

A multi-objective railway freight timetable reschedule approach with extensive and stochastic delay

Hui Wang--Tongji UniversityZhuotong Bai--Tsinghua UniversityLin Yang--Beijing Jiaotong University

BACKGROUND

□ Align three resources: **yards**, **crews**, **and locomotives**.

The time-effectiveness of railway freight service is an important issue for the railway operation and shippers.

- □ A more stable and precise timetable is an urgent need.
- □ The predictive arrival time based on the rescheduled timetable considering the extensive and stochastic delay is more suitable to inform the shippers.

Difficulties for the railway freight timetable rescheduling

(1) The durations of disturbances are stochastic

□ The departure delay resulting from the installing locomotive at the origin station. Fig. (a)

□ The dwell time resulting from the crew change. Fig. (b)

□ The delay of pick-up and set-off at the yard. Fig. (c)

Difficulties for the railway freight timetable rescheduling

(2) Limited and congested track configuration

 All directed edges are one-way for operation
 Occupying the siding or wyes should be delayed to some extent.

6

PROBLEM STATEMENT

Difficulties for the railway freight timetable rescheduling

Difficulties for the railway freight timetable rescheduling

- (4) High standard of **solving time and the solution quality**
- □ Ensure the handover of dispatcher responsibility to the next shift and timely operation.

A simple example to describe the dispatching scenes.

Case1 Fig. (b)

- ✓ One track is available in station C.
- ✓ Comprehensive level: 1st train > 2nd train.
- $\checkmark\,$ At least three delays and three adjustments.
- Case2 Fig. (c)
- ✓ Two tracks are available in station C.
- ✓ Comprehensive level: 1st train > 2nd train.
- ✓ No delayed effects when the 3rd train runs between station A and station C.
- Case3 Fig. (d)
- Two tracks are available in station C.
- ✓ Comprehensive level: 1st train < 2nd train.</p>
- $\checkmark\,$ At least two delays and two adjustments.

2020 RAS | A multi-objective railway freight timetable reschedule approach with extensive and stochastic delay

Assumptions

- (1) The section **running time is fixed** and depends on the planned timetable;
- (2) The **transition of trains** between segments would be instantaneous;
- (3) Passing through the siding, wye, or industrial spur can be regarded as instantaneous movement but need to add the penalty of time;
- □ (4) Any route can only be occupied by one train at the same time;
- □ (5) The acceleration/deceleration of the train should be instantaneous;
- (6) There is **no interference coming from passenger trains** on the same rail line;
- □ (7) There is **no change in the stations and stations order** of train's passing.

Decision variables

 m_{ispk}

The train i takes the track k from the station s to the station p.

 t_{ispk}^{a} (arriving at station s).

The time of the train i departing from the track k between station s and station p

```
t_{ispk}^{a} (departing from station s).
```

The time of the train i arriving at the track k between station s and station p

 $stop_i^s$

The actual dwell time of the train i at the station s (regular station).

 Y_{ijsp}

The departure order of train i, j in the section (s, p)

 Z_{isb_s} The train *i* occupies line *b* at station *s*.

Intermediate variables

$$t_{is}^{A} = \sum_{p \in S} \sum_{k_{ps} \in K_{ps}} t_{ipsk_{ps}}^{d}$$

Arrival time of the train *i* at station *s*.

$$t_{is}^{D} = \sum_{p \in S} \sum_{k_{sp} \in K_{sp}} t_{ispk_{sp}}^{a}$$

Departure time of the train i at station s

 pdl_{is}

The dynamic priority of the train *i* at station *s*.

 $m_{is} = psl_i + pdl_{is}$

The comprehensive priority of the train i at station s.

• departure time constraints

• running time on sidings constraint

$$\sum_{k_{sp} \in K_{sp}} t^d_{ispk_{sp}} - \sum_{k_{sp} \in K_{sp}} t^a_{ispk_{sp}} = t_{sp} + t_r \cdot \sum_{k_{sp} \in K^-_{sp}} m_{ispk_{sp}} \quad (\forall i \in I; \forall (s, p) \in S(s, p))$$

- section route selection constraint
- 7 $\sum_{k_{sp} \in K_{sp}} m_{ispk_{sp}} = r_{isp} \quad (\forall i \in I; \forall (s, p) \in S(s, p))$
- section route occupation constraints

8 $t^a_{jspk_{sp}} - t^d_{ispk_{sp}} \ge M \cdot (1 - y_{ijsp})$ $(\forall i, j \in I \text{ and } i \neq j, \forall k_{sp}, (s, p) \in K_{sp}, S(s, p))$

9
$$t^a_{jpsk_{ps}} - t^d_{ispk_{sp}} \ge M \cdot (1 - y_{ijsp})$$
 $(\forall i, j \in I \text{ and } i \neq j, \forall k_{sp}, (s, p) \in K_{sp}, S(s, p))$

• trains level adjustment constraints

10
$$t_{is}^{D} - \overline{t}_{is}^{D} - t_{r} < M \cdot pdl_{is}$$
 $(\forall i \in I^{-}, \forall s \in S)$
11 $t_{is}^{D} - \overline{t}_{is}^{D} - t_{r} \ge M \cdot (pdl_{is} - 1)$ $(\forall i \in I^{-}, \forall s \in S)$

• station track constraints

$$12 \sum_{b_s \in B_s^+} z_{isb_s} = 1 \text{ and } \sum_{b_s \in B_s^+} z_{jsb_s} = 1 \quad (\forall i \in I, \forall s \in \frac{S}{o(i)})$$

$$13 \sum_{p} \sum_{k_{sp}} t^a_{ispk_{sp}} - \sum_{p} \sum_{k_{sp}} t^d_{jspk_{sp}} \ge h_{fd} - M \cdot (3 - y_{ijsp} - z_{isb_s} - z_{jsb_s}) \quad (\forall i \in I, i \neq j, \forall s \in S)$$

$$14 \sum_{p} \sum_{k} t^a_{jspk_{sp}} - \sum_{p} \sum_{k} t^d_{ispk_{sp}} \ge h_{fd} - M \cdot (3 - y_{jisp} - z_{isb_s} - z_{jsb_s}) \quad (\forall i \in I, i \neq j, \forall s \in S)$$

- Aims to the consecutive trains running in the same direction
- Aims to the consecutive trains running in the opposite direction

Objective function

Type1:Minimize direct effects of disturbances

(1) Minimize the total arrival deviation at the stations with flags

$$\min \ Z_1 = \sum_{i \in I} (t_{is}^A - \bar{t}_{is}^A) \quad (s \in S_l^{crew} \cup S_l^{ps})$$

□ (2) Minimize the total weighted dwell time of all trains

min
$$Z_2 = \sum_{i \in I} \sum_{s \in S} ((t_{is}^D - t_{is}^A) | \tau_{is})$$

Type2:Minimize indirect effects of disturbances

□ (3) Minimize adjustment number of departure order

$$\min \ Z_3 = \sum_{i \in I} \sum_{j \in I} \sum_{s \in S} \sum_{p \in S} |y_{ijsp} - y^*_{ijsp}| \quad (i \neq j, (s, p) \in S(s, p))$$

2020 RAS | A multi-objective railway freight timetable reschedule approach with extens

SOLUTION

Stochastic delay generating combined with Multiple Objectives GA(S-MOGA) Solution

- GA: Genetic Algorithm
- □ (1) Stochastically simulate the delay
- (2) Calculate the lower and upper bound of departure order adjustment based on the delay time
- □ (3) Generated the two-dimension initial chromosome
- □ (4) Repeat
- **D** (5) Terminate

Start

SOLUTION

Multiple objectives

$$Eva = \lambda_1 \cdot Z_1 + \lambda_2 \cdot Z_2 + \lambda_3 \cdot Z_3 \quad (\lambda_1 + \lambda_2 + \lambda_3 = 1)$$

OPTIMIZATION MODEL Train Timetable Rescheduling Model (TTR)
departure time constraints
$\sum_{p \in \mathcal{S}} \sum_{k_{xp} \in \mathcal{K}_{xp}} t^a_{i_{Spk_{xp}}} \geq \bar{t}^D_{i_s} (\forall i \in I; \forall (s, p) \in S(s, p))$
$\Pr((\sum_{p \in S} \sum_{k_{ip} \in K_{ip}} t^a_{i_0(i)pk_{ip}}) - \overline{t}^{D}_{i_0(i)} \ge tdl_i) \ge \alpha (\forall i \in I; \forall (s, p) \in S(s, p))$
$\Pr((\sum_{p \in S} \sum_{k_{tp} \in K_{tp}} t^a_{ispk_{tp}} - \sum_{p \in S} \sum_{k_{tp} \in K_{tp}} t^d_{ispk_{tp}} - stop^s_i) \ge tdp^s_i) \ge \beta (\forall i \in I; \forall s, (s, p) \in S^{ps}_i, S(s, p))$
dwell time constraints
$stop_i^s \ge \overline{ts_i} (\forall i \in I; \forall s \in S)$
$\Pr(stop_i^{\varsigma} \ge tsc_i^{\varsigma}) \ge \gamma (\forall i \in I; \forall s \in S_i^{crew})$
running time on sidings constrain
$\sum_{k_{\overline{\varphi}} \in K_{\overline{\varphi}}} t_{kpk_{\overline{\varphi}}}^d - \sum_{k_{\overline{\varphi}} \in K_{\overline{\varphi}}} t_{kpk_{\overline{\varphi}}}^a = t_{sp} + t_r \cdot \sum_{k_{\overline{\varphi}} \in K_{\overline{\varphi}}} m_{kpk_{\overline{\varphi}}} (\forall i \in I; \forall (s, p) \in S(s, p))$

- Standard form
- Set it as an equation
- Calculated by the formula
- Transform into deterministic inequality

Reference: Liu B. Uncertain planning and application [M]. Beijing: Tsinghua University Press, 2003.

SOLUTION

Two-dimensional chromosome coding strategy

Chenck and updata according to original departure sequence

(c)

	Train 1	Train 2	Train 3	Train 4
Station 1	1	3	2	4
Station 2	1	2	3	4
Station 3	2	1	4	3
Station 4	1	2	4	3

Line description and Parameter settings

□ 62 stations, 254.9 km in length.

	D 1 '11	Distribution function	Lower bound of delay K_{a}			
	Random variable	(unit: h)	$(\alpha = \beta = \gamma = 90\%)$ (unit: min)			
(3)	CREW_AVAIL	$X_1 \sim \log N(0.1,1)$	18.40			
()	LOCO_AVAIL	$X_2 \sim \log N(0.25, 0.1)$	51.37			
	YARD_AVAIL	$X_3 \sim \log N(0.5, 0.25)$	52.12			

	Case	Time window	Number of trains	Number of total passing stops		
(4)	1	[0,240]	64	1442		
	2	[0,2520]	405	7658		

۲

CASE STUDY

Optimized results and analysis

(1) Performance of the S-MOGA algorithm

Optimization result of the total objective of Case 1

Test using an Intel Core I5 8400 hexa-core processor with 2.8 GHz and 8 GB RAM and python 3.7

Optimized results and analysis

dynamic priority threshold

(2) Sensitivity analysis on dynamic priority adjustment threshold

dynamic priority threshold

Optimized results and analysis

(2) Statistics of the delay at the destination

units: minutes

Statistics	Threshold	10	20	30	40	50	60
Case 1	Summary	15205	14053	13933	14919	13711	14575
	Average	233.9	216.2	214.4	229.5	210.9	224.2
	Max	379	350	380	384	336	378
	Min	121	90	90	90	90	90
	Standard deviation	47.9	51.9	56.5	58.5	57.6	56.9
	Summary	135358	116557	113387	111755	111095	110702
-	Average	335.0	288.5	280.7	276.6	275.0	274.0
Case 2	Max	800	813	633	682	590	540
	Min	42	42	52	42	42	42
	Standard deviation	97.7	75.5	72.0	72.1	72.5	70.1

Optimized results and analysis

(3) Comparison between timetables

Scheduled timetable

Rescheduled timetable

CONCLUSION AND FUTURE WORK

Conclusion

- □ (1) A multi-objective railway freight timetable rescheduling optimization model with extensive and
 - stochastic delays was proposed.
- □ (2) Re-time, Re-order and Re-track.
- □ (3) The comprehensive level: static level + dynamic level.
- □ (4) The solution (S-MOGA) was designed.
- □ (5) The threshold of 50(60) is suggested for timetable rescheduling in our case 1(2).

Thank you for your attention

