

CENTER FOR DRUG EVALUATION & RESEARCH OFFICE OF CLINICAL PHARMACOLOGY

#### Understanding the Regulations and Recommendations for Drug Development in Pediatrics and Older Adults with Cancer

#### Youwei Bi, PhD Division of Pharmacometrics Office of Clinical Pharmacology, OTS/CDER/FDA

**Disclaimer:** The content and views expressed in this presentation are that of the author and should not be interpreted as the position of the US FDA

### Outline

FDA

- Pediatric drug development regulations in USA
  - PREA
  - BPCA
- Points to consider in pediatric oncology
  - Importance of dose optimization in pediatric oncology
  - General PK consideration in pediatric patients
  - Application of model-informed drug development
  - Pediatric extrapolation
- Drug development regulations in older adults with cancer
- Points to consider in older adults with cancer

# Pediatric Drug Development Regulations in USA

For approval, pediatric product development is held to same evidentiary standard as adult product development

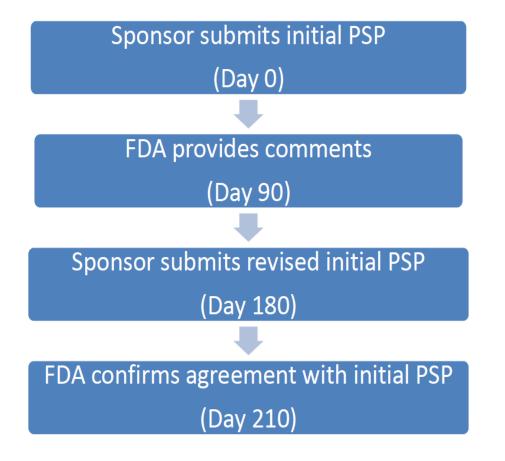
- Pediatric Research Equity Act (PREA)
  - Requires companies to assess safety and effectiveness of new drugs/biologics in pediatric patients (Pediatric Assessment)
- Best Pharmaceuticals for Children Act (BPCA)
  - Provides a financial incentive to companies to voluntarily conduct pediatric studies
- 2007 FDA Amendment Act (FDAAA)
- 2012 FDA Safety & Innovation Act (FDASIA) Title V
- 2017 FDA Reauthorization Act
  - RACE Act for Children

#### **PREA vs BPCA**



|                         | PREA                                                | BPCA                                                                |  |
|-------------------------|-----------------------------------------------------|---------------------------------------------------------------------|--|
| Voluntary/<br>Mandatory | Mandatory                                           | Voluntary                                                           |  |
| Indication              | Requires studies only on indication(s) under review | Studies relate to entire moiety and may expand Indications          |  |
| Orphan<br>Designation   | Orphan drug designations exempt<br>from studies     | Studies may be requested for orphan indications                     |  |
| Document                | Pediatric Study Plan (PSP)                          | Written request (WR);<br>Proposed Pediatric Study Request<br>(PPSR) |  |
| Incentive               | None                                                | 6-month patent extension + exclusivity                              |  |
|                         |                                                     | 1                                                                   |  |
| New Pediatric Labeling  |                                                     |                                                                     |  |

to encourage appropriate use of medications to treat pediatric patients


# Submission of Pediatric Study Plan (PSP)



PREA Is triggered by an application for

New indication /New dosage form/ New dosing regimen/
 New route of administration/ New active ingredient

• Submission and Review of iPSP by FDA's internal Pediatric Review Committee (PERC)



#### **Contents of iPSP**

- 1) Overview Disease Condition
- 2) Overview Drug/Biologic Product
- 3) Plan for Extrapolation
- 4) Plan to Request Waiver(s)
- 5) Summary of Planned Nonclinical and Clinical Studies
- 6) Pediatric Formulation Development
- 7) Nonclinical Studies
- 8) Clinical Data to Support Design and/or
- Initiation of Studies
- 9) Planned Pediatric Clinical Studies
- 10) Timeline of the Pediatric Development Plan
- 11) Plan to Request Deferral
- 12) Agreements with Other Regulatory

#### Authorities

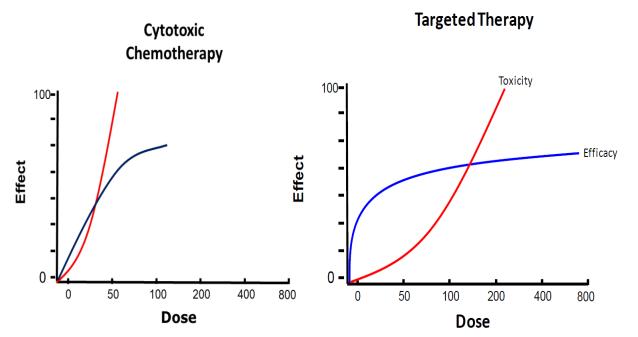
**FDA Guidance:** Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Pediatric Study Plans Guidance for Industry (July 2020)

#### **Best Pharmaceuticals for Children Act (BPCA)**

FDA

- Provides for voluntary pediatric drug studies via a Written Request (WR)
- Reflects need for information that may produce health benefits in the pediatric population
- Authorizes FDA to request pediatric studies of approved and/or unapproved indications
- Incentive: Pediatric Exclusivity
  - If the terms of the WR have been met and studies were conducted using good scientific principles,
     the company is awarded an additional 6 months of exclusivity
    - Exclusivity attaches to all existing marketing exclusivities and patents for the drug moiety (initial WR)
    - Pediatric exclusivity does not require positive pediatric studies (initial WR)
    - Granting of exclusivity is reviewed by the FDA Pediatric Exclusivity Board

# Outline

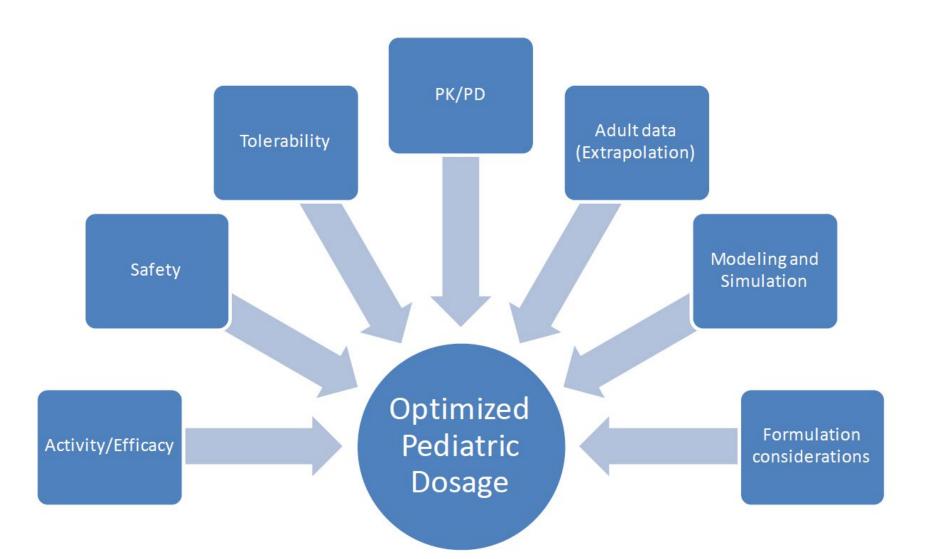



- Pediatric drug development regulations in USA
  - PREA (iPSP, deferral, waiver, etic)
  - BPCA
- Points to consider in pediatric oncology
  - Importance of dose optimization in pediatric oncology
  - General PK consideration in pediatric patients
  - Application of model-informed drug development
  - Pediatric extrapolation
- Drug development regulations in older adults with cancer
- Points to consider in older adults with cancer

#### Importance of Dose Optimization in Pediatric Oncology

FDA

- Maximization of benefit/risk balance
- Change in pediatric oncology drug landscape leads to more targeted therapies
- Difference in dose-response for oncology products




For targeted therapy

- MTD may not be needed
- Long time treatment (months or years)
- Long-term tolerability is important (consider management of grade 1 or 2 toxicities)

Slide adapted from Pediatric ODAC June 16, 2023 by Dr. Kristin Wessel;

## Identifying Optimized Dose



Slide Courtesy: Kristin Wessel; Pediatric ODAC June 16, 2023

FDA

#### General PK Considerations for Pediatric Studies



- Well laid out in the regulatory guidance documents
  - General Clinical Pharmacology Considerations for Pediatric Studies for Drugs and Biological Products (FDA Draft Guidance, 2022 Sep Revision 1)
  - Role of the Pharmacokinetics in the Development of Medical Products in the Paediatric Population (EMA, 2006)
  - Clinical Investigation of Medicinal Products in the Pediatric Population (ICH E11, 2000)
- PK/PD variability by patient age, organ function, developmental changes (maturation), body weight and body surface area (BSA)
- Pathophysiology (impaired organ function), pharmacogenetics, supportive treatment modalities (e.g., ECMO), age-specific formulation, administration modality (e.g., NJ feeding) can alter systemic exposure and lead to variability

### Application of Model-Informed Drug Development (MIDD) in Pediatric Patients



#### Pediatric Dose Selection and Optimization

- Identify covariates (weight, BSA, age, etc.)
- Incorporate pediatric ontogeny
- Predict PK in various age groups

#### Leveraging Knowledge for Bridging Gaps

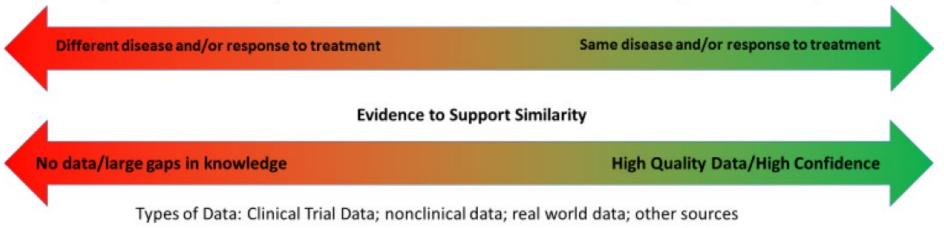
- Exposure-response for efficacy and safety
- Leveraging prior knowledge from adults or other drugs from the same class

#### Informing Clinical Trial Design

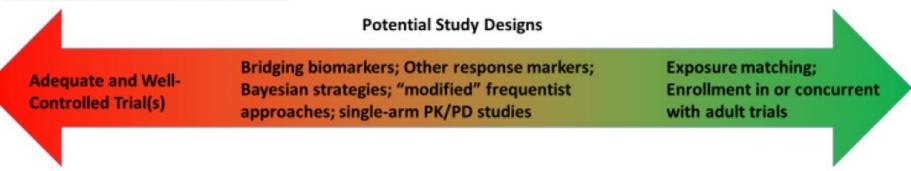
 Determine appropriate dosages for evaluation across the pediatric age range, sample size, optimal PK sampling for pediatric patients

### MIDD in Pediatric Patients: Case Examples




| Drug                        | Indication                                                                                                                                               | Brief Description                                                                                                                                                                                                                                     |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recombinant<br>asparaginase | Acute lymphoblastic leukemia<br>(ALL) and lymphoblastic<br>lymphoma (LBL) in adult and<br>pediatric patients 1 month or older                            | Modeling and simulation provided primary evidence of efficacy for approval and recommendation for a dosing regimen not tested in the clinical trial.                                                                                                  |
| Rituximab                   | Pediatric patients with mature B-<br>cell NHL and mature B-cell acute<br>leukemia (B-AL)                                                                 | PK simulations as sensitivity analysis supported the recommended dosing regimen and approval in pediatric patients aged 6 months and older, with no PK data available < 3 years old.                                                                  |
| Naxitamab-<br>gqgk          | Pediatric patients 1 year of age<br>and older and adult patients with<br>relapsed or refractory high-risk<br>neuroblastoma in the bone or<br>bone marrow | FDA recommends a dose cap for patients with a body weight (BW) > 50 kg, with a maximum naxitamab dose of 450 mg/cycle based on the pharmacokinetic characteristics of naxitamab and the relationships between naxitamab exposure and efficacy/safety. |
| Atezolizumab                | For the treatment of pediatric<br>patients 2 years of age and older<br>with unresectable or metastatic<br>ASPS                                           | Provided support to treatment of pediatric patients 2 years of age and older with unresectable or metastatic alveolar soft part sarcoma in the absence of efficacy data                                                                               |

### **Pediatric Extrapolation**




#### Pediatric Extrapolation Concept

Similarity of Disease and Response to Treatment Between Reference and Target Pediatric Population



#### **Pediatric Extrapolation Plan**



#### ICH HARMONISED GUIDE E11A PEDIATRIC EXTRAPOLATION

# Many Other Things to Consider

- Age-appropriate formulation
  - Ability to swallow, palatability, food effect
  - Consider it early
  - Relative bioavailability study of the pediatric and adult formulations should also be conducted (in adults) as early as feasible
- Inclusion of adolescents in adult trials
  - March 2019 Considerations for the Inclusion of Adolescent Patients in Adult Oncology Clinical Trials Guidance for Industry

**TD** 

# Outline



- Pediatric drug development regulations in USA
  - PREA (iPSP, deferral, waiver, etic)
  - BPCA
- Points to consider in pediatric oncology
  - Importance of dose optimization in pediatric oncology
  - General PK consideration in pediatric patients
  - Application of model-informed drug development
  - Pediatric extrapolation
- Drug development regulations in older adults with cancer
- Points to consider in older adults with cancer

## Regulations for Drug Development in Older Adults with Cancer



- Need for more older adults in clinical trials
  - By 2030, it is estimated that 77 million people will be over 65 years of age
  - Often excluded due to perceived high risk associated with age, comorbidity, and polypharmacy
  - 'Geriatric gap' persists
- 2012 ICH E7 studies in support of special populations: Geriatrics Questions and Answers guidance for industry
- September 2020 FDA guidance: Labeling guidance for geriatric population
- Nov 2020 Enhancing the Diversity of Clinical Trial Populations Eligibility Criteria, Enrollment Practices, and Trial Designs Guidance for Industry
- March 2022 Inclusion of Older Adults in Cancer Clinical Trials Guidance for Industry

# Knowledge Gap in Older Adults

FDA

- Age effect on PK:
  - General more frequent organ impairment
  - General change in blood flow, liver size or transporter action
  - Liver enzyme (e.g. CYP3A) and DDI effect

Most demographic factors (age, weight) can be addressed by clinical pharmacology studies or tools (e.g. modeling)

- But age itself is not completely reflecting intrinsic factors (organ impairment) and external factors (compliance, comedication)
- The real GAP: PD, effectiveness, safety similarity (more harmful AEs), comedications, etc.

### MIDD Tools to Inform Dose Selection in Older Adults



Physiologically Based Pharmacokinetics (PBPK) Quantitative Systems Pharmacology (QSP) Population Pharmacokinetics & Pharmacodynamics (PopPK/PD)

- Provide understanding of absorption and disposition in older adults
- Anticipate impact of polypharmacy on PK
- Integrate mechanisms of aging and comorbidities
- Anticipate PD response and clinical outcomes
- Integrate clinical data from early clinical studies
- Provide an estimate of drug variability

#### Slide Courtesy: R Madabushi

# Interaction with FDA is Recommended



- Early discussions with FDA are recommended for input on dose optimization strategies/inclusion plan
  - Pre-Investigational New Drug (IND) meeting
  - End of Phase 1/2 meeting
  - Type D meeting –intended to focus on a narrow set of issues
  - MIDD meeting
- Resources
  - FDA guidance
  - ICH E11A guideline include updates on several topics including extrapolation, modeling and simulation, ethics, formulations
  - Public Meetings/Workshops
  - Publications

### Summary



| Ped-<br>iatrics     | <ul> <li>Children are protected through research, not from it</li> <li>Established pediatric regulations (PREA, BPCA) increased the availability of pediatric-specific information in prescription product labeling.</li> <li>Early and reliable characterization of PK and dose optimization is critical in pediatric drug development <ul> <li>MIDD approaches are very useful to integrate knowledge and inform dose</li> </ul> </li> <li>Improved framework for pediatric extrapolation (ICH E11A)</li> </ul> |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Older<br>Adults     | <ul> <li>Obtain PK and activity data early</li> <li>Include older adults and collect additional relevant data in efficacy and safety trials</li> <li>Evaluate differences/similarity in PK, PD, effectiveness and safety (MIDD can help)</li> </ul>                                                                                                                                                                                                                                                               |
| Working<br>Together | <ul> <li>FDA is committed to working with external stakeholders and to increase availability of<br/>safe and effective treatments for pediatric patients and older adults. Early<br/>communication is highly recommended</li> </ul>                                                                                                                                                                                                                                                                               |

#### Acknowledgements



Dr. Hao Zhu Dr. Jiang Liu Dr. Stacy Shord FDA Division of Pharmacometrics Members