
Risks of Free Open Source Software 

and S-SDLC

Lior Mazor

SecureDEV team Manager at Amdocs

CISM, CISSP

13/08/2020

Managing The Risk



2

ABOUT MYSELF • Leading and Managing the S-SDLC and               
information product security at Amdocs

• B.Sc. Math & Computer Science

• Over 15 years of cybersecurity experience 

• Implementing and promoting Information Security & Cyber 

Awareness in various enterprise organizations across the 

world

• Building Enterprise Cyber Defense Methodologies and 

‘Execution Practices’ 

• Expertise in Secure Development, Code Review & 

Application Penetration Testing

• Certified as ISO 27001 Lead Auditor

Lior Mazor

CISSP, CISM



3

• Waterfall VS Agile and DevOps development

• Secure Software Development Life Cycle (S-SDLC)

• The risk of Open Source

• How to manage the risk of Open Source

Agenda



4

Waterfall Development

Req

Design

Dev

Testing

Release

6-12 Months 



5

WE WANT DEVOPS (AGILE)!!!

2-4 Weeks 



6

Design Development Testing Production

The cost of defect 

WHERE IS SECURITY?

100$

Current

Desired

>1000$

10$

1$

COST

TIME



77

Secure Software 

Development Life 

Cycle (S-SDLC)



8

What is S-SDLC?

The S-SDLC process integrates into 

the overall development process 

and its objectives are:

• Reduce the number of vulnerabilities 

and weaknesses 

• Improve the level of information security

• Identify information security weaknesses 

at earlier stages in the development 

process

• Define the construction, guidelines, 
knowledge, tools, policies and testing 

requirements

The results of these goals should 

be:

• Reducing / preventing damage 

caused by cyber attacks 

• Reducing the costs of remediating 

information security weaknesses

• Fewer remaining vulnerabilities 

before production, therefore 

reducing delay due to security



9

S-SDLC Framework

Governance

The S-SDLC activities are organized into a framework and categorized to 5 domains:

Construction Verification Deployment

Supporting tools & Utilities

Manage and 
measure the S-SDLC 
Process

Build Software/ 
System security 
knowledge

Test artifacts 
produced throughout 
development

Manage the release 
and the maintenance

Security services that provide assistance 
and support in the S-SDLC Process to 

development departments



10

Secure Development vs Secure By Design

Secure Development Secure by Design

Goal:

Ensuring that product development will apply security 

from early stage to release, allowing the product 

posture to be secure from potential vulnerabilities 

that can be exploited given wrong development 

practices.

How to Obtain it?

• S-SDLC

• Secure code Automation (Static Code Analysis)

• FOSS Scanning

• Pen Testing

• Bug Bounty

Goal:

Embedding OOTB security practices to enable 

core security controls to minimize gaps from 

failed secure development practices & reduction 

of potential security threats and stronger 

compliance with customer needs

Examples:

• Secure file upload

• Cryptography

• Enhanced Logging 

• OOTBH Input validation

• ABAC, RBAC…

• FOSS Policy



11

The risk of Open 

Source?



12

Open Source in Numbers

* source: 2020 OSSRA Report, Black Duck by Synopsys

<



13

Open Source by industry

* source: 2020 OSSRA Report, Black Duck by Synopsys



14

Open Source in Numbers

* source: 2020 OSSRA Report, Black Duck by Synopsys

96% of applications scanned include open source components. 

Average is 445 components per application

Average percentage of codebase that is open source is 70% 

vs. 60% last year

78% of codebases contain at least one vulnerability with an 
average of 82 vulnerabilities per codebase (49% of the 

audited codebases contained high-risk vulnerabilities)



15

Evolution of Open Source Adoption in Enterprises

Lead

Contribution

Mass Consumption

Occasional Use



16

Risk Evolution

Security

Ops

Legal

Term Of Use

GPL/GPU/GNU

Commercial Use

Copyrights

OSI  Process

Lack of support

No warranty

Quality

Code maturity

Security Defects

Security Policy

Security ‘0’ days

Security risk level

Common use of FOSS



17

How to manage the risk 

of Open Source?



18

MANAGE all projects in a systematic way 

GUIDE the development teams on policy and resolutions 

MONITOR compliance and security, automatically 

Open Source Management

The need to automate open source management



19

Building the Right Processes

Clear policies for license compliance (Legal) and security 

vulnerabilities

Scanning as a service across the organization

Ensure all products/distributions are scanned

Ensure all identified issues are handled before distribution

➢ Open defects for FOSS security vulnerabilities

➢ FOSS Governance: ‘0’ Critical/High defects before release



20

Choosing the Right Tool

Accuracy of detection

Minimize analysis and false positives (Runtime scanning)

Libraries vs. snippets 

Suggest remediation options for security vulnerabilities

Provide alerts for new vulnerabilities

Integration with CI/CD



Thank you


