A Mixed Integer Programming Model For Freight Train Travel-Time Estimation By Minimizing Delay of Trains

 The 2020 RAS Problem Solving CompetitionBijan Taslimi ${ }^{1}$ Farnaz Babaie Sarijaloo ${ }^{2}$ Hongcheng Liu ${ }^{3}$
${ }^{1} \mathrm{PhD}$ Candidate, University of Florida
${ }^{2}$ PhD Candidate, University of Florida
${ }^{3}$ Assistant Professor, University of Florida

Nov 2020

Outline

(1) Introduction
(2) Problem description
(3) Mathematical model
(4) Computational experiments
(5) Conclusion

Motivation

- Management of railway networks is extremely challenging
- Train timetabling or scheduling is a crucial problem
- Operational constraints and network structure should be considered
- Train delays occur due to various reasons
- Travel-time estimation by considering delays and restrictions

Literature

- Travel time and delay estimation Approaches:
- Optimization methods: finding an optimal train timetable
- Simulation models: Building a prototype of the network
- Data-driven methods: Applying statistical and machine learning techniques

Our problem

- Goal: Estimating travel-time of trains by determining the arrival and departure time
- The followings are given:
- Network characteristics
- Business constraints
- Resource availabilities
- Planned train schedule
- Delays

Business constraints

- Three type of delay: yard, crew and locomotive delay.
- There are single tracks, double tracks and 4-track sections
- Siding can occur at siding tracks and yard tracks
- High-priority trains are expected to have a smaller amount of delay
- Delay of a train has an impact on other trains departure/arrival

Important assumptions

- Yard tracks can be utilized for siding
- 5-minute penalty delay for siding
- Pick up/drop off activity at a non-yard station performed at a separate industrial spur (Only one train can use it at any time)
- Arrival/departure can occur earlier than planned time at intermediate stations
- Early arrival at stop stations is allowed while departure must be at or after planned time and imposing the stop duration
- distribution of the delays is assumed to be $\log N\left(\mu, \sigma^{2}\right)$. We assume that all trains have a delay equal to the mean of the corresponding distribution which is $e^{\left(\mu+\frac{\sigma^{2}}{2}\right)}$.

Notations and parameters

Parameter	Description
I	Set of trains
S	Set of stations
J	Set of arcs in the railways network
H	Set of high priority trains
$A^{(1)}$	Set of low priority trains
$A^{(2)}$	Set of single-track arcs
$A^{(4)}$	Set of double-track arcs
B	Set of 4-track arcs
U	Set of stations having siding tracks
V_{i}	Set of non-yards stations having drop off/picking up activities
C_{i}	Set of stations with a yard flag visited by train $i ; \forall i \in I \in$
W_{i}	Set of the stations where train i changes the crew; $\forall i \in I$
C_{i}^{\prime}	Set of non-yard stations with a yard flag visited by train $i ; \forall i \in I$
K_{i}	Set of the stop stations for train $i ; \forall i \in I$
E_{i}	Set of arcs visited by train $i ; \forall i \in I$
G_{s}	Set of trains passing through station $s ; \forall s \in S$
G_{s}^{\prime}	Set of trains passing through station s and having a drop off/picking up order at $s ; \forall s \in S$
O_{s}	Set of trains whose origin is station $s ; \forall s \in S$
F_{s}	Set of trains whose final destination is station $s ; \forall s \in S$
$T_{j}^{(1)}$	Set of trains passing through arc $j=s_{1} s_{2}$ going from station s_{1} to station $s_{2} ; \forall j \in J$
$T_{j}^{(2)}$	Set of trains passing through arc $j=s_{1} s_{2}$ going from station s_{2} to station $s_{1} ; \forall j \in J$

Notations and parameters

Parameter	Description
o_{i}	Original station of train $i ; \forall i \in I$
f_{i}	Final destination of train $i ; \forall i \in I$
$a_{i, s}$	Planned arrival of train i at station $s ; \forall i \in I, s \in V_{i} \backslash\left\{o_{i}\right\}$
$d_{i, s}$	Planned departure of train i from station $s ; \forall i \in I, s \in V_{i} \backslash\left\{f_{i}\right\}$
$t_{i, j}$	Travel time of train i on arc $j ; \forall i \in I, j \in E_{i}$
n_{s}	Number of siding tracks at station $s ; \forall s \in S$
m_{s}	Number of mainline tracks at station $s ; \forall s \in S$
α	Penalty time delay due to siding
β	Average delay due to yard activity
γ	Average delay due to crew change
θ	Average delay due to locomotive unavailability
λ	Penalty considered for the delay of high priority trains
M	A sufficiently large number

Decision variables

- $x_{i, s}$: Arrival time of train i at station $s ; \forall i \in I, s \in V_{i} \cup\left\{f_{i}\right\}$.
- $y_{i, s}$: Departure time of train i from station $s ; \forall i \in I, s \in V_{i} \cup\left\{o_{i}\right\}$.
- $\delta_{i, s}^{+}$: Positive delay of train i at station $s ; \forall i \in I, s \in K_{i} \cup\left\{f_{i}\right\}$.
- $\delta_{i, s}^{-}$: Negative delay of train i at station $s ; \forall i \in I, s \in K_{i} \cup\left\{f_{i}\right\}$.
- $p_{s, i_{1}, i_{2}}$: A binary variable which is equal to 1 if train i_{1} arrives at station s before arrival of train i_{2}, and it is equal to zero otherwise; $\forall s \in S, i_{1}, i_{2} \in\left(G_{s} \cup F_{s}\right) \mid i_{1}<i_{2}$.
- $q_{s, i_{1}, i_{2}}$: A binary variable which is equal to 1 if train i_{1} departs from station s before departure of train i_{2}, and it is equal to zero otherwise; $\forall s \in S, i_{1}, i_{2} \in\left(G_{s} \cup O_{s}\right) \mid i_{1}<i_{2}$.
- $r_{s, i_{1}, i_{2}}$: A binary variable which is equal to 1 if train i_{1} departs station s before arrival of train i_{2}, and it is equal to zero otherwise; $\forall s \in S, i_{1} \in\left(G_{s} \cup O_{s}\right), i_{2} \in\left(G_{s} \cup F_{s}\right) \mid i_{1} \neq i_{2}$.

Decision variables

- $z_{s, i}$: A binary variable which is equal to 1 if train i does a siding at station s, and it is equal to zero otherwise; $\forall s \in S, i \in\left(G_{s} \backslash G_{s}^{\prime}\right)$.
- $h_{s, i_{1}, i_{2}}$: A binary variable which is equal to 1 if train i_{2} is on the mainline of station s when train i_{1} arrives at s, and it is equal to zero otherwise; $\forall s \in B, i_{1}, i_{2} \in\left(G_{s} \backslash G_{s}^{\prime}\right) \mid i_{1} \neq i_{2}$.
- $w_{j, i}^{(1,1)}$: A binary variable which is equal to 1 if train i passing through arc j in direction 1 uses the first track assigned to this direction, and it is equal to zero otherwise; $\forall j \in A^{(4)}, i \in T_{j}^{(1)}$.
- $w_{j, i}^{(1,2)}$: A binary variable which is equal to 1 if train i passing through arc j in direction 1 uses the second track assigned to this direction, and it is equal to zero otherwise; $\forall j \in A^{(4)}, i \in T_{j}^{(1)}$.
- $w_{j, i}^{(2,1)}$: A binary variable which is equal to 1 if train i passing through arc j in direction 2 uses the first track assigned to this direction, and it is equal to zero otherwise; $\forall j \in A^{(4)}, i \in T_{j}^{(2)}$.
- $w_{j, i}^{(2,2)}$: A binary variable which is equal to 1 if train i passing through arc j in direction 2 uses the second track assigned to this direction, and it is equal to zero otherwise;
$\forall j \in A^{(4)}, i \in T_{j}^{(2)}$.

Constraints

- Departure and arrival time constraints:

$$
\begin{align*}
& y_{i, o_{i}} \geq d_{i, o_{i}}+\theta \tag{1}\\
& y_{i, s} \geq x_{i, s}+\left(d_{i, s}-a_{i, s}\right) \tag{2}\\
& y_{i, s} \geq x_{i, s}+\beta \tag{3}\\
& y_{i, s} \geq x_{i, s}+\gamma \tag{4}\\
& y_{i, s} \geq x_{i, s}+\alpha z_{i, s} \tag{5}\\
& y_{i, s} \geq d_{i, s} \tag{6}\\
& x_{i, s_{2}}=y_{i, s_{1}}+t_{i, j} \tag{7}
\end{align*}
$$

$$
\begin{aligned}
& \forall i \in I, \\
& \forall i \in I, s \in V_{i}, \\
& \forall i \in I, s \in C_{i}, \\
& \forall i \in I, s \in W_{i}, \\
& \forall i \in I, s \in\left(V_{i} \cap B\right) \backslash C_{i}, \\
& \forall i \in I, s \in K_{i}, \\
& \forall i \in I, j=s_{1} s_{2} \in E_{i} .
\end{aligned}
$$

- Delay calculation constraint:

$$
\begin{equation*}
\delta_{i, s}^{+}-\delta_{i, s}^{-}=x_{i, s}-a_{i, s} \quad \forall i \in I, s \in K_{i} \cup\left\{f_{i}\right\} \tag{8}
\end{equation*}
$$

Constraints

- Arrival and departure order constraints:

$$
\begin{array}{ll}
x_{i_{2}, s}-x_{i_{1}, s} \leq M p_{s, i_{1}, i_{2}} & \forall s \in S, i_{1}, i_{2} \in G_{s} \cup F_{s} \mid i_{1}<i_{2}, \\
x_{i_{1}, s}-x_{i_{2}, s} \leq M\left(1-p_{s, i_{1}, i_{2}}\right) & \forall s \in S, i_{1}, i_{2} \in G_{s} \cup F_{s} \mid i_{1}<i_{2}, \\
y_{i_{2}, s}-y_{i_{1}, s} \leq M q_{s, i_{1}, i_{2}} & \forall s \in S, i_{1}, i_{2} \in G_{s} \cup O_{s} \mid i_{1}<i_{2}, \\
y_{i_{1}, s}-y_{i_{2}, s} \leq M\left(1-q_{s, i_{1}, i_{2}}\right) & \forall s \in S, i_{1}, i_{2} \in G_{s} \cup O_{s} \mid i_{1}<i_{2}, \\
x_{i_{2}, s}-y_{i_{1}, s} \leq M r_{s, i_{1}, i_{2}} & \forall s \in S, i_{1} \in\left(G_{s} \cup O_{s}\right), i_{2} \in\left(G_{s} \cup F_{s}\right) \mid i_{1} \neq i_{2}, \\
y_{i_{1}, s}-x_{i_{2}, s} \leq M\left(1-r_{s, i_{1}, i_{2}}\right) & \forall s \in S, i_{1} \in\left(G_{s} \cup O_{s}\right), i_{2} \in\left(G_{s} \cup F_{s}\right) \mid i_{1} \neq i_{2} . \tag{14}
\end{array}
$$

Constraints

- Siding and overtake constraints:

$$
\begin{array}{ll}
z_{s, i}=0 & \forall s \in(S \backslash B), i \in\left(G_{s} \backslash G_{s}^{\prime}\right), \\
h_{s, i_{1}, i_{2}} \geq\left(1-p_{s, i_{1}, i_{2}}\right)-r_{s, i_{2}, i_{1}}-z_{s, i_{2}} & \forall s \in S, i_{1}, i_{2} \in\left(G_{s} \backslash G_{s}^{\prime}\right) \mid i_{1}<i_{2}, \\
h_{s, i_{1}, i_{2}} \geq p_{s, i_{2}, i_{1}}-r_{s, i_{2}, i_{1}}-z_{s, i_{2}} & \forall s \in S, i_{1}, i_{2} \in\left(G_{s} \backslash G_{s}^{\prime}\right) \mid i_{2}<i_{1}, \\
z_{s, i_{1}} \geq 1+\sum_{\substack{i_{2} \in\left(G_{s} \backslash G_{s}^{\prime}\right) \\
i_{2} \neq i_{1}}} h_{s, i_{1}, i_{2}}-m_{s} & \forall s \in S, i_{1} \in\left(G_{s} \backslash G_{s}^{\prime}\right), \\
z_{s, i_{1}} \leq n_{s}+m_{s}-\sum_{\substack{i_{2} \in G_{s} \backslash G_{s}^{\prime} \\
i_{1}<i_{2}}}\left(1-p_{\left.s, i_{1}, i_{2}\right)}\right) & \\
-\sum_{\substack{i_{i} \in G_{s} \backslash G_{s}^{\prime} \\
i_{2}<i_{1}}} p_{s, i_{2}, i_{1}}+\sum_{\substack{i_{2} \in G_{s} \backslash G_{s}^{\prime} \\
i_{2} \neq i_{1}}} r_{s, i_{2}, i_{1}} & \forall s \in B, i_{1} \in\left(G_{s} \backslash G_{s}^{\prime}\right) . \\
&
\end{array}
$$

Constraints

- Single-track capacity constraints:

$$
\begin{array}{ll}
y_{i_{1}, s_{1}} \geq x_{i_{2}, s_{1}}-M\left(1-r_{s_{2}, i_{2}, i_{1}}\right) & \forall j=s_{1} s_{2} \in A^{(1)}, i_{1} \in T_{j}^{(1)}, i_{2} \in T_{j}^{(2)}, \\
y_{i_{2}, s_{2}} \geq x_{i_{1}, s_{2}}-M\left(1-r_{s_{1}, i_{1}, i_{2}}\right) & \forall j=s_{1} s_{2} \in A^{(1)}, i_{1} \in T_{j}^{(1)}, i_{2} \in T_{j}^{(2)}, \\
y_{i_{1}, s_{1}} \geq x_{i_{2}, s_{2}}-M q_{s_{1}, i_{1}, i_{2}} & \forall j=s_{1} s_{2} \in A^{(1)}, i_{1}, i_{2} \in T_{j}^{(1)} \mid i_{1}<i_{2}, \\
y_{i_{1}, s_{1}} \geq x_{i_{2}, s_{2}}-M\left(1-q_{s_{1}, i_{2}, i_{1}}\right) & \forall j=s_{1} s_{2} \in A^{(1)}, i_{1}, i_{2} \in T_{j}^{(1)} \mid i_{2}<i_{1}, \\
y_{i_{1}, s_{2}} \geq x_{i_{2}, s_{1}}-M q_{s_{2}, i_{1}, i_{2}} & \forall j=s_{1} s_{2} \in A^{(1)}, i_{1}, i_{2} \in T_{j}^{(2)} \mid i_{1}<i_{2}, \\
\left.y_{i_{1}, s_{2}} \geq x_{i_{2}, s_{1}, i_{1}}\right) & \forall j=s_{1} s_{2} \in A^{(1)}, i_{1}, i_{2} \in T_{j}^{(2)} \mid i_{2}<i_{1} .
\end{array}
$$

Constraints

- Double-track capacity constraints:

$$
\begin{array}{ll}
y_{i_{1}, s_{1}} \geq x_{i_{2}, s_{2}}-M q_{s_{1}, i_{1}, i_{2}} & \forall j=s_{1} s_{2} \in A^{(2)}, i_{1}, i_{2} \in T_{j}^{(1)} \mid i_{1}<i_{2}, \\
y_{i_{1}, s_{1}} \geq x_{i_{2}, s_{2}}-M\left(1-q_{s_{1}, i_{2}, i_{1}}\right) & \forall j=s_{1} s_{2} \in A^{(2)}, i_{1}, i_{2} \in T_{j}^{(1)} \mid i_{2}<i_{1}, \\
y_{i_{1}, s_{2}} \geq x_{i_{2}, s_{1}}-M q_{s_{2}, i_{1}, i_{2}} & \forall j=s_{1} s_{2} \in A^{(2)}, i_{1}, i_{2} \in T_{j}^{(2)} \mid i_{1}<i_{2}, \\
y_{i_{1}, s_{2}} \geq x_{i_{2}, s_{1}}-M\left(1-q_{s_{2}, i_{2}, i_{1}}\right) & \forall j=s_{1} s_{2} \in A^{(2)}, i_{1}, i_{2} \in T_{j}^{(2)} \mid i_{2}<i_{1} .
\end{array}
$$

Constraints

- 4-track section capacity constraints:

$$
\begin{array}{ll}
w_{j, i}^{(1,1)}+w_{j, i}^{(1,2)}=1 & \forall j \in A^{(4)}, i \in T_{j}^{(1)}, \\
w_{j, i}^{(2,1)}+w_{j, i}^{(2,2)}=1 & \forall j \in A^{(4)}, i \in T_{j}^{(2)}, \\
y_{i_{1}, s_{1}} \geq x_{i_{2}, s_{2}}-M\left(2+q_{s_{1}, i_{1}, i_{2}}-w_{j, i_{1}}^{(1,1)}-w_{j, i_{2}}^{(1,1)}\right) & \forall j=s_{1} s_{2} \in A^{(4)}, i_{1}, i_{2} \in T_{j}^{(1)} \mid i_{1}<i_{2}, \\
y_{i_{1}, s_{1}} \geq x_{i_{2}, s_{2}}-M\left(2+q_{s_{1}, i_{1}, i_{2}}-w_{j, i_{1}}^{(1,2)}-w_{j, i_{2}}^{(1,2)}\right) & \forall j=s_{1} s_{2} \in A^{(4)}, i_{1}, i_{2} \in T_{j}^{(1)} \mid i_{1}<i_{2}, \\
y_{i_{1}, s_{1}} \geq x_{i_{2}, s_{2}}-M\left(3-q_{s_{1}, i_{2}, i_{1}}-w_{j, i_{1}}^{(1,1)}-w_{j, i_{2}}^{(1,1)}\right) & \forall j=s_{1} s_{2} \in A^{(4)}, i_{1}, i_{2} \in T_{j}^{(1)} \mid i_{2}<i_{1}, \\
y_{i_{1}, s_{1}} \geq x_{i_{2}, s_{2}}-M\left(3-q_{s_{1}, i_{2}, i_{1}}-w_{j, i_{1}}^{(1,2)}-w_{j, i_{2}}^{(1,2)}\right) & \forall j=s_{1} s_{2} \in A^{(4)}, i_{1}, i_{2} \in T_{j}^{(1)} \mid i_{2}<i_{1}, \\
y_{i_{1}, s_{2}} \geq x_{i_{2}, s_{1}}-M\left(2+q_{s_{2}, i_{1}, i_{2}}-w_{j, i_{1}}^{(2,1)}-w_{j, i_{2}}^{(2,1)}\right) & \forall j=s_{1} s_{2} \in A^{(4)}, i_{1}, i_{2} \in T_{j}^{(2)} \mid i_{1}<i_{2}, \\
y_{i_{1}, s_{2}} \geq x_{i_{2}, s_{1}}-M\left(2+q_{s_{2}, i_{1}, i_{2}}-w_{j, i_{1}}^{(2,2)}-w_{j, i_{2}}^{(2,2)}\right) & \forall j=s_{1} s_{2} \in A^{(4)}, i_{1}, i_{2} \in T_{j}^{(2)} \mid i_{1}<i_{2}, \\
y_{i_{1}, s_{2}} \geq x_{i_{2}, s_{1}}-M\left(3-q_{s_{2}, i_{2}, i_{1}}-w_{j, i_{1}}^{(2,1)}-w_{j, i_{2}}^{(2,1)}\right) & \forall j=s_{1} s_{2} \in A^{(4)}, i_{1}, i_{2} \in T_{j}^{(2)} \mid i_{2}<i_{1}, \\
y_{i_{1}, s_{2}} \geq x_{i_{2}, s_{1}}-M\left(3-q_{s_{2}, i_{2}, i_{1}}-w_{j, i_{1}}^{(2,2)}-w_{j, i_{2}}^{(2,2)}\right) & \forall j=s_{1} s_{2} \in A^{(4)}, i_{1}, i_{2} \in T_{j}^{(2)} \mid i_{2}<i_{1} . \tag{39}
\end{array}
$$

Constraints

- Dropping off/picking up capacity constraint for non-yard stations:

$$
\begin{array}{ll}
x_{i_{1}, s} \geq y_{i_{2}, s}-M p_{s, i_{1}, i_{2}} & \forall s \in U, i_{1}, i_{2} \in G_{s}^{\prime} \mid i_{1}<i_{2}, \\
x_{i_{1}, s} \geq y_{i_{2}, s}-M\left(1-p_{s, i_{2}, i_{1}}\right) & \forall s \in U, i_{1}, i_{2} \in G_{s}^{\prime} \mid i_{2}<i_{1} . \tag{41}
\end{array}
$$

Objective function

- The objective shown as (42) is minimizing the total penalized delay at the stop stations and final destination of trains:

$$
\begin{equation*}
\min \sum_{i \in H} \sum_{s \in\left(K_{i} \cup\left\{f_{i}\right\}\right)} \lambda \delta_{i, s}^{+}+\sum_{i \in L} \sum_{s \in\left(K_{i} \cup\left\{f_{i}\right\}\right)} \delta_{i, s}^{+} . \tag{42}
\end{equation*}
$$

Test instance

Figure: Railway network diagram. There are four routes with 61 stations the the provided network. Among 61 tracks connecting the stations, 4 are single-track, 6 are 4 -track and the rest are double-track.

Numerical results

- Our model is coded in Julia using JuMP package and it is solved by Gurobi 8.1.1 on a Core-i7 computer with 8 GB RAM.
- MIPGap is set to 0.01 to terminate the solver at a desirable solution.
- Constraints (16)-(29) and (32)-(41) are considered as lazy constraints.

Day	Trains	Con vars	Bin vars	Total const	Lazy const	Time (s)	MIP Gap
1	211	14820	1050473	2202392	518096	4003	0.0025
2	212	15032	1073822	2251460	528983	2866	0.0081

Table: Results obtained by implementing our MIP model on the validation data set

Numerical results

Figure: Train timetables of the west route for the first day.

Numerical results

Figure: Number of sidings at the stations with siding or yard tracks in day 1.

Numerical results

Figure: Percentage of trains with high and low priority which had different number of sidings in day 1 .

Numerical results

Figure: Total delay and delay due to resource unavailability and stops for trains in day 1.

Summary and future study

- Our optimization approach enables us to consider all restrictions in our model and can perfectly formulate this problem.
- We evaluate our model by implementing it on the test instance provided in this challenge.
- We observe that our approach can efficiently solve the model and acquire near-optimal solutions in a reasonable amount of time.
- Considering variable amount of delays depending on the stations, trains and time can be a future line of research to be considered in our next works.
- Other sources of delay such as weather conditions and planned or emergency maintenance can be considered.

References

- Brännlund, Ulf, et al. "Railway timetabling using Lagrangian relaxation." Transportation science 32.4 (1998): 358-369.
- Cordeau, Jean-Francois, Paolo Toth, and Daniele Vigo. "A survey of optimization models for train routing and scheduling." Transportation science 32.4 (1998): 380-404.
- Caprara, Alberto, et al. "A Lagrangian heuristic algorithm for a real-world train timetabling problem." Discrete applied mathematics 154.5 (2006): 738-753.
- Zhou, Xuesong, and Ming Zhong. "Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds." Transportation Research Part B: Methodological 41.3 (2007): 320-341.
- Barrena, Eva, et al. "Exact formulations and algorithm for the train timetabling problem with dynamic demand." Computers \& Operations Research 44 (2014): 66-74.
- Yang, Lixing, Keping Li, and Ziyou Gao. "Train timetable problem on a single-line railway with fuzzy passenger demand." IEEE Transactions on fuzzy systems 17.3 (2008): 617-629.
- Khan, Muhammad Babar, and Xuesong Zhou. "Stochastic optimization model and solution algorithm for robust double-track train-timetabling problem." IEEE Transactions on Intelligent Transportation Systems 11.1 (2009): 81-89.
- Yang, Lixing, et al. "Collaborative optimization for train scheduling and train stop planning on high-speed railways." Omega 64 (2016): 57-76.
- Murali, Pavankumar, et al. "A delay estimation technique for single and double-track railroads." Transportation Research Part E: Logistics and Transportation Review 46.4 (2010): 483-495.
- Lu, Quan, Maged Dessouky, and Robert C. Leachman. "Modeling train movements through complex rail networks." ACM Transactions on Modeling and Computer Simulation (TOMACS) 14.1 (2004): 48-75.
- Wilson, Nigel HM, and Agostino Nuzzolo, eds. Schedule-based modeling of transportation networks: theory and applications. Vol. 46. Springer Science \& Business Media, 2008.

References

- Jiang, Zhi-bin, et al. "A simulation model for estimating train and passenger delays in large-scale rail transit networks." Journal of Central South University 19.12 (2012): 3603-3613.
- Yalçınkaya, Özgür, and G. Mirac Bayhan. "A feasible timetable generator simulation modelling framework for train scheduling problem." Simulation Modelling Practice and Theory 20.1 (2012): 124-141.
- Gorman, Michael F. "Statistical estimation of railroad congestion delay." Transportation Research Part E: Logistics and Transportation Review 45.3 (2009): 446-456.
- Wang, Ren, and Daniel B. Work. "Data driven approaches for passenger train delay estimation." 2015 IEEE 18 th International Conference on Intelligent Transportation Systems. IEEE, 2015.

