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1 Introduction

We formulate the Movement Planner Problem as a mixed-integer linear program (MILP). The novelty

of our approach is that we integrate the strengths of the two previous formulations: we draw on the con-

cept of segments in [Törnquist and Persson(2007)] and network representation in [Mu and Dessouky(2011)]

so that unlike [Törnquist and Persson(2007)], we are able to model switches and sidings explicitly; con-

trary to [Mu and Dessouky(2011)], we do not introduce excessive variables on arcs not traveled on. To

efficiently solve the problem, several formulation enhancement and heuristic variable fixing procedures

are devised, followed by a rolling-horizon-based decomposition algorithm. The computational experi-

ments on the three data sets provided show that our solution approaches consistently outperform the

existing pure branch-and-cut algorithm of the commercial solver in identifying high quality solutions. For

Data Set 1, we yield provably optimal solution in less than 10 seconds, achieving a 400 times reduction in

computational time. For Data Set 2, a high quality solution is derived in less than 30 seconds; for Data

Set 3, less than 3 minutes. The proposed algorithm substantially outstrip the benchmark algorithms in

the tests both in solution quality and computational time.

2 Problem Formulation

In this paper a segment is defined as a collection of tracks (main tracks, sidings, switches, crossovers)

between two adjacent nodes. Segments cover the territories in a way that a train must pass through

every segment between its origin and destination and travel on one specific track within a given segment.

The railway network in the data sets is divided into 53 segments in total according to the definition.

Some dummy arcs, e.g., (48,48), (54,54), are added to facilitate the segmentation. Figure 1 presents
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some illustrative examples on how segments are set apart. Table 5 in the Appendix provides a complete

list of 53 segments and the arcs each segment contains.

Figure 1: Examples of how the railway network is segmented, “S” stands for “Segment”

Based on the concept of segments, The input sets, data and parameters are denoted in Table 1 and

Table 2; decision variables defined in Table 3. Based on the notation, the Movement Planner Problem

is formulated as a mixed-integer linear program.

Notation Definition

T set of trains, indexed by i

T E set of eastbound trains

T K set of Schedule Adherence trains

T H set of heavy trains

T L set of long trains

T I set of Inhalation Hazard trains

G set of segments, indexed by j, |G|=n, j increases from the west to the east

GC set of segments that contain sidings

Bi set of segments occupied by train i

Cj set of trains that occupy segment j

Lj set of tracks for segment j, indexed by t

Vi set of nodes that train i can potentially travel on, the origin and destination nodes excluded

E(v),W(v) set of tracks (arcs) linked to node v from the east (west) direction

Oi,Di set of tracks linked to the origin (destination) node of train i that can be potentially occupied

Fi set of segments that are occupied by train i and contain sidings shorter than the length of train i

Xi,Yi set of entry (exit) segments of the MOW railroads for train i

Ni set of segments whose exit node for train i has schedule adherence requirements

Ui,j set of unpreferred tracks at segment j for train i

Table 1: Input sets
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Notation Definition

ε end time of the planning horizon

∆P separation time, otherwise known as the minimum headway, 5 minutes in this case

∆S schedule deviance threshold, 2 hours in this case

∆TWT+,∆TWT- TWT deviance threshold for late (early) arrival, 3 (1) hours in this case

oi index of the origin segment for train i

di index of the destination segment for train i, di = n for eastbound trains, di = 1 for westbound trains

bi entry time at the origin for train i

ri,j,t required running time for train i to travel on track t of segment j

sj the index of the siding track at segment j

mj the index of the main track that has a complementary siding at segment j

wj the index of the track at segment j that has an MOW window

ζt,t′,j equals 1 if track t and track t′ are conflicting or if t = t′ at segment j, 0 otherwise

SAi,j schedule adherence time for train i on segment j

TWTi terminal want time for train i

MOWbegin
j ,MOWend

j MOW begin (end) time for segment j

cDi delay penalty per time unit for train i

cS schedule deviance penalty cost per time unit

cTWT TWT deviance penalty per time unit

cU penalty for unpreferred track utilization per time unit

M sufficiently large number

Table 2: Input data and parameters

Notation Definition

xentry
i,j , xexit

i,j entry (exit) time for train i at segment j

qi,j,t equals 1 if train i uses track t of segment j, 0 otherwise

γi,i′,j equals 1 if train i is scheduled earlier than train i′ at segment j on the same or conflicting tracks, 0 otherwise

λi,i′,j equals 1 if train i is scheduled later than train i′ at segment j on the same or conflicting tracks, 0 otherwise

µi,i′,j , µ′
i,i′,j equals 1 if λi,i′,j−1 − λi,i′,j+1 = 1 (λi,i′,j−1 − λi,i′,j+1 = −1), 0 otherwise

yi,i′,j equals 1 if train i and train i’ have a meet-pass event at segment j, 0 otherwise

zDi,j delay for train i at segment j

zSi,j schedule deviance beyond 2 hours for train i at segment j

zTWT+
i , zTWT-

i TWT deviance for late (early) arrival beyond the 4-hour window for train i

zUi,j unpreferred track time (if any) for train i at segment j

αi,j equals 1 if train i exits segment j prior to the end of the planning horizon, 0 otherwise

βi.j equals 1 if xentry
i,j ≥ MOWend

j , 0 otherwise

ξi,j equals xexit
i,j if αi,j = 0, ε otherwise

Table 3: Decision variables

Minimize
∑
i∈T

c
D
i (x

entry
i,oi

− bi +
∑
j∈Bi

z
D
i,j) +

∑
i∈TK

∑
j∈Ni

c
S
z
S
i,j +

∑
i∈T

c
TWT

(z
TWT+
i + z

TWT-
i ) +

∑
i∈T

∑
j∈Bi

c
U
z
U
i,j (1)

Subject to

Train moving constraints:

x
exit
i,j = x

entry
i,j+1, ∀i ∈ T E

, ∀j ∈ Bi : j 6= n (2)

x
exit
i,j = x

entry
i,j−1, ∀i ∈ T \ T E

, ∀j ∈ Bi : j 6= 1 (3)

x
entry
i,oi

≥ bi, ∀i ∈ T (4)

x
exit
i,j ≥ x

entry
i,j +

∑
t∈Lj

ri,j,tqi,j,t, ∀i ∈ T , ∀j ∈ Bi (5)
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Traffic network constraints: ∑
t∈Oi

qi,oi,t = 1, ∀i ∈ T (6)

∑
t∈Di

qi,di,t = 1, ∀i ∈ T (7)

∑
(t,j)∈E(v)

qi,j,t =
∑

(t′,j′)∈W(v)

qi,j′,t′ , ∀i ∈ T , ∀v ∈ Vi (8)

Nonconcurrency and headway constraints:

qi,j,t + qi′,j,t′ − 1 ≤ λi,i′,j + γi,i′,j , ∀i, i′ ∈ Cj , ∀j ∈ G, ∀t, t′ ∈ Lj : i 6= i
′
, ζt,t′,j = 1 (9)

x
entry

i′,j − x
exit
i,j ≥ ∆

P −M(1− γi,i′,j), ∀i, i′ ∈ Cj , ∀j ∈ G, ∀t, t′ ∈ Lj : i 6= i
′
, ζt,t′,j = 1 (10)

x
entry
i,j − xexit

i′,j ≥ ∆
P −M(1− λi,i′,j), ∀i, i′ ∈ Cj , ∀j ∈ G, ∀t, t′ ∈ Lj : i 6= i

′
, ζt,t′,j = 1 (11)

λi,i′,j + γi,i′,j ≤ 1, ∀i, i′ ∈ Cj , ∀j ∈ G : i 6= i
′

(12)

Siding occupancy constraints:

λi,i′,j−1 − λi,i′,j+1 = µi,i′,j − µ
′
i,i′,j , ∀i, i′ ∈ Cj , ∀j ∈ GC

: i 6= i
′

(13)

µi,i′,j + µ
′
i,i′,j ≤ 1, ∀i, i′ ∈ Cj , ∀j ∈ GC

: i 6= i
′

(14)

yi,i′,j ≥ µi,i′,j + µ
′
i,i′,j + qi′,j,mj

− 1, ∀i, i′ ∈ Cj , ∀j ∈ GC
: i 6= i

′
(15)

2yi,i′,j ≤ µi,i′,j + µ
′
i,i′,j + qi′,j,mj

, ∀i, i′ ∈ Cj , ∀j ∈ GC
: i 6= i

′
(16)

qi,j,sj ≤
∑

i′∈Cj :i′ 6=i

yi,i′j , ∀i ∈ Cj , ∀j ∈ GC
(17)

Special train constraints:

qi,j,sj = 0, ∀i ∈ T L
, ∀j ∈ Fi (18)

qi,j,sj = 0, ∀i ∈ T I
, ∀j ∈ Bi ∩ GC

(19)

qi,j,sj + qi′,j,mj
≤ 2− µi,i′,j − µ

′
i,i′,j , ∀i ∈ Cj ∩ T H

, i
′ ∈ Cj ∩ (T \ T K

), ∀j ∈ GC
: i 6= i

′
(20)

MOW constraints:

x
entry
i,j ≥ MOW

end
j qi,j,wj

−MOW
end
j (1− βi,j), ∀i ∈ T , ∀j ∈ Xi (21)

x
exit
i,j ≤ MOW

begin
j +M(1− qi,j,wj

) +Mβi,j′ , ∀i ∈ T , ∀j ∈ Yi, ∀j′ ∈ Xi (22)

Objective value related constraints:

ε− xexit
i,j ≤Mαi,j , ∀i ∈ T , j ∈ Bi (23)

x
exit
i,j − ε ≤M(1− αi,j), ∀i ∈ T , j ∈ Bi (24)

ξi,j ≥ xexit
i,j −M(1− αi,j), ∀i ∈ T , j ∈ Bi (25)

ξi,j ≥ ε(1− αi,j), ∀i ∈ T , j ∈ Bi (26)

z
D
i,j ≥ ξi,j − x

entry
i,j −

∑
t∈Lj

ri,j,tqi,j,t, ∀i ∈ T , j ∈ Bi (27)

z
S
i,j ≥ x

exit
i,j − SAi,j −∆

S −M(1− αi,j), ∀i ∈ T K
, ∀j ∈ Ni (28)

z
TWT+
i ≥ xexit

i,di
− TWTi −∆

TWT+ −M(1− αi,di
), ∀i ∈ T (29)

z
TWT-
i ≥ −(x

exit
i,di
− TWTi + ∆

TWT−
)−M(1− αi,di

), ∀i ∈ T (30)

z
U
i,j ≥ ξi,j − x

entry
i,j −M(1−

∑
t∈Ui,j

qi,j,t), ∀i ∈ T , ∀j ∈ Bi (31)

Variable restrictions:

x
entry
i,j , x

exit
i,j , ξi,j , z

D
i,j , z

U
i,j ≥ 0, ∀i ∈ T , ∀j ∈ Bi (32)

qi,j,t ∈ {0, 1}, ∀i ∈ T , ∀j ∈ Bi, ∀t ∈ Lj (33)

γi,i′,j , λi,i′,j ∈ {0, 1}, ∀i, i′ ∈ Cj , ∀j ∈ G : i 6= i
′

(34)

µi,i′,j , µ
′
i,i′,j , yi,i′,j ∈ {0, 1}, ∀i, i′ ∈ Cj , ∀j ∈ GC

: i 6= i
′

(35)

z
S
i,j ≥ 0, ∀i ∈ T K

, ∀j ∈ Ni (36)

z
TWT+
i , z

TWT-
i ≥ 0, ∀i ∈ T (37)

αi,j ∈ {0, 1}, ∀i ∈ T , ∀j ∈ Bi (38)

βi,j ∈ {0, 1}, ∀i ∈ T , ∀j ∈ Xi (39)
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The objective function (1) minimizes the total costs incurred by the train delay, schedule deviance

over 2 hours for SA Trains, Terminal Want Time deviance beyond the 4-hour window and usage of

unpreferred tracks.

Train moving constraints: Constraints (2 and 3) require that each train exits one segment before

it seamlessly enters the next segment. This applies to both eastbound trains and westbound trains.

Constraints (4) ensure that each train enters the railway network no earlier than its pre-specified entry

time at the origin. Constraints (5) indicate that the time elapsed when the train occupies the assigned

track at a given segment must be at least as long as the required running time.

Traffic network constraints: Constraints (6 and 7) prescribe each train starts from its origin node

and arrives at its destination node. Constraints (8) are the traffic flow conversion equations that specify

each train using any track that flows into a node must travel on one of the tracks that emanate from

this node.

Nonconcurrency and headway constraints: The variables λi,i′j and γi,i′j are referred to as

sequence variables as they specify which train occupies a segment earlier. To avoid collision, Constraints

(9) denote that if two trains are using the same track or conflicting tracks at segment j, i.e., qi,j,t =

qi′,j,t′ = 1, then these two events will not chronologically overlap, i.e., either γi,i′,j or λi,i′,j must assume

the value of 1. Examples of two conflicting tracks at a given segment include a switch and its directly

connected main track, a crossover and its directly connected main track, and two crossovers (to disallow

“double crossover”). Following Constraints (9), either Constraints (10) become active if γi,i′,j = 1, or

Constraints (11) are active if λi,i′,j = 1. Constraints (10) and Constraints (11) respect the operational

rule of five-minute separation time between trains in all the three distinct cases specified in the problem

statement. Constraints (12) ensure the chronological relationship between two trains when they occupy

the same segment, i.e., γi,i′,j and λi,i′,j cannot be 1 simultaneously. For segments that only contain one

track, or one switch and one main track, it is certain that γi,i′,j +λi,i′,j = 1, so in Constraints (9, 10 and

11), the term qi,j,t + qi′,j,t′ − 1 can be replaced by the constant 1.

Siding occupancy constraints: These sets of constraints enforce a train will not take the siding

unless a meet-pass event occurs. This is equivalent to the expression that the sequence between two

trains at the preceding switch segment and at the succeeding switch segment changes; in addition, there

should be a train taking the complementary main track. Transformed to mathematical language, it

is |λi,i′,j−1 − λi,i′,j+1| = 1 and qi′,j,mj = 1, where j is the index of the segment containing a siding.

Constraints (13) and (14) imply that µi,i′j +µ′i,i′,j = 1 if and only if |λi,i′,j−1−λi,i′,j+1| = 1. Constraints

(15) and (16) denote that yi,i′,j = 1 if and only if the two conditions are simultaneously satisfied.

Constraints (17) specify the scenario where a train can be dispatched to sidings. Note that for single-

track sidings, since |λi,i′,j−1−λi,i′,j+1| = 1 is sufficient for the definition of meet-pass events, Constraints

(15) and (16) can be removed whereas µi,i′j + µ′i,i′,j can be substituted for yi,i′,j in Constraints (17).

Special train constraints: Constraints (18) and Constraints (19) enforce that long trains and the

Inhalation Hazard train will not occupy sidings. Constraints (20) imply that if a heavy train and a

Non-Schedule Adherence (NSA) train are undergoing a meet-pass event, it will not occur that the heavy

train takes the siding and the NSA train holds the main track.
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MOW constraints: Constraints (21 and 22) enforce that no trains use the MOW tracks during their

pre-specified time windows. Note that the “entry segment of the MOW railroads” is the first segment a

train will occupy if it is scheduled to enter this portion of the railroads. Likewise, the “exit segment of

the MOW railroads” is the final segment a train will occupy before it leaves this portion of the railroads.

Objective value related constraints: These sets of constraints are introduced largely to prevent

events outside the planning horizon from being considered in the objective function. Constraints (23 and

24) prescribe that αi,j = 1 if train i exits segment j prior to the end of the planning horizon. Constraints

(25 and 26) imply that ξi,j equals whichever is smaller of xexit
i,j and ε. Constraints (27) denote the delay

for each train at any of its occupied segment. Constraints (28) denote the schedule adherence deviance

beyond 2 hours for each train at its SA nodes. Note that in the definition of set Ni, an exit node of

a segment for a train is simply the end node of the segment from which the train leaves the segment.

Constraints (29 and 30) denote the TWT deviance for late (early) arrival beyond the 4-hour window

for each train. Constraints (31) denote the unpreferred track time for each train at any of its occupied

segment. Note that it is sufficient to define γi,i′,j and λi,i′,j variables only for i < i′ as by definition

γi′,i,j = 1− γi,i′,j and λi′,i,j = 1− λi,i′,j . The redundant constraints involving these sequence variables

can be eliminated accordingly.

3 Solution Approaches

The MILP problem is combinatorially difficult and solving it entails substantial computational

efforts. Therefore, we reexamine the model and strengthen the formulation with several additional

constraints without sacrificing optimality. One the other hand, obtaining the optimal solutions may not

entirely justify the huge computational time required; a high quality solution usually suffices for practical

purposes. Hence, we also develop several heuristic rules for variable fixing. In addition, we propose a

rolling-horizon-based decomposition algorithm to “divide and conquer” the problem. Besides, big-M’s

are fine-tuned to tighten the formulation.

Before detailing various solution approaches, we first introduce xexit
i,j , a lower bound of xexit

i,j , which

will be referred to a number of times in the following text. It means the earliest possible time when train

i leaves segment j and is calculated simply by summing the free flow running time on the shortest main

track of every segment from the train’s origin node plus the train’s entry time.

xexit
i,j = bi +

max{oi,j}∑
k=min{oi,j}

min
t∈Mk

{ri,k,t}, ∀i ∈ T ,∀j ∈ Bi (40)

where Mk is the set of main tracks at segment k. In the single-track context, this lower bound is the

time when the train will leave the segment if it always travels on the main track without any delay.

In the double-track context, for the trains that must use crossovers at least once, this bound is strictly

smaller than xexit
i,j since the lower bound näıvely assumes that a train can instantaneously “leap” from

one main track to another.
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3.1 Formulation Enhancement

1. Equalizing sequence variables λi,i′j and γi,i′j for adjacent segments

For two geographically adjacent segments where no meet-pass events can occur, the sequence

between the two trains on the two segments will remain unchanged. For instance, in the railway

network provided, if train A were to occupy arc (5,6) earlier than train B does, then train A would

also occupy arc (6,7) earlier. Expressed mathematically, this is

λi,i′,j = λi,i′,j+1, γi,i′,j = γi,i′,j+1, ∀i, i′ ∈ Cj ,∀j, j + 1 ∈ G′ (41)

where G′ is the set of single-track segments where no meet-pass events can occur. This includes

segments 2-10, 12-22, 24-26, 41-49, 51-52 (See Appendix for the arcs affiliated to each segment).

2. No delays at intermediate nodes

Although stopping at some intermediate nodes is permitted, there is really no incentive to do so.

For example, on Main Track 0, it is indeed unnecessary to stop at node 8 for eastbound trains.

A more adequate place to wait can be node 17 or node 18. Thus, inequality Constraints (5) for

a number of segments can be revised to equality constraints. We do not intend to list all such

segments, but note that whether a constraint can be revised is not only related to the territory,

but also depends on the train’s direction. Imposing zero delay on some nodes serves to eliminate

duplicate scenarios, or alternative optima, thus achieving better computational performance.

3. Fixing MOW-related variables βi,j

If in Constraints (21), the lower bound of xentry
i,j (similarly calculated as the lower bound of xexit

i,j )

is no smaller than MOWend
j , then by definition, βi,j must assume the value of 1. We can fix this

portion of the MOW-related variables.

4. Fine-tuning big-M

Customizing big-M for each constraint can make the formulation stronger than if big-M are assigned

arbitrarily large values. We set up big-M based on the lower bound of xexit
i,j . For example, In

Constraints (10 and 11), big-M is given as the difference between the lower bound of xentry
i′,j and

that of xexit
i,j plus an allowance of 5 hours. Other big-M can be determined in a similar fashion.

3.2 Heuristic Variable Fixing Procedure

1. Sequence variable fixing for chronologically distant trains

If two trains’ lower bounds of xexit
i,j at a segment are different by more than 3 hours, then we assume

the real chronological relationship between these two trains will not deviate from the lower bound

relationship, and their sequence variables λi,i′,j γi,i′,j can be fixed accordingly.

2. Unattractive overtaking prohibition

We prohibit unattractive overtakes by fixing the relevant sequence variables (λi,i′,j and γi,i′,j) since

some pass events are very unlikely to occur in an optimal solution. For example, if Train A and

Train B are both eastbound trains, Train A is of higher priority train type, Train A’s entry time
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is earlier than that of Train B, plus Train A’s origin is to the east of that of Train B, then only in

rare circumstances will Train B have the incentive to overtake Train A. In our setting, we fix the

relevant sequence variables in such a way that a train always occupies any segment strictly earlier

than another train moving in the same direction if its entry time is no later than another train,

its type priority no lower, and its origin no farther from the destination. Note that if there is a tie

between two trains in all three attributes, the sequence variables are left unfixed.

3. αi,j fixing

If in Constraints (23 and 24), the lower bound of xexit
i,j is larger than ε, then by definition, αi,j

must take the value of 0. While this is exact, we heuristically let αi,j = 1 if the lower bound is four

hours earlier than the end time of the planning horizon ε.

3.3 Decomposition Algorithm

Motivated by the fact that chronologically distant trains are relatively independent and impact each

other insignificantly, we propose a rolling-horizon-based decomposition algorithm. First, the trains are

ordered by their entry time. Then, in each iteration i, we optimize a subproblem that only schedules

trains whose entry time is earlier than a time threshold δi set for this iteration. After the subproblem’s

optimal solution is obtained, for the trains that arrive at their destinations prior to the threshold, all

the corresponding variables (which track to take, the entry and exit time at each segment, etc) are fixed

to their optimal solution values, including the sequence variables with “future trains.” For those trains

that have not arrived, we only fix variables corresponding to events that end no later than δi − δr, with

δr being the rollback time. An event is simply the resource request a train has of a segment, from the

train’s entry to its exit. Thus, trains are dynamically dispatched in each iteration until all the trains are

scheduled. This is referred to as rolling-horizon-based decomposition because in each iteration, we derive

complete schedules for the trains considered as if there were no other trains to be dispatched later, but

for the trains that have not arrived, we rollback for a certain period, and only the schedules prior to the

time δi − δr are actually adopted, before we progress to the next rolling horizon.

Decomposition Algorithm

Order the trains by their entry time, indexed by t.

Set the number of iterations m, indexed by i, and the threshold δi. Set δm = ε.

Set i = 1.

DO WHILE i ≤ m

Solve the subproblem that dispatches trains with bt < δi.

IF i = m, BREAK

FOR all trains dispatched

IF xexit
t,dt
≤ δi,

Fix all the variables for train t.

ELSE

Fix all the variables for events with xexit
t,j ≤ δi − δ

r.

ENDFOR

i = i+ 1

ENDDO

RETURN dispatching solutions
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An important set of parameters that can substantially affect the performance of this generic algorithm

is the time threshold, δi, or more essentially the interval between them, δi+1 − δi, named the “stepsize”.

We develop an adaptive stepsize scheme, in which the stepsize is set to a certain duration, for example,

1 hour, at the beginning of each iteration. The optimization routine is invoked to solve the subproblem

if new trains are included within the current stepsize; otherwise we directly fix variables within this

stepwise without optimization, and increment the stepsize by another hour until new trains, if any, are

identified.

4 Computational Results

We evaluate our problem formulation and the solution approaches with the three data sets provided.

All the computational tests are performed on a PC with 2.40 GHz CPU and 4GB RAM. The implemen-

tation is coded in C++ invoking the commercial solver ILOG CPLEX 12.1 for the integer program. All

the solver parameters are at their default settings except for the 1 hour limit on the CPU time.

Decomposition Heuristic variable fixing Formulation enhancement Original model

Data Set Obj. ($) Time (s) Obj. ($) Time (s) Obj. ($) Time (s) Obj. ($) Time (s)

1 844.706 9.86 844.706 169.57 856.165 3600 867.216 3600

2 4077.65 26.91 -∗ - - - - -

3 7049.25 147.17 10935.6 3600† - - - -

*: “-” implies no integer solution has been found in 1 hour.

†: “3600” means the underlying model has not been solved to optimality within the 1 hour time limit.

Table 4: Computational results of different solution approaches on the three data sets

Table 4 reports the objective value (“Obj.”) in dollars and the CPU time (“Time”) in seconds for

the computational tests of different solution approaches on the three data sets. For a fair comparison,

big-M’s are already fine-tuned in the light of Subsection 3.1 and remain the same for all the solution

approaches compared. As the names suggest, “Heuristic variable fixing”, “Formulation enhancement”,

and “Original model” report the tests that apply their respective methodologies, but without decompo-

sition. “Heuristic variable fixing” tests are based on formulation enhancement but also use heuristics.

Likewise, the “Decomposition” tests embed both formulation enhancement and heuristic variable fixing

procedures into the decomposition algorithm. As for the decomposition algorithm, we have performed

extensive testing on the choice of the stepsize and the rollback ratio, defined as δr

δi+1−δi , and report the

results with the best computational performance. For Data Set 1, the stepsize is set to 4 hour, and for

Data Set 2 and Data Set 3, it is 1 hour. The rollback ratio is 0.5 for Data Set 1 and Data Set 3, and 0.1

for Data Set 2. The selection of both the stepsize and the rollback ratio is a tradeoff between solution

quality and computational time, and our general recommendation is that the stepsize should be chosen

in such a way that there are six to seven trains within one stepsize, if at all possible; a rule of thumb

for the rollback ratio is an interval between 0.1 and 0.5. The take-away message is that a bit of rollback

usually benefits the solution quality as it offers a second chance to “undo the past”, but too much of it

backfires in terms of computational time. We find that given the stepsize, tweaking the rollback ratio
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within a small interval does not dramatically impact the performance.

The computational results clearly demonstrate the efficacy of our solution approaches. For Data

Set 1, although within 1 hour, neither the enhanced model nor the original model can be solved to

optimality, the enhanced model returns a better solution. And after one hour the optimality gap for

the enhanced model is 26.5%, but is 31.6% for the original model. In fact, the enhanced model can be

solved to optimality in 4525.15 seconds (some 1 hr 15 min) and the optimal solution is 844.706. This

solution is exactly what the heuristic variable fixing procedure yields, but in substantially less CPU time

(less than 3 minutes). The decomposition algorithm produces the same optimal solution, but even faster

(less than 10 seconds). For Data Set 1, the decomposition algorithm is able to speed up the solution

process by a factor of at least 400 while still obtaining the provably optimal solution. For Data Set

2, only the decomposition algorithm is able to find integer solutions within the time limit, and it only

takes less than 30 seconds. For Data Set 3, the hardest instance, despite the original model and the

enhanced model’s continual failure to find integer solutions, the heuristic variable fixing procedure is

able to identify integer solutions within the time limit, but its quality is a far cry from the solution

produced by the decomposition algorithm (more than 50% worse off). Furthermore, it only takes the

decomposition algorithm less than 3 minutes to find the solution. Note that without decomposition,

even the first feasible integer solution cannot be found until more than ten minutes later.

5 Concluding Remarks

In this study, the Movement Planner Problem is tackled with a mixed-integer programming for-

mulation that explicitly captures many real-life constraints. Based on the mathematical model, the

proposed decomposition algorithm, with the embedded formulation enhancement and variable fixing

procedures, accelerates the solution process by a factor of over 400 for Data Set 1 and is able to deliver

high quality solutions efficiently for Data Set 2 and Data Set 3, meeting the operational requirements

of real-time train dispatching. Future research following the decomposition algorithm can be focused on

a more sophisticated and intelligent selection of the stepsize and rollback ratio. How these parameters

affect the dynamics of the solution quality and computational time can be investigated to attain better

understanding of the problem characteristics.
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Appendices

A A List of Segments

segment ID arcs segment ID arcs

0 (0,1) (0,2) 27 (41,42) (40,43)

1 (1,3) (2,4) 28 (42,44) (43,45)

2 (3,5) (4,5) 29 (44,46) (44,47) (45,47) (45,46)

3 (5,6) 30 (46,48) (47,49)

4 (6,7) 31 (49,50) (49,51) (48,48)

5 (7,8) 32 (50,52) (51,53) (48,54)

6 (8,10) 33 (52,55) (53,55) (54,54)

7 (10,12) 34 (55,56) (54,54)

8 (12,13) 35 (54,57) (54,58) (56,58) (56,57)

9 (13,14) 36 (57,59) (58,60)

10 (14,15) (14,16) 37 (59,61) (60,62)

11 (15,17) (16,18) 38 (61,63) (62,64)

12 (17,19) (18,19) 39 (63,65) (64,66)

13 (19,20) 40 (65,67) (66,68)

14 (20,21) 41 (67,69) (68,69)

15 (21,22) 42 (69,70)

16 (22,25) 43 (70,71)

17 (25,26) 44 (71,72)

18 (26,27) 45 (72,74)

19 (27,28) 46 (74,76)

20 (28,30) 47 (76,77)

21 (30,31) 48 (77,78)

22 (31,32) (31,33) 49 (78,79) (78,80)

23 (32,34) (33,35) 50 (79,81) (80,82)

24 (34,36) (35,36) 51 (81,38) (82,38)

25 (36,37) 52 (38,39)

26 (37,40) (37,41)

Table 5: Arcs and the segments to which they are assigned
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B Solution Statistics

Data Set 1 Total Cost: $844.706

Delay

Time

(sec)

Arrive

at

(sec)

Arrive

Time

(sec)

Required

SA

(sec)

SA

diff

(sec)

SA Penalty

(> 2 hrs)

(sec)

Required

TWT

(sec)

TWT

diff

(sec)

TWT Penalty

(outside 4

hr window)

(sec)

Unpreferred

Track

(sec)

Train A1 0 0

node 37 2398.500 3600 1201.500 0

node 39 4945.500 7800 2854.500 0 5400 454.500 0

Train A2 0 0

node 37 6124.740 7800 1675.260 0

node 39 8805.789 12000 3194.211 0 9000 194.211 0

Train B2 0 0

node 37 13621.760 15600 1978.240 0

node 39 16618.235 19800 3181.765 0 16800 181.765 0

Train C1 0 0

node 37 17598.000 19200 1602.000 0

node 39 20994.000 24600 3606.000 0 21600 606.000 0

Train C2 0 0

node 37 25026.430 27000 1973.570 0

node 39 28665.000 33000 4335.000 0 28800 135.000 0

Train E1 54.980 0

node 37 34245.980 36000 1754.020 0

node 39 39339.980 44400 5060.020 0 39000 -339.980 0

Train B3 0 0

node 37 38725.540 40200 1474.430 0

node 39 41619.886 45000 3380.114 0 42000 380.114 0

Train B1 2766.430 502.597

node 37 12889.916 12600 -289.916 0

node 0 17666.104 17400 -266.104 0 13800 -3866.104 0

Train D2 1245.990 680.440

node 37 20796.099 21600 803.901 0

node 0 25500.490 28200 2699.510 0 23400 -2100.490 0

Train D1 2330.570 737.143

node 37 28953.429 29400 446.571 0

node 0 33522.000 36600 3078.000 0 31200 -2322.000 0

Train D3 1483.040 631.837

node 37 33325.710 35400 2074.290 0

node 0 39433.660 41400 1966.340 0 37200 -2233.660 0

Train F1 39.980 0

node 37 63124.300 57600 O.P.H.∗

node 0 74088.900 75000 O.P.H.∗ 63000 O.P.H.∗

*: O.P.H. stands for outside planning horizon

Table 6: Solution statistics for Data Set 1
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Data Set 2 Total Cost: $4077.65

Delay

Time

(sec)

Arrive

at

(sec)

Arrive

Time

(sec)

Required

SA

(sec)

SA

diff

(sec)

SA Penalty

(> 2 hrs)

(sec)

Required

TWT

(sec)

TWT

diff

(sec)

TWT Penalty

(outside 4

hr window)

(sec)

Unpreferred

Track

(sec)

Train A1 20.308 940.500

node 37 2418.810 3600 1181.190 0

node 39 4938.808 7800 2861.192 0 5400 461.192 0

Train E1 3230.730 0

node 37 6418.235 6600 181.765 0

node 39 12926.180 14400 1473.820 0 9600 -3326.180 0

Train D2 373.269 0

node 37 1855.380 3600 1744.620 0

node 39 6147.115 9600 3452.885 0 6600 452.885 0

Train C2 0 0

node 37 198.000 0 -198.000 0

node 39 3594.000 5400 1806.000 0 3600 6 0

Train B1 1509.010 264.706

node 37 6877.060 4800 -2077.060 0

node 39 11520.190 9000 -2520.190 0 9600 -1920.190 0

Train A2 744.601 0

node 37 10598.195 11400 801.805 0

node 39 13463.022 15600 2136.978 0 12600 -863.022 0

Train A3 462.244 225.000

node 37 17736.966 18000 263.034 0

node 39 20608.744 22200 1591.256 0 19800 -808.744 0

Train F1 782.830 0

node 37 26029.300 29400 3370.700 0

node 39 33769.193 41400 7630.807 0 33600 -169.193 0

Train B2 1180.760 281.250

node 37 32978.880 26400 -6578.880 0

node 39 36308.882 31200 -5108.882 0 35400 -908.882 0

Train C1 3679.980 0

node 37 40031.900 26400 -13631.900 -6431.900

node 39 43297.300 31800 O.P.H.∗ 39000 O.P.H.∗

Train D1 775.750 0

node 37 41268.250 43800 2531.750 0

node 39 57984.000 51000 O.P.H.∗ 44400 O.P.H.∗

Train E2 4681.430 0

node 37 3088.740 1800 -1288.740 0

node 0 11995.710 10800 -1195.710 0 7200 -4795.710 0

Train E3 6647.890 884.571

node 37 13415.890 9000 -4415.890 0

node 0 19638.750 18000 -1638.750 0 12000 -7638.750 0

Train B3 3997.710 552.857

node 37 11002.406 11400 397.594 0

node 0 14791.290 16800 2008.710 0 10800 -3991.290 0

Train F2 6353.610 0

node 37 26730.210 30000 3269.790 0

node 0 45310.800 51000 O.P.H.∗ 36000 O.P.H.∗

Train C3 2643.710 552.857

node 37 24873.710 20400 -4473.710 0

node 0 28763.000 25800 -2963.000 0 25200 -3563.000 0

Train E4 1063.450 0

node 37 27881.120 30000 2118.880 0

node 0 33374.622 37800 4425.378 0 32400 -974.622 0

Train A4 5289.020 465.564

node 37 35962.110 31800 -4162.110 0

node 0 45658.100 36600 O.P.H.∗ 39000 O.P.H.∗

*: O.P.H. stands for outside planning horizon

Table 7: Solution statistics for Data Set 2



14

Data Set 3 Total Cost: $7049.25

Delay

Time

(sec)

Arrive

at

(sec)

Arrive

Time

(sec)

Required

SA

(sec)

SA

diff

(sec)

SA Penalty

(> 2 hrs)

(sec)

Required

TWT

(sec)

TWT

diff

(sec)

TWT Penalty

(outside 4

hr window)

(sec)

Unpreferred

Track

(sec)

Train B3 1718.280 252.809

node 37 4745.913 -3000 -7745.913 -545.913

node 39 7841.310 1800 -6041.310 0 6000 -1841.310 0

Train C2 2235.980 0

node 37 5662.410 0 -5662.410 0

node 39 9300.980 6000 -3300.980 0 7200 -2100.980 0

Train D1 2764.440 0

node 37 6454.440 4200 -2254.440 0

node 39 10372.901 10200 -172.901 0 7800 -2572.900 0

Train E2 1083.000 450.000

node 37 16191.000 18000 1809.000 0

node 39 22602.000 26400 3798.000 0 21000 -1602.000 0

Train E3 1732.750 0

node 37 21900.935 21000 -900.935 0

node 39 27235.480 28800 1564.520 0 24000 -3235.480 0

Train F2 9956.160 0

node 37 44141.200 37200 O.P.H.∗

node 39 55150.500 51000 O.P.H.∗ 42000 O.P.H.∗

Train A5 5112.000 0

node 37 36697.500 32400 -4297.500 0

node 39 39244.500 36600 -2644.500 0 34200 -5044.500 0

Train E4 9801.040 0

node 37 51082.800 40800 O.P.H.∗

node 39 56742.800 49800 O.P.H.∗ 43800 O.P.H.∗

Train D2 5039.500 0

node 37 45324.900 42000 O.P.H.∗

node 39 57389.000 48000 O.P.H.∗ 43800 O.P.H.∗

Train A1 0 0

node 37 967.500 2400 1432.500 0

node 39 3514.500 6000 2485.500 0 4200 685.500 0

Train B2 0 409.091

node 39 2981.250 4800 1818.750 0 3000 18.750 0

Train E1 2610.570 982.857

node 37 9792.571 10200 407.429 0

node 0 16222.000 19200 2978.000 0 13200 -3022.000 0

Train F1 8977.480 1769.14

node 37 22513.480 18000 -4513.480 0

node 0 33478.050 34800 1321.950 0 23400 -10078.050 0

Train A3 154.286 730.286

node 37 21054.860 22800 1745.140 0

node 0 23796.000 27000 3204.000 0 24000 204.000 0

Train B4 7059.000 552.857

node 37 29638.790 16800 -12838.790 -5638.790

node 0 39915.430 21600 -18315.430 -11115.430 32400 -7515.430 0

Train C3 4595.950 903.673

node 37 37560.796 30000 -7560.796 -360.796

node 0 41573.100 36000 -5573.100 0 37200 -4373.100 0

Train A4 1612.200 465.564

node 37 37086.790 33600 -3486.790 0

node 0 40459.710 38400 -2059.710 0 39000 -1459.710 0

Train A2 1958.410 442.286

node 37 1656.000 2400 744.000 0

node 0 6049.550 6600 550.450 0 4200 -1849.550 0

Train C1 6387.520 0

node 0 9754.370 6000 -3754.370 0 4200 -5554.370 0

Train B1 0 0

node 0 1496.104 1800 303.896 0 1200 -296.104 0

*: O.P.H. stands for outside planning horizon

Table 8: Solution statistics for Data Set 3
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