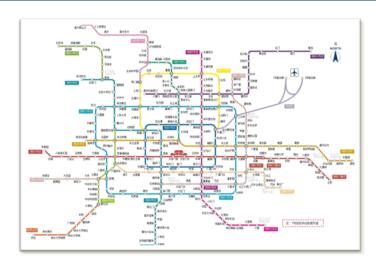


Planning and Management in Urban Transit

Train rescheduling for urban rail transit systems under disruptions

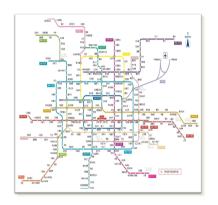


Yihui WangBeijing Jiaotong University
November 11, 2020

- 1 Introduction
- ② Mathematical Formulation
- 3 Solution approach
- Case study
- **5** Conclusions

- 1 Introduction
- 2 Mathematical Formulation
- Solution approach
- Case study
- (5) Conclusions

Lines operated separately

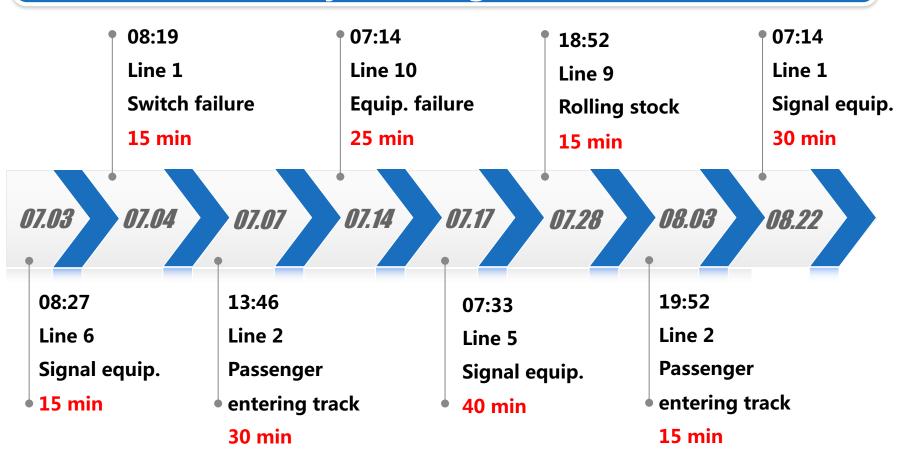

High operational frequency

Massive passenger demand

Low flexibility

Lines operated separately

Massive passenger demand


Disruption unavoidable Serious affect on traffic

Low flexibility

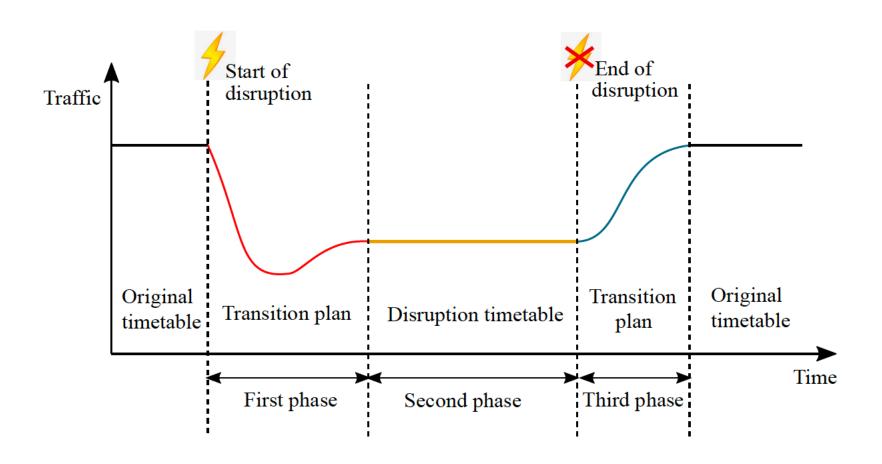
8 disruptions (≥15 min) occurring at Beijing Metro in July and August, 2017

Crowdedness

Trains blocked in the middle of the track

Passengers onboard may encounter safety issues

Passenger control


Many passengers waiting in station Control measures needed to let passengers queueing outside the station

Paralyzed traffic

Disorder in current line, adjacent lines, and metro networks Big pressure for bus systems and traffic jam in road networks

Three phase of the disruption management

- 1 Introduction
- ② Mathematical Formulation
- Solution approach
- Case study
- (5) Conclusions

Mathematical formulation

Normal operation

Short-turning under disruption

Mathematical formulation

Assumptions

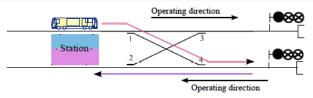
- Trains do not meet and overtake each other due to the station layout
- **□** Each platform can only accommodate one train at a time
- □ Trains are not allowed to stop in the open tracks (tunnels)
- Trains that enter the blockage area before disruption can pass through the area
- □ Trains can arrive at and depart from stations earlier than the planned times
- Disruptions occur in off-peak hours and the metro line is not saturated

Mathematical formulation

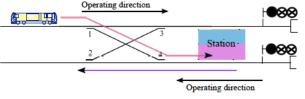
Modeling

Objective functions

- deviations w.r.t. planned timetable
- Service cancellations (partial cancellations involved)
- Headway variations between neighboring services


$$\begin{aligned} & \min \quad Z = w_{1} \cdot \frac{Z_{\text{deviation}}}{Z_{\text{deviation,nom}}} + w_{2} \cdot \frac{Z_{\text{cancel}}}{Z_{\text{cancel,nom}}} + w_{3} \cdot \frac{Z_{\text{headway}}}{Z_{\text{headway,nom}}} \\ & Z_{\text{deviation}} = \sum_{f \in \mathbf{F}} \sum_{i \in \mathbf{I}, i \neq 1} y_{f, i-1, i}^{\text{up}} \left| d_{f, i}^{\text{up}} - \bar{d}_{f, i}^{\text{up}} \right| + \sum_{g \in \mathbf{G}} \sum_{i \in \mathbf{I}, i \neq 1} y_{g, i+1, i}^{\text{dn}} \left| d_{g, i}^{\text{dn}} - \bar{d}_{g, i}^{\text{dn}} \right| \\ & + \sum_{f \in \mathbf{F}} \sum_{i \in \mathbf{I}, i \neq 1} y_{f, i-1, i}^{\text{up}} \left| a_{f, i}^{\text{up}} - \bar{a}_{f, i}^{\text{up}} \right| + \sum_{g \in \mathbf{G}} \sum_{i \in \mathbf{I}, i \neq 1} y_{g, i+1, i}^{\text{dn}} \left| a_{g, i}^{\text{dn}} - \bar{a}_{g, i}^{\text{dn}} \right|, \\ & Z_{\text{cancel}} = \sum_{f \in \mathbf{F}} \sum_{p \in \mathbf{P}, p \neq P} \left(\bar{x}_{f, p, p+1}^{\text{up}} - x_{f, p, p+1}^{\text{up}} \right) + \sum_{g \in \mathbf{G}} \sum_{p \in \mathbf{P}, p \neq 1} \left(\bar{x}_{g, p, p-1}^{\text{dn}} - x_{g, p, p-1}^{\text{dn}} \right) \\ & Z_{\text{headway}} = \sum_{f \in \mathbf{F}, f \neq 1, f \neq F} \sum_{i \in \mathbf{I}, i \neq 1} \left(y_{f-1, i-1, i}^{\text{up}} y_{f, i-1, i}^{\text{up}} y_{f+1, i-1, i}^{\text{up}} \left(d_{f+1, i}^{\text{up}} + d_{f-1, i}^{\text{up}} - 2 d_{f, i}^{\text{up}} \right) \right) \\ & + \sum_{g \in \mathbf{G}, g \neq 1, g \neq G} \sum_{i \in \mathbf{I}, i \neq I} \left(y_{g-1, i+1, i}^{\text{dn}} y_{g, i+1, i}^{\text{dn}} y_{g+1, i+1, i}^{\text{dn}} \left(d_{g+1, i}^{\text{dn}} + d_{g-1, i}^{\text{dn}} - 2 d_{g, i}^{\text{dn}} \right) \right) \end{aligned}$$

Headway based timetabling


Modeling

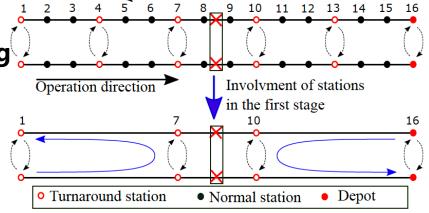
Operational constraints

- Departure/arrival time constraints
- Turnaround constraints
- Headway constraints
- Rolling stock circulation constraints
- Number of available rolling stocks

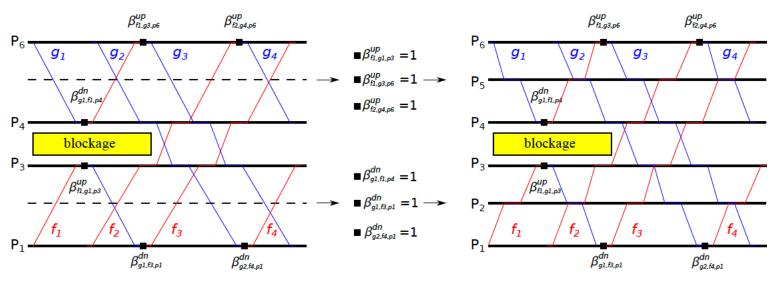
(a) Backward scissors crossover

(b) Forward scissors crossover

$$\begin{aligned} a_{f,i}^{\text{up}} &= y_{f,i-1,i}^{\text{up}} (d_{f,i-1}^{\text{up}} + r_{f,i-1,i}^{\text{up}}) & t_p^{\text{turn,min}} \leq t_{g,p}^{\text{turn,max}} \\ a_{f,i}^{\text{dn}} &= y_{f,i+1,i}^{\text{dn}} (d_{f,i+1}^{\text{dn}} + r_{f,i+1,i}^{\text{dn}}) & d_{f,i}^{\text{up}} &= \sum_{g \in \mathbf{G}} \beta_{f,g,p}^{\text{up}} (a_{f,i}^{\text{up}} + w_{f,i}^{\text{up}} + w_{c,p}) \\ d_{f,i}^{\text{up}} &= y_{f,i-1,i}^{\text{up}} (a_{f,i}^{\text{up}} + w_{f,i}^{\text{dn}}) & c_{f-\ell,i-1,i}^{\text{up}} c_{f,i-1,i}^{\text{up}} (d_{f,i}^{\text{up}} - d_{f-\ell,i}^{\text{up}}) \geq c_{f-\ell,i-1,i}^{\text{up}} c_{f,i-1,i}^{\text{up}} h_{\min} \\ d_{f,i}^{\text{up}} &= y_{f,i-1,i}^{\text{up}} (d_{f,i-1}^{\text{up}} + r_{f,i-1,i}^{\text{up}}) & \sum_{g} \beta_{f,g,p_d}^{\text{up}} + x_{f,p_d,p_d+1}^{\text{up}} + \alpha_{f,p_d}^{\text{up}} = c_{f,p_d}^{\text{up}} \\ a_{f,i}^{\text{up}} &= \sum_{g \in \mathbf{G}} \beta_{g,f,p}^{\text{dn}} (d_{g,i}^{\text{dn}} + t_{g,p}^{\text{turn}}) & a_{f',i_d}^{\text{up}} \geq \varepsilon + (-a_f^{\text{LB}} - \varepsilon) \cdot \delta_{f,f'}^{\text{up}} \end{aligned}$$


- ① Introduction
- (2) Mathematical Formulation
- 3 Solution approach
- Case study
- (5) Conclusions

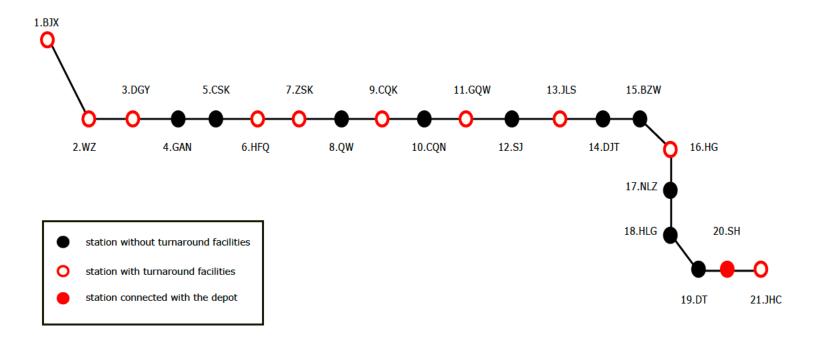
Solution approach


Mixed integer nonlinear programming

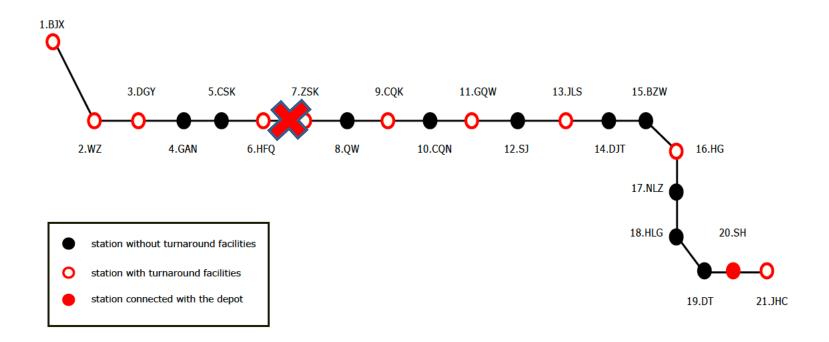
- Linearization transformations
- Mixed integer linear programming
- Two-stage approach
- Filtering constraints

First stage

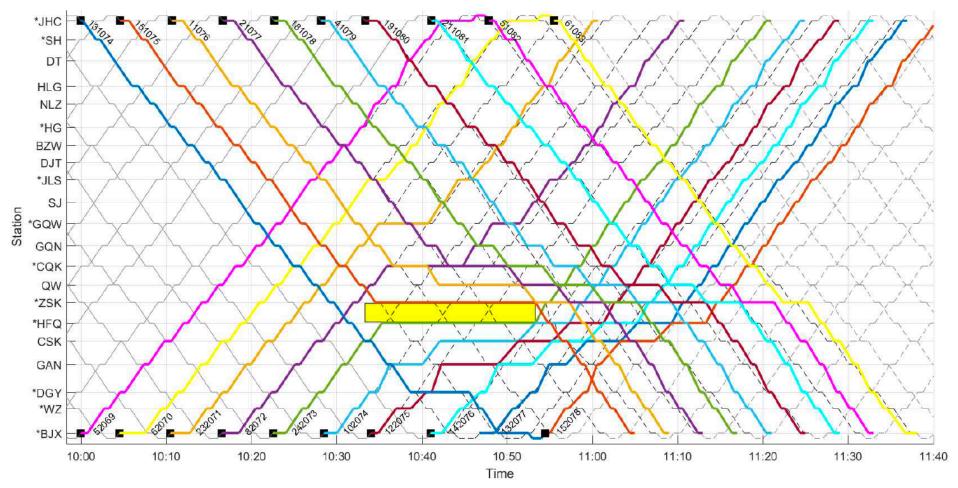
Operation direction



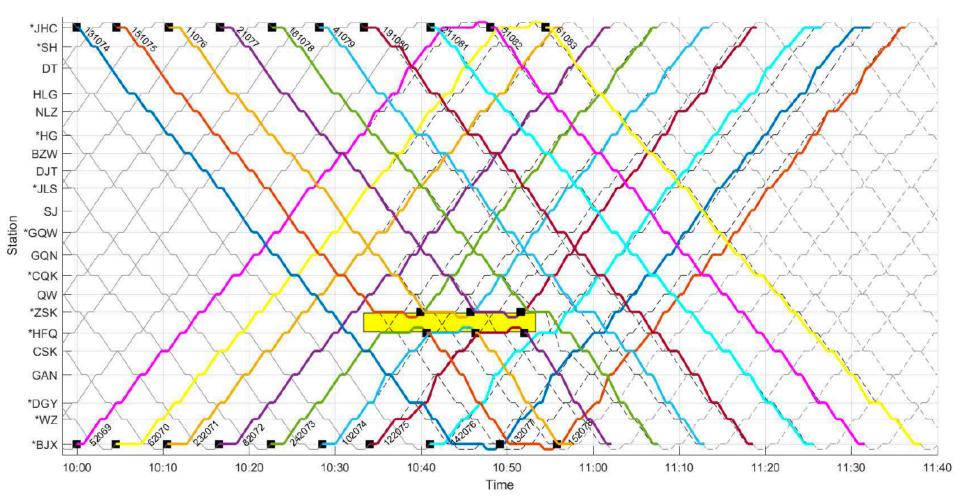
Second stage


- ① Introduction
- 2 Mathematical Formulation
- Solution approach
- Case study
- (5) Conclusions

Beijing Subway Line 7


- 21 stations
- 11 stations have turnaround facilities
- BJX and JHC are terminal stations
- Depot is connected with SH stations

■ Track blockage between HFQ and ZSK



■ Track blockage between HFQ and ZSK

Train rescheduling solution obtained by holding strategy (holding all trains)

■ Track blockage between HFQ and ZSK

Train rescheduling solution obtained by MILP strategy with filtering constraints

■ Track blockage between HFQ and ZSK

Performance comparison between different approaches

Solution	Computation	Objective	Timetable	Headway	Number of
approaches	time (s)	function value	deviations (s)	variations (s)	cancellations
MILP without filtering	2193	4.232	$1.424 \cdot 10^4$	$5.560 \cdot 10^3$	6
MILP with filtering	1369	4.232	$1.424 \cdot 10^4$	$5.560 \cdot 10^3$	6
Two-stage without filtering	250	4.232	$1.424 \cdot 10^4$	$5.560 \cdot 10^3$	6
Two-stage with filtering	42	4.232	$1.424 \cdot 10^4$	$5.560 \cdot 10^3$	6
Holding-4	10	5.507	$2.285 \cdot 10^4$	$7.602 \cdot 10^3$	4
Holding-2	69	11.563	$5.930 \cdot 10^4$	$1.452 \cdot 10^4$	2
Holding-0	76	21.570	$1.156 \cdot 10^5$	$2.710 \cdot 10^4$	0

■ Track blockage between HFQ and ZSK

Performance comparison for different disruption durations

Disruption	Solution	Objective	Timetable	Headway	Number of	Computation
time period	eriod approach		deviations (s)	variations (s)	cancellations	time (s)
(10:33, 10:43)	MILP without filtering	3.36	$1.234 \cdot 10^4$	$5.702 \cdot 10^3$	2	8604
	MILP with filtering	3.36	$1.234 \cdot 10^4$	$5.702 \cdot 10^3$	2	1045
	Two-stage without filtering	3.36	$1.234 \cdot 10^4$	$5.702 \cdot 10^3$	2	101
	Two-stage with filtering	3.36	$1.234 \cdot 10^4$	$5.702 \cdot 10^3$	2	16
(10:33, 10:53)	MILP without filtering	4.232	$1.424 \cdot 10^4$	$5.560 \cdot 10^3$	6	6871
	MILP with filtering	4.232	$1.423 \cdot 10^4$	$5.563 \cdot 10^3$	6	2286
	Two-stage without filtering	4.232	$1.424 \cdot 10^4$	$5.560 \cdot 10^3$	6	134
	Two-stage with filtering	4.232	$1.424 \cdot 10^4$	$5.560 \cdot 10^3$	6	42
(10:33, 11:03)	MILP without filtering	5.282	$1.723 \cdot 10^4$	$5.578 \cdot 10^3$	10	8202
	MILP with filtering	5.282	$1.723 \cdot 10^4$	$5.578 \cdot 10^3$	10	2927
	Two-stage without filtering	5.396	$2.103 \cdot 10^4$	$5.466 \cdot 10^3$	8	158
	Two-stage with filtering	5.396	$2.103 \cdot 10^4$	$5.466 \cdot 10^3$	8	110

- 1 Introduction
- 2 Mathematical Formulation
- Solution approach
- Case study
- **5** Conclusions

Conclusions

- □ Train rescheduling for completed blockage in metro lines
 - Integration of train rescheduling and rolling stock circulation planning
 - Mathematical models and effective solution approaches
 - Decision support for dispatchers
- Limitation of this research
 - Other types of disruptions, partial blockage, slowly moving train
 - Joint optimization of passenger control strategy and train rescheduling
 - **•** ...

Planning and Management in Urban Transit

Thank you!

yihui.wang@bjtu.edu.cn