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7~ Classification Algorithms

Descision Trees

Random Forests

K-Nearest Neighbors

Support Vector Machines (SVMs)
Neural Networks

Supervised

Learning
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Random Forest

« Hallsberg (largest yard in Scandinavia)
* One month data
* 6243 departures

Class Recall Precision
24% 63%

43% 68%
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Random Forest

SMOTE:
Synthetic Minority Over-sampling Technique

Class Recall Precision
24% 62% 63% 68%

93% 84% | 78% 71%

43% 62% 68% 68%




Future Direction

Promising application of ML for yard departure prediction

Main challenges: different data owners, data security

Adding more predictors

Comparison with other shunting yards
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