Modern Approaches For Realtime Rescheduling In Metro And Mainline Railway Systems

Dr. Jin Liu

Research Associate

NewRail - Newcastle Centre for Railway Research

School of Engineering

Newcastle University

About Myself

2010-2014 Harbin Institute of Technology, China B. Eng

2014-2015 University of Birmingham, UK M. Eng

2015-2020 University of Birmingham, UK Ph.D

Ph.D. thesis: 'A Multi-Agent-Based Approach for Resolving Real-Time Train Rescheduling Problems of Large-Scale Railway Networks'

Francis Marrages - Norman et la Universita de la l

From May 2020 Newcastle University, UK Research Associate

My research interests

- Algorithm development
- Multi-agent system
- Railway condition monitoring
- Automatic train operation (ATO)
- Railway control command and signalling

- Decentralised optimisation
- Freight logistics
- Railway decision support system
- Railway traffic modelling
- Railway RAMS and security

Contents

- Metro and mainline railway traffic
- Rescheduling in metro system
- Rescheduling in mainline railway
- A solution for testing novel applications for railway traffic management systems (OPTIMA, Shift2Rail)

Metro and Mainline Railway Traffic

Their differences between metro and mainline rail

	Metro	Mainline
Features	 Running in inner urban area/ short distance Separate tracks (underground/ elevated) Simple environment High frequency Up to 100km/h 	 Intercity/ long distance Separate tracks, may share with metro Complex network with variable disturbances Operated restrict to timetable Usually above 120km/h
Service type	Passenger central	Service central
Service objectives	 Deliver passengers to their destinations Minimise energy consumption 	On-timeMinimise energy consumption
Rescheduling methods	Readjust headwayPassenger management	 Readjust junction passing sequence Readjust arrival and departure time

Rescheduling in Metro System

An approach to minimising energy consumption and average passenger waiting time

Motivations & Challenges

- Minimizing train delay and minimizing energy consumption are inherently conflict control targets;
- Passenger flow is hard to predict in practice;
- Train speed profile is usually generated offline and not changeable.

Rescheduling Approach for Metro System

- Modelling Approaches [1]
 - Passenger flow information is supported by origin-destination (OD) matrices;
 - Three driving modes are defined and used to generate lower and upper bounds of running time;
 - Timetable rescheduling problem is modelled by mixed integer programming (MIP).

Rescheduling Approach for Metro System

- A single line metro system is used to test the proposed approach;
- CPLEX is used to resolve the rescheduling problem;
- Proposed method can generate a solution in 8s;
- Mean value of passenger waiting time and number of stranded passenger are reduced significant.

Rescheduling in Mainline Railway System

A multi-agent system for rescheduling problems in mainline railway

Motivations & challenges :

- Resolving rescheduling problem for large scale railway network is challenging due to large searching space.
- Rescheduling decisions made in each local traffic centre but railway timetable is strong linked.
- A single tuning of train timetable may lead to domino effects across whole network.
- A decision making system for large scale network is critical and essential in future.

[2] J. Liu, L. Chen, C. Roberts, G. Nicholson, and B. Ai, "Algorithm and peer-to-peer negotiation strategies for train dispatching problems in railway bottleneck sections," *IET Intell. Transp. Syst.*, vol. 13, no. 11, pp. 1717 – 1725, 2019

[3] J. Liu, L. Chen, C. Roberts, Z. Li, and T. Wen, "A Multi-agent Based Approach for Railway Traffic Management Problems," in 2018 International Conference on Intelligent Rail Transportation, ICIRT 2018, 2019.

A multi-agent System for Rescheduling Problems in Mainline Railways

System architecture[4]

[4] J. Liu, "A Multi-agent-based Approach for Resolving Real-time Train Rescheduling Problems of Large- scale Railway Networks," Ph.D. thesis, University of Birmingham, 2020.

A multi-agent System for Rescheduling Problems in Mainline Railways

- Train rescheduling problem is modelled as MILP;
- Genetic algorithm is applied to solve local rescheduling problem;
- Peer-to-peer negotiation strategies and Condorcet voting are applied to trade-off between local optimization and global optimization;
- UK infrastructures are used to test the proposed approaches, which shows an improvement up to 34.11% against First Come First Served.

Shift2Rail(S2R) Joint Undertaking (JU) IP2

- To deliver, through railway research and innovation, the capabilities to bring about the most sustainable, cost-efficient, high-performing, time driven, digital and competitive customer-centred transport mode for Europe.
- Shift2Rail contribute to:
 - Cutting the life-cycle cost of railway transports by as much as 50%
 - Doubling railway capacity
 - Increasing reliability and punctuality by as much as 50%
- Innovation Programme 2 (IP2) focuses on the development of Advanced Traffic Management and Control Systems for railways including positioning systems; Traffic Management Evolution; Automation; Moving block and train integrity; Smart procurement and testing; Virtual coupling and Cyber security.

European Rail Traffic Management System (ERTMS)

- ERTMS is a major industrial project developed by eight UNIFE members Alstom Transport, AZD
 Praha, Bombardier Transportation, CAF, Hitachi Rail STS, Mermec, Siemens Mobility and Thales;
- ERTMS provides the European Union with a unique opportunity to create a seamless railway system, which ensures interoperability for EU trains;
- Increasing railway capacity, minimizing primary and secondary delay are critical objectives for developing ERTMS.

cOmmunication Platform for TraffIc ManAgement demonstrator (OPTIMA)

- Motivations
 - TMS across EU countries are developed with different data structure, interface, and etc.
 - Verification and validation of TM solutions is challenging in practice, which has concerns on expense and safety.
- Technical objectives
 - Develop a middleware of Integration Layer;
 - Standardize data structure of TMS;
 - Design a communication platform to manage the connection between several services/clients and the TMS;
 - Develop a virtual environment for testing candidate modules developed by the relevant S2R members from railway industry.

General architecture of the OPTIMA

Thank you!

- Any questions, please do not hesitate to contact with me
- Email: Jin.Liu@Newcastle.ac.uk