2020 INFORMS Annual Meeting

Mathematical Modelling For Tackling Covid19 In Public Transport Networks

Nikola Bešinović

Including contribution of Cristopher Szymula, Egidio Quaglietta, Rob Goverde

Delft University of Technology, The Netherlands

Introduction

- Physical distancing (1.5m)
- Reduced passenger demands
 - Up to 90% drop, slowly recovering (and dropping again)
- Restricted train capacity (#seats)
 - About ¼ of original capacity

Introduction

- What is the transport capacity of our system under physical distancing?
 - → S1: Capacity assessment for covid19
- How to redesign rail services to accommodate as much demand as possible?
 - → S2: Stable network timetabling for covid19

S1: Capacity assessment

- Typically, passenger assignment models focused mostly on normal conditions, so overcapacity was rarely under scope.
- Given: planned timetable, origin-destination demand matrix, new limited train/seat capacity
- Find: maximum number of transported passengers and attractive passenger routes through the network

S1: Network modelling

3 network layers:

- Infrastructure
- Train services
- Passenger flows

Assumptions:

- Passengers are routed via shortest paths
- One OD can use multiple paths

S1: Passengers

Passenger OD-pair k

Decision variables:

 \mathcal{E}_p^k : passenger flow share of OD-pair k on path p

 x_{ij}^t (0/1): train t runs on arc (i,j)

Parameters:

 $\delta_{i,i}^p$: arc (i,j) is part of path p

 d_k : demand of OD-pair k

 s^t : seats on train

S1: Passengers

Decision variables:

 f_p^k : passenger flow share of OD-pair k on path p

 x_{ij}^t (0/1): train t runs on arc (i,j)

Parameters:

 $\delta_{i,j}^p$: arc (i,j) is part of path p

 d_k : demand of OD-pair k

 s^t : seats on train

Introduction
Capacity
Timetabling
Conclusions

Path 1 –

Path 2 –

S1: Passengers

Decision variables:

 f_p^k : passenger flow share of OD-pair k on path p

 x_{ij}^t (0/1): train t runs on arc (i,j)

Parameters:

 $\delta_{i,j}^p$: arc (i,j) is part of path p

 d_k : demand of OD-pair k

 s^t : seats on train t

Introduction
Capacity
Timetabling
Conclusions

Path 1 –

Path 2 -

S1: Model

$$\max \sum_{k \in K} \sum_{p \in P^k} C_f^{p,k} f_p^k$$

Such that

arc-based constraints for trains

path-based constraints for passengers

train capacity

infrastructure link capacity

Introduction
Capacity
Timetabling
Conclusions

!! Large number of potential paths → a column generation approach

Szymula & Bešinović (2020). Passenger-centered vulnerability assessment of railway networks. *Transportation Research Part B: Methodological.*

S1: Experimental setup

- Dutch railway network
- 5 variants of demand size:
 - Normal conditions: 100%
 - 4 restricted conditions: 5%, 25%, 50%, 75%
- Train capacity (#seats): ¼ of the designed capacity
- Report:
 - the transported demand
 - link utilization and
 - train utilization

S1: Transported passengers

Introduction
Capacity | Results
Timetabling
Conclusions

S1: Link utilization

S1: Train utilization

*Maximum = over at least one line section

S2: Stable network timetabling

- !! Serious transport capacity issues
- Q2: How to redesign rail services to satisfy as much demand as possible?
- Stable network timetabling

S2: Line plan and stability

- Target line plan:
 - ideal services including origins, destinations, stops and frequencies
 - Created based on the expected passenger demand
 - E.g. existing demand with existing train lines but much higher frequencies (due to covid19)
- Scheduled cycle time T (period that repeats over day)
- Timetable stability: the availability of the periodic timetable to return to its schedule from disturbance causing delays.

S2: Minimal cycle time

 Minimal cycle time (λ): the smallest time duration in which all events are feasible in the period.

Example

S2: Minimal cycle time and stability

Minimal cycle time (λ): network-level stability measure

Timetable stability (Goverde, 2017):

- $\lambda < T$: stable
- $\lambda > T$: unstable
- $\lambda = T$: critical (no time supplements available)

S2: Stable network timetabling

- Given: demand, target line plan, scheduled cycle time T
- **Find**: optimal and stable timetable (with $\lambda < T$) that satisfies the most demand

- Modelling: minimal cycle time model, relaxation measures
- Solution approach: iterative heuristic to resolve instability

Introduction
Capacity
Timetabling
Conclusions

Bešinović et al. (2019). Resolving instability in railway timetabling problems. *EURO Journal of Transportation and Logistics*.

S2: Modelling

- periodic event-activity network G = (N, A, T)
- periodic events $i \in N$: arrival, departure times $\pi_i \in [0, \lambda)$

$$(PESP - \lambda) \min f(\lambda, \pi, z)$$

such that

$$l_{ij} \leq \pi_j - \pi_i + z_{ij}\lambda \leq u_{ij},$$

 $\pi_j - \pi_i + z_{ij}\lambda = \lambda/freq_{line}$
 $0 \leq \pi_i \leq \lambda - 1,$
 z_{ij} binary,

∀run, dwell, connection, headway

∀regularity arcs, ∀train lines

∀events

∀run, dwell, connection, headway

S2: Relaxations

Relax line plan (→ passenger demand)

- M1. relax train line frequency
 - remove some (critical) train services from the line plan
 - Train line priority based on covered transport demand

Relax timetable design parameters (→ level of service)

- M2. relax regularity constraints, by certain time S $\lambda/freq_{line}$ $-S \le \pi_j \pi_i + z_{ij}\lambda \le \lambda/freq_{line} + S$
- M3. relax train-related constraints, by increasing upper bound for running times

$$l_{ij} \le \pi_j - \pi_i + z_{ij}\lambda \le u_{ij} \cdot W$$

S2: Experimental setup

Tested on a part of the Dutch railway network

Scenario characteristics:

of lines: [14,20]

Avg. frequency: [1,2]

of train services: [20,60]

Schedule cycle time *T:* 1800s

Table 2: Input parameters for Algorithms 1 and 2

Parameter	Notation [unit]	Value
M2 minimum	S_{\min} [s]	0
M2 step	S_{step} [s]	60
M2 maximum	S_{\max} [s]	120
M3 minimum	$W_{ m min}$	1
M3 step	$W_{ m step}$	0.1
M3 maximum	$W_{ m max}$	1.2

Report:

Only relaxing train services: M1

All 3 measures: M123

S2: Level of service

S2: Number of scheduled train services

Conclusions

3 main takeaways:

- Using advanced math models and algorithms for addressing present challenges
- Evaluate impacts and bottlenecks in capacity
- Redesign railway services to suit better the new conditions
- Next steps:
 - Modelling for integrating assessment and TT redesign
 - Real-time: optimal spacing people within vehicles (allocation)
 - Demand prediction (more/less, changed patterns)
 - New technology (swarming, smaller pods, on-demand services)

References

- Bešinović, N. (2020). Resilience in railway transport systems: a literature review and research agenda. *Transport Reviews*, 40(4), 457-478.
- Szymula, C., & Bešinović, N. (2020). Passenger-centered vulnerability assessment of railway networks. *Transportation Research Part B: Methodological*, *136*, 30-61.
- Bešinović, N., Quaglietta, E., & Goverde, R. M. P. (2019). Resolving instability in railway timetabling problems. *EURO Journal on Transportation and Logistics*, *8*(5), 833-861.
- Bešinović, N. & Szymula, C., (forthcoming). Estimating impacts of covid19 on transport capacity in railway networks, *European Journal of Transport and Infrastructure Research.*

M2: Relaxations

Relax line plan (→ passenger demand)

- M1. relax train line frequency
 - remove some (critical) train services from the line plan
 - Train line priority based on covered transport demand

Relax timetable design parameters (→ level of service)

- M2. relax regularity constraints
 - relax by S: $[T/freq_{line} S, T/freq_{line} + S]$
- M3. relax train-related constraints
 - increase upper bound for running times $u_{ij} \times W$

S2: Level of service

Running time supplements

TUDelft

Regularity