Increasing reliability

 of the multi-depot vehicle scheduling problem

 of the multi-depot vehicle scheduling problem}

Léa Ricard ${ }^{* 1}$, Guy Desaulniers ${ }^{2}$, Andrea Lodi², Louis-Martin Rousseau ${ }^{2}$
${ }^{1}$ Université de Montréal, Department of Computer Science
${ }^{2}$ Polytechnique Montréal, Department of Mathematics and Industrial Engineering

*Corresponding author: lea.ricard@umontreal.ca

TransitData, August 2020
Université
de Montréal

Collaboration

-1Rロ

HASTUS

From giro.ca

- World leader in the development and commercialization of optimization-based software for the planning of public transport and postal agencies
- Hastus software

From stm.info

- Montréal trips and bus schedules planning
- AVL (Automatic Vehicle Location) data
- More than 41000 trips
- 2 months

Operations planning in public transportation

Motivation: disruption scenario

Primary delay
Secondary delay

Motivation: disruption scenario

What if we do not choose the cost optimal solution?

Why reliable bus schedules?

- Service unreliability affects the passenger perception of public transportation negatively
- Most passengers put more value on the reduction of travel time variability than over the reduction of travel time itself (Bates et al., 2001).
- Reliability \longrightarrow Ridership

Bates, J., Polak, J., Jones, P., \& Cook, A. (2001). The valuation of reliability for personal travel. Transportation Research Part E: Logistics and Transportation Review, 37(2-3), 191-229.

Outline

1. Problem definition
2. Algorithmic framework
3. Reliability metrics
4. Preliminary results

Reliable multi-depot vehicle scheduling problem (R-MDVSP)

Graph definition:

- Arc between two trips if the connection is possible
- Buffer time between the trips \geq transit time + minimum break for drivers
Problem definition
- Find a set of vehicle schedule
- All trips are covered by exactly one of the vehicle schedules
- Capacity (in terms of number of assigned vehicles) of each depot preserved
- Number of depots ≥ 2

- Each vehicle schedule starts and ends at the same depot

Stochastic travel times

- Secondary delay $\left(R_{i}\right)$ and actual departure time $\left(D_{i}\right)$ are recursively computed using the travel time $\left(T_{i}\right)$ probability density function

$$
\begin{gathered}
\text { Scheduled departure time } \\
R_{i}=D_{i}-d_{i} \\
D_{i}=\max \left\{D_{i-1}+T_{i-1}+l_{i-1, i}, d_{i}\right\} \\
D_{1}=d_{1}
\end{gathered} \text { Minimum transit time }
$$

Primary delay
Secondary delay

$$
D_{3}=8: 40
$$

$$
T_{1}=40 \text { minutes }
$$

$R_{3}=10$ minutes

Objective function

- Bi-objective problem:
- Planned costs
- Expected secondary delay per passenger
- Use a weighting method in order to find good tradeoffs between the two objectives
- Cost of a vehicle schedule s :

$$
\begin{gathered}
\text { Planned costs } \begin{array}{c}
\text { Penalty factor } \\
\left.c_{S}=p_{s}\right)=\sum_{i=2}^{p_{S}+\beta E\left(R_{S}\right)} \alpha_{i} \times E\left(R_{i}\right) \\
n_{s}-1 \\
\text { Relative expected } \\
\text { ridership of trip } i
\end{array}
\end{gathered}
$$

Algorithmic framework

Column generation embedded in a branch-and-bound algorithm (Ribeiro and Soumis, 1994)
\Rightarrow Allows to easily add constraints (e.g. related to electric buses)

- Solved heuristically
- Branching heuristic: Diving method
- Permutations
- Shortest path pricing problem
- Solved by a labeling algorithm
- Labels:
I. Preceding label
II. Accumulated reduced cost
III. Cumulative distribution of the real departure time (D)

Ribeiro, C.C. , Soumis, F. (1994). A column generation approach to the multiple-depot vehicle scheduling problem. Oper. Res. 42 (1), 41-52 .

Reliability metrics

Passenger oriented reliability metric

1. Probability that a passenger boards a delayed trip

$$
P\left(R>\underset{\substack{\delta^{\max }}}{\text { Delay tolerance }}=\sum_{i=1}^{n} \alpha_{i} \times P\left(R_{i}>\delta^{\max }\right)\right.
$$

2. Average secondary delay duration per passenger

$$
E\left[R \mid R>\delta_{\uparrow}^{\max }\right]=\sum_{i=1}^{n} \alpha_{i} \times E\left[R_{i} \mid R_{i}>\delta^{\max }\right]
$$

Delay tolerance
3. Average number of trips needed to get back on schedule after the first delayed trip

Experimental setup

- The R-MDVSP results are compared to:

1. MDVSP without any consideration to reliability
2. MDVSP with mandatory waiting time after every trip (soft constraint)
I. Fixed fraction of the trip duration
II. Fixed minimum waiting time ($1,2, \ldots, 10$ minutes)
III. $50^{\text {th }}, 90^{\text {th }}$ and $95^{\text {th }}$ percentiles of the primary delay distribution

- $\delta^{\max }=2$ minutes
- Instance from Montréal's bus network
- 1024 trips
- 16 bus routes
- 2 depots
- From 06:00 AM to 22:00PM

Real-world instance results

-1. Probability that a passenger boards a delayed trip

- 2. Average secondary delay duration per passenger

Real-world instance results

- 3. Average number of trips needed to get back on schedule after a first delayed trip

\author{

- MDVSP - R-MDVSP Additionnal buffer time
}

solving time $\approx 1.5 \times M D V S P$

Conclusion

- Proposed a new reliable approach to multi-depot vehicle scheduling problem (R-MDVSP)
- Consider the stochasticity of travel times
- Defined three reliability metrics focused on passengers
- Presented preliminary results on an instance derived from Montréal's bus network
- Future work:
- Compare the R-MDVSP on other instances (of larger size)

Thank you!

Contact: lea.ricard@umontreal.ca

