Increasing reliability of the multi-depot vehicle scheduling problem

Léa Ricard*¹, Guy Desaulniers², Andrea Lodi², Louis-Martin Rousseau²

¹ Université de Montréal, Department of Computer Science

²Polytechnique Montréal, Department of Mathematics and Industrial Engineering

*Corresponding author: lea.ricard@umontreal.ca

TransitData, August 2020

Collaboration

From giro.ca

- World leader in the development and commercialization of optimization-based software for the planning of public transport and postal agencies
- Hastus software

From stm.info

- Montréal trips and bus schedules planning
- AVL (Automatic Vehicle Location) data
- More than 41 000 trips
- 2 months

Operations planning in public transportation

Motivation: disruption scenario

L. Ricard INFORMS 2020 4/16

Motivation: disruption scenario

What if we do not choose the cost optimal solution?

Why reliable bus schedules?

- Service unreliability affects the passenger perception of public transportation negatively
- Most passengers put more value on the reduction of travel time variability than over the reduction of travel time itself (Bates et al., 2001).

Bates, J., Polak, J., Jones, P., & Cook, A. (2001). The valuation of reliability for personal travel. Transportation Research Part E: Logistics and Transportation Review, 37(2-3), 191-229.

Outline

- 1. Problem definition
- 2. Algorithmic framework
- 3. Reliability metrics
- 4. Preliminary results

Reliable multi-depot vehicle scheduling problem (R-MDVSP)

Graph definition:

- Arc between two trips if the connection is possible
 - Buffer time between the trips ≥ transit time + minimum break for drivers

Problem definition

- Find a set of vehicle schedule
- All trips are covered by exactly one of the vehicle schedules
- Capacity (in terms of number of assigned vehicles) of each depot preserved
- Number of depots ≥ 2
- Each vehicle schedule starts and ends at the same depot

Stochastic travel times

1. Problem

• Secondary delay (R_i) and actual departure time (D_i) are recursively computed using the travel time (T_i) probability density function

4. Preliminary results

L. Ricard INFORMS 2020 9/16

- Bi-objective problem:
 - Planned costs
 - Expected secondary delay per passenger
- Use a weighting method in order to find good tradeoffs between the two objectives
- Cost of a vehicle schedule s:

Algorithmic framework

Column generation embedded in a branch-and-bound algorithm (Ribeiro and Soumis, 1994)

- → Allows to easily add constraints (e.g. related to electric buses)
- Solved heuristically
 - · Branching heuristic: Diving method
 - Permutations
- Shortest path pricing problem
 - Solved by a labeling algorithm
 - Labels:
 - I. Preceding label
 - II. Accumulated reduced cost
 - III. Cumulative distribution of the real departure time (D)

Ribeiro, C.C., Soumis, F. (1994). A column generation approach to the multiple-depot vehicle scheduling problem. Oper. Res. 42 (1), 41–52.

Reliability metrics

Passenger oriented reliability metric

1. Probability that a passenger boards a delayed trip

$$P(R > \delta^{max}) = \sum_{i=1}^{n} \alpha_i \times P(R_i > \delta^{max})$$

Delay tolerance

Relative expected ridership of trip i

2. Average secondary delay duration per passenger

$$E[R \mid R > \delta^{max}] = \sum_{i=1}^{n} \alpha_i \times E[R_i \mid R_i > \delta^{max}]$$

Delay tolerance

3. Average number of trips needed to get back on schedule after the first delayed trip

Experimental setup

- The R-MDVSP results are compared to:
 - 1. MDVSP without any consideration to reliability
 - 2. MDVSP with mandatory waiting time after every trip (soft constraint)
 - I. Fixed fraction of the trip duration
 - II. Fixed minimum waiting time (1,2,...,10 minutes)
 - III. 50th, 90th and 95th percentiles of the primary delay distribution
- $\delta^{max} = 2$ minutes
- Instance from Montréal's bus network
 - 1024 trips
 - 16 bus routes
 - 2 depots
 - From 06:00 AM to 22:00PM

Real-world instance results

• 1. Probability that a passenger boards a delayed trip

• 2. Average secondary delay duration per passenger

Real-world instance results

 3. Average number of trips needed to get back on schedule after a first delayed trip

solving time $\approx 1.5 \times MDVSP$

Conclusion

- Proposed a new reliable approach to multi-depot vehicle scheduling problem (R-MDVSP)
 - Consider the stochasticity of travel times
- Defined three reliability metrics focused on passengers
- Presented preliminary results on an instance derived from Montréal's bus network
- Future work:
 - Compare the R-MDVSP on other instances (of larger size)

Thank you!

Contact: lea.ricard@umontreal.ca