore
- Clinical
 - Nonspecific flu-like
 - Frequently mistaken for dengue
 - Severe joint pains
 - May be persistent

Viral hemorrhagic fevers in travelers

- RARE but bad

- Yellow fever is most common
 - Vaccination extremely effective
 - Cases in travelers are due to failure to vaccinate appropriately
 - PH risk only if patient accessible to vectors (Aedes mosquitoes)

VHF Presentation

- Acute febrile illness
- Myalgia, HA, conjunctival suffusion
- Sore throat (esp Lassa, Ebola)
- Severe diarrhea (Ebola)
- Occasional faint rash
- Severe hepatic involvement in YF
- Capillary leak syndrome + shock
- Hemorrhagic complications
 - Most severe in CCHF
Empiric Therapeutic Considerations

- 3rd gen cephalosporins for many bacterial infx
- Consider quinolones, azithromycin (R typhoid)
- Remember the tetracyclines
 - "No one should die in the tropics without doxycycline on board" Ted Kuhn
- Empiric malaria tx if falciparum suspected and lab slow or unreliable

Try to make dx even if they get better

- Empiric tx may suppress but not cure
 - Malaria
 - Brucella
 - Tuberculosis
- May be important to traveler to know
 - Dengue
 - Zika

Conclusions

- Use exposure hx to guide differential
- Remember what can kill them
- Remember what can kill you
- Get the quick easy tests first
- Treat empirically when necessary but don’t give up on making dx
- MALARIA MALARIA MALARIA!