Real-time Delay Prediction In Railway Transportation

Veerle Hennebel¹ Bart Roets^{2,3} Léon Sobrie³ Marijn Verschelde^{4,3}

¹University of Leuven ²Infrabel

³On Track Lab, Ghent University ⁴IÉSEG School of Management

INFORMS Annual Meeting 2020

m.verschelde@ieseg.fr

www.ontracklab.com

Outline

- Introduction
- Peal-time data structure
- Model set-up
- Benchmarking delay predictions
- Conclusion

- Trains operate in a dense network leading to a complex environment with high pressure on traffic managers and traffic controllers.
- Accurate information concerning train arrival times is useful for both passengers and railway operators.
- Railways are an important means for freight transport which should be tracked precisely to the benefit of the customer.

((C)) On Track Lab

Introduction

Existing literature

Predominantly focused on predicting delays for a given railway line (e.g. Wen et al. (2020), Huang et al. (2020)). Exceptions are Oneto et al. (2018) and Yaghini et al. (2013).

Contributions

- Real-time analysis on the entire railway network.
- Inclusion of spatial features. The directly connected train stations (neighbors) are together with their importance included via a spatial matrix.
- We benchmark our advocated approach with both a spatial regression and a rules-based approach for the entire network

- The close-to-real-time data structure is developed by INFRABEL, the Belgium railway infrastructure company, and comprises the entire train network which is one of the most dense in the world.
- From this data, 3 feature types are constructed to predict train delays in real-time: temporal, spatial and operational features.
- With this input data, we predict the delay for the 5 upcoming stops for a specific train.
- We focus on September 2020, resulting in a data structure of over 2 million observations of trains passing a signal

 In total, we have 130 input features that belong to one of the following features categories.

Features				
Temporal	Spatial	Operational		
Day	Spatial delay	Current delay (diff)		
Hour	Distance BC/AN	Arr-Dep-Pass		
Minute	GPS coords station	Buffer times		
	Delay influencers	Route planning char.		
	Av. delay (diff) station			

Real-time data structure

Descriptive analysis: Distribution of delays

Real-time data structure

Descriptive analysis: Temporal variation

Descriptive analysis: Summary statistics

	count	mean	std	min	25%	50%	75%	max
delay	1802033.0	99.15	235.38	-200.0	-6.00	33.00	117.00	1800.0
delaydif	1758674.0	1.06	48.30	-2000.0	-13.00	0.00	7.00	2000.0
delayPTCARpass	1155305.0	102.19	198.66	-200.0	4.00	47.00	130.00	1800.0
delayspatialpass	1802033.0	49.59	124.18	-200.0	0.00	1.00	55.87	1800.0
delayinfluencerpass1	1783298.0	83.27	185.82	-200.0	8.36	32.87	80.20	1800.0
delayinfluencerpass2	1784413.0	105.50	107.21	-200.0	34.77	76.44	145.85	1800.0
delayinfluencerpass3	1125140.0	132.27	245.45	-200.0	11.00	62.00	149.50	1800.0
delayinfluencerpass4	1644804.0	83.16	138.14	-200.0	15.33	42.14	98.33	1708.0
delayinfluencerpass5	1780419.0	66.37	117.11	-200.0	3.50	33.75	87.50	1800.0
delayinfluencerpass6	1748435.0	122.49	158.03	-200.0	25.00	73.25	168.33	1800.0
delayinfluencerpass7	1725345.0	96.73	173.40	-200.0	2.50	46.33	128.00	1800.0
delayinfluencerpass8	1684687.0	114.88	158.17	-200.0	22.33	74.50	156.33	1800.0
delayinfluencerpass9	1743145.0	123.74	174.30	-200.0	32.70	73.75	149.25	1800.0
delayinfluencerpass10	1393256.0	161.31	180.29	-200.0	58.50	122.00	210.50	1800.0
delayinfluencerpass11	1790879.0	95.60	92.22	-200.0	31.50	71.18	135.29	1800.0
delayinfluencerpass12	1788730.0	118.00	101.38	-200.0	47.10	92.78	160.84	1800.0

Descriptive analysis: Correlogram

	Delay	Lagged	Spatial	Delay	Peak
		Delay	delay	Infl. 12	
Delay	1.00	0.89	0.18	0.08	0.07
Lagged Delay	0.89	1.00	0.19	0.08	0.07
Spatial delay	0.18	0.19	1.00	0.10	0.08
Delay Influencer 12	0.08	0.08	0.10	1.00	0.27
Peak	0.07	0.07	0.08	0.27	1.00

Recurrent Neural Network

- A sequence-to-sequence Recurrent Neural Network with Long Short-Term Memory (Hochreiter and Schmidhuber, 1997).
- We train on 2 weeks, validate on 1 week and test on one day.
- The RNN is benchmarked against the rules-based system and the spatial regression by the use of MAE and RMSE.

Benchmarking delay predictions

RNN: Training

((C)) On Track Lab

Benchmarking delay predictions

RNN: Predicted vs. actual delay per output sequence

日本・キョン・キョン

A first benchmarking exercise

	Spatial reg.	RNN			
	All sequences				
RMSE	0.042	0.040			
MAE	0.024	0.022			
	Sequence 1				
RMSE	0.027	0.025			
MAE	0.013	0.013			
	Sequence 2				
RMSE	0.035	0.033			
MAE	0.019	0.018			
	Sequence 1				
RMSE	0.042	0.040			
MAE	0.024	0.0230			
	Sequence 4				
RMSE	0.049	0.046			
MAE	0.029	0.027			
	Sequence 5				
RMSE	0.054	0.052			
MAE	0.032	0.030			

Conclusion

- The Belgian railway transportation network is one of the most dense in the world and is an ideal testing ground for transportation delay prediction in a spatially interdependent environment
- We propose a sequence-to-sequence neural network framework to predict train delays while including spatial features
- Our preliminary benchmarking exercise highlights the usefulness of our approach
- Further research is warranted on the importance of the different feature groups for delay prediction

- Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. *Neural computation*, 9(8):1735–1780.
- Huang, P., Wen, C., Fu, L., Lessan, J., Jiang, C., Peng, Q., and Xu, X. (2020). Modeling train operation as sequences: A study of delay prediction with operation and weather data. *Transportation Research Part E: Logistics and Transportation Review*, 141:102022.
- Oneto, L., Fumeo, E., Clerico, G., Canepa, R., Papa, F., Dambra, C., Mazzino, N., and Anguita, D. (2018). Train delay prediction systems: a big data analytics perspective. *Big data research*, 11:54–64.

- Wen, C., Mou, W., Huang, P., and Li, Z. (2020). A predictive model of train delays on a railway line. *Journal of Forecasting*, 39(3):470–488.
- Yaghini, M., Khoshraftar, M. M., and Seyedabadi, M. (2013). Railway passenger train delay prediction via neural network model. *Journal of advanced transportation*, 47(3):355–368.