Hump yard performance simulation with AnyLogic

Jiaxi Zhao

INFORMS 2020

Yards and Terminals Virtual Session

Objective

- Evaluate additional factors influencing hump classification yard capacity and performance
- Understand the interaction between yards and mainline, focusing on capacity
- Study the interaction of multiple yards in a network, continuing the network efficiency cycle research
- Develop a high-level parametric yard capacity and performance model

Previous Work

- Previous research has been focusing on yard capacity study and performance analysis
 - Lack parametric yard model
- No common yard simulation software has been used widely
 - Simulation visualization
 - **Flexibility** to modify the model (YardSYM, etc.)
 - Combine high accuracy and flexibility
- Need approaches towards railroad network efficiency
 - Lack the ability to reflect the interaction between mainline and yards

New Approach

- AnyLogic is a multimethod simulation modeling tool developed by The AnyLogic Company (former XJ Technologies)
 - Supports agent-based, discrete event, and system dynamics simulation methodologies
- AnyLogic has a rail package that allows a track layout to be built from CAD files
 - Flexibility for yard operations and layout
- The visualization provides **visual evidence** that the simulation model is making correct yard operating decisions
- A simplified mainline model can be built in AnyLogic to connect yards
 - Realize a network simulation

Potential variables

AnyLogic offers a greater flexibility than previously used YardSYM

Features/ variables	YardSYM	AnyLogic
Yard layout (parallel/inline, geometry, number of tracks, track length, etc.)		
Inbound/outbound frequency and unbalanced schedule	Ţ	
Number of hump engine and number of pull-down engine	T	7
Bowl track length and distribution	T	
Block to bowl track assignment matching track length	T	_
Outbound train composition (various number of blocks in outbound trains)	T	
Over-length block assignment strategy (building dirty blocks)		
Pull-down strategy (resolving dirty blocks)		
Pull-down schedule (adjustable assembly time prior to departure)	T	

^{*}Dirty track: bowl tracks with more than two blocks

Basic Model-Inline Yard Layout

Generic Inline Yard Design

Receiving track	6 (>10,000 ft available distance)
Engine pass in receiving yard	1
Hump engine depot	1
Hump lead	1
Block formation track in bowl	32 (55-75 car length)
Rehump track in bowl	1
Pulldown engine depot	1
Road engine depot	1
Departure track	6 (>10,000 ft available distance)
Engine pass in departure yard	1

Basic Model-Parallel Yard Layout

Generic Parallel Yard Design

Receiving track	6 (>10,000 ft available distance)
Engine pass in receiving yard	1
Hump engine depot	1
Hump lead	1
Block formation track in bowl	32 (55-75 car length)
Rehump track in bowl	1
Pulldown engine depot	1
Road engine depot	1
Departure track	6 (>10,000 ft available distance)
Engine pass in departure yard	1

Basic model Example

- Simulation display
 - https://www.youtube.com/watch?v=Ic-4yHDzqFI&feature=youtu.be

Performance	measures
	IIICasaics

Example result (180 days)

•	Average dwell time	(and distribution)	16.08 hours
---	--------------------	--------------------	-------------

•	Average idl	e time percent	tage in yard	70.3%
---	-------------	----------------	--------------	-------

•	Average bow	l idle time	(and distribution) 10.97 hours
---	-------------	-------------	-------------------	---------------

•	Hump utilization	46%
---	------------------	-----

•	Pulldown utilization	32.7%
---	----------------------	-------

- Extra hump work (number of re-hump cars per day) 6.48
- Outbound train on-time* ratio 72.1%
- Dwell/ idle time and distribution during each operation available

^{*}Trains finish assembly and departure inspection earlier or less than 10 mins late than schedule

Performance Measures

- When has model output stabilized?
 - The number of cars in system stabilizes
 - Starting with empty and idle
 - Reaches steady state after about 30 hours
 - For better results, start collecting data at 48 hours

Time in minutes

Model Process Validation

- Select proportion of the car dwell time that is idle as testing measure
- Select 16 blocks, 80 cars/train as testing scenario
 - Simulation output: 70.3% of dwell time is idle
 - Published research: 71% of dwell time is idle (Logan* 2006)
- Additional forms of validation still need to be completed

Experiment design

- Constant factors
 - **16** inbound trains (same length) arrive evenly
 - **16** outbound trains (same length, each carrying 1 or 2 blocks) are scheduled to depart evenly
- Varible factors
 - **Volume**: 40-120 cars/train, i.e. 800-1920 cars/day
 - Number of blocks built in bowl: 16, 20, 24, 28, 32, hence number of tracks for over-length blocks: 16, 12, 8, 4, 0
- Example block pattern: 1280 cars/day

Total volume	Inbound train length (in cars)	No. blocks	No. trains with 1 block	Block length (in cars)	No. trains with 2 blocks	Block length (in cars)	Outbound train length (in cars)
		16	16		0		
		20	12		4		
1280	80	24	8	80	8	40	80
		28	4		12		
		32	0		16		

16 blocks

▶ 20 blocks

▶ 24 blocks

► 28 blocks

► 32 blocks

Comparison to Previous Research

Average railcar dwell for range of traffic volume and number of blocks

^{*} Dick, C.T. 2019. Influence of traffic complexity and schedule flexibility on railway classification yard capacity and mainline performance. Ph.D Dissertation, University of Illinois at Urbana-Champaign, Department of Civil and Environmental Engineering, Urbana, IL, USA

Preliminary Result- Process Time

- Average processing time for range of traffic volume and number of blocks
 - Processing time: Yard dwell time minus idle time

^{*} Dick, C.T. 2019. Influence of traffic complexity and schedule flexibility on railway classification yard capacity and mainline performance. Ph.D Dissertation, University of Illinois at Urbana-Champaign, Department of Civil and Environmental Engineering, Urbana, IL, USA

Preliminary Result- OTC

- On-Time Railcar Connection for Range of Traffic Volume and Number of Blocks
- "On-Time Connections" (OTC) defined as proportion of railcars:
 - Making planned connection to outbound train
 - And connecting train departs less than 10 minutes after planned time

^{*} Dick, C.T. 2019. Influence of traffic complexity and schedule flexibility on railway classification yard capacity and mainline performance. Ph.D Dissertation, University of Illinois at Urbana-Champaign, Department of Civil and Environmental Engineering, Urbana, IL, USA

Future Improvements

- Collecting data for other metrics, e.g. RCRT, track occupancy ratio, etc.
- Improve bowl track assignment strategy to match block length with track length
- Improve over-length track assignment strategy to minimize complexity in dirty tracks
- Improve pull-down strategy to solve dirty tracks properly

Future Experiments

- Simulate different operating strategies:
 - Bowl track assignment
 - Over-length track assignment
 - Pull-down rules
- Geometry changes such as:
 - Add a pull-down lead to eliminate pull-down bottleneck
 - Vary pull-down lead length
- Comparing above results among different layouts
 - Inline, parallel, and mixed
- Build and connect simplified mainline models to investigate interactions between mainline and yards as a network, to therefore study the network efficiency cycle

Thank you for your attention!

Jiaxi 7hao Graduate Research Assistant Rail Transportation and Engineering Center (RailTEC) University of Illinois at Urbana-Champaign jiaxiz3@illinois.edu

> Technical collaboration and assistance by: Geordie Roscoe C. Tyler Dick, Ph.D., P.E. Gongyuan Lu

This project is supported by the National University Rail Center (NURail) and the Association of American Railroads (AAR)

Appendix

Operation Parameters and Assumptions

Initial mainline speed	30 mph
Cruise speed in yard	15 mph
Hump speed	3 mph
Train acceleration	1 ft/s^2
Train deceleration	0.5 ft/s^2
Hump engine count	2
Pulldown engine count	3
Arrival inspection	5 mins+1 min/car
Hump turnout switching interval	15 secs
Pulldown coupling check	2 mins+12.5 sec/car
Departure inspection	30 mins+1.3 min/car
Hump schedule	FIFO
Pulldown schedule	3 hours before departure
Car length	50 ft
Resolve dirty track*	Hump when the track is full
Resolve re-hump track*	Hump when the track is full
Departure Schedule	Early trains held until scheduled departure time

^{*}Dirty track: bowl tracks with more than two blocks

^{*}Re-hump track: bowl tracks that store humped cars when pull-down is processing on the same track