# A multi-objective railway freight timetable reschedule approach with extensive and stochastic delay 

Hui Wang--Tongji University
Zhuotong Bai--Tsinghua University
Lin Yang--Beijing Jiaotong University


## BACKGROUND

$\square$ Align three resources: yards, crews, and locomotives.

- The time-effectiveness of railway freight service is an important issue for the railway operation and shippers.



## BACKGROUND



- A more stable and precise timetable is an urgent need.
$\square$ The predictive arrival time based on the rescheduled timetable considering the extensive and stochastic delay is more suitable to inform the shippers.


## PROBLEM STATEMENT

## Difficulties for the railway freight timetable rescheduling

(1) The durations of disturbances are stochastic

- The departure delay resulting from the installing locomotive at the origin station. Fig. (a)
- The dwell time resulting from the crew change. Fig. (b)
- The delay of pick-up and set-off at the yard. Fig. (c)


Fig. (a)


Fig.(b)


Fig. (c)

PROBLEM STATEMENT

## Difficulties for the railway freight timetable rescheduling

(2) Limited and congested track configuration

(a) Original track infrastructure

$\square$ All directed edges are one-way for operation
$\square$ Occupying the siding or wyes should be delayed to some extent.

Main Track
Siding(An auxiliary track)
(b) Vertex-edge topology graph

## PROBLEM STATEMENT

## Difficulties for the railway freight timetable rescheduling

(3) The comprehensive level: static level + dynamic level


The cargo loaded on the train
Only consider static level


■ station 酉 The train with low level 衁 The train with high level

## PROBLEM STATEMENT

Difficulties for the railway freight timetable rescheduling
(4) High standard of solving time and the solution quality

- Ensure the handover of dispatcher responsibility to the next shift and timely operation.


## PROBLEM STATEMENT

## A simple example to describe the dispatching scenes.



- Case1 Fig. (b)
$\checkmark$ One track is available in station C.
$\checkmark$ Comprehensive level: 1st train > 2nd train.
$\checkmark$ At least three delays and three adjustments.
- Case2 Fig. (c)
$\checkmark$ Two tracks are available in station C.
$\checkmark$ Comprehensive level: 1st train > 2nd train.
$\checkmark$ No delayed effects when the 3rd train runs between station $A$ and station $C$.
- Case3 Fig. (d)
$\checkmark$ Two tracks are available in station C.
$\checkmark$ Comprehensive level: 1st train < 2nd train.
$\checkmark$ At least two delays and two adjustments.


## PROBLEM STATEMENT



## PROBLEM STATEMENT

## Assumptions

ㅁ (1) The section running time is fixed and depends on the planned timetable;

- (2) The transition of trains between segments would be instantaneous;
- (3) Passing through the siding, wye, or industrial spur can be regarded as instantaneous movement but need to add the penalty of time;
- (4) Any route can only be occupied by one train at the same time;
- (5) The acceleration/deceleration of the train should be instantaneous;
- (6) There is no interference coming from passenger trains on the same rail line;

ㅁ (7) There is no change in the stations and stations order of train's passing.

## OPTIMIZATION MODEL Train Timetable Rescheduling Model (TTR)

Decision variables
$m_{i s p k}$
The train $i$ takes the track $k$ from the station $s$ to the station $p$.
$t_{i s p k ~(a r r i v i n g ~ a t ~ s t a t i o n ~}^{d}$ ).
The time of the train $i$ departing from the track $k$ between station $s$ and station $p$
$t_{i s p k}^{a} \quad$ (departing from station $\left.s\right)$.
The time of the train $i$ arriving at the track $k$ between station $s$ and station $p$
stop $s$
The actual dwell time of the train $i$ at the station $s$ (regular station).
$y_{i j s p}$
The departure order of train $i, j$ in the section $(s, p)$
$z_{i s b_{s}}$
The train $i$ occupies line $b$ at station $s$.

## Intermediate variables <br> $t_{i s}^{A}=\sum_{p \in S} \sum_{k_{p s} \in K_{p s}} t_{i p s k_{p s}}^{d}$ <br> Arrival time of the train $i$ at station $s$. <br> $t_{i s}^{D}=\sum_{p \in S} \sum_{K_{s p} \in K_{s p}} t_{i s p k_{s p}}^{a}$ <br> Departure time of the train $i$ at station $s$ <br> $p d l_{i s}$

The dynamic priority of the train $i$ at station $s$.
$m_{i s}=p s l_{i}+p d l_{i s}$
The comprehensive priority of the train $i$ at station $s$.

## OPTIMIZATION MODEL Train Timetable Rescheduling Model (TTR)

- departure time constraints
$11 \sum_{p \in S} \sum_{k_{i p p} \in K_{s p}} t_{i p k_{s p}}^{a} \geq \bar{t}_{i s}^{D} \quad(\forall i \in I ; \forall(s, p) \in S(s, p))$


- dwell time constraints

4. stop $_{i}^{s} \geq \overline{t s}_{i}^{s} \quad(\forall i \in I ; \forall s \in S)$


- running time on sidings constraint
$6 \sum_{k_{s p} \in K_{s p}} t_{i s p k_{s p}}^{d}-\sum_{k_{s p} \in K_{s p}} t_{i s p k_{s p}}^{a}=t_{s p}+t_{r} \cdot \sum_{k_{s p} \in K_{s p}^{-s}} m_{i s p k_{s p}} \quad(\forall i \in I ; \forall(s, p) \in S(s, p))$


## OPTIMIZATION MODEL Train Timetable Rescheduling Model (TTR)

- section route selection constraint
$7 \sum_{k_{p p} \in K_{s p}} m_{i s p k_{s p}}=r_{i s p} \quad(\forall i \in I ; \forall(s, p) \in S(s, p))$
- section route occupation constraints
$8 t_{j s p k_{p p}}^{a}-t_{i s p k_{s p}}^{d} \geq M \cdot\left(1-y_{i j s p}\right) \quad\left(\forall i, j \in I\right.$ and $\left.i \neq j, \forall k_{s p},(s, p) \in K_{s p}, S(s, p)\right)$
$9 t_{j p s k_{p s}}^{a}-t_{i s p k_{s p}}^{d} \geq M \cdot\left(1-y_{i j s p}\right) \quad\left(\forall i, j \in I\right.$ and $\left.i \neq j, \forall k_{s p},(s, p) \in K_{s p}, S(s, p)\right)$
- Aims to the consecutive trains running in the same direction
ـ Aims to the consecutive trains running in the opposite direction
- trains level adjustment constraints
$10 t_{i s}^{D}-\bar{t}_{i s}^{-D}-t_{r}<M \cdot p d l_{i s} \quad\left(\forall i \in I^{-}, \forall s \in S\right)$
Not upgrading to high level
$11 \quad t_{i s}^{D}-\bar{t}_{i s}^{D}-t_{r} \geq M \cdot\left(p d l_{i s}-1\right) \quad\left(\forall i \in I^{-}, \forall s \in S\right)$
-upgrading to high level
- station track constraints
$12 \sum_{b_{s} \in B_{s}^{*}} z_{i b_{s}}=1$ and $\sum_{b_{s} \in B_{s}^{+}} z_{j b_{s}}=1 \quad\left(\forall i \in I, \forall s \in \frac{S}{o(i)}\right)$
$13 \sum_{p} \sum_{k_{s p}} t_{i s k_{p p}}^{a}-\sum_{p} \sum_{k_{k p}} t_{j p p k_{p p}}^{d} \geq h_{f d}-M \cdot\left(3-y_{i s p}-z_{i s b_{s}}-z_{j s b_{s}}\right) \quad(\forall i \in I, i \neq j, \forall s \in S)$
$14 \sum_{p} \sum_{k_{p p}} t_{j p p k_{p}}^{a}-\sum_{p} \sum_{k_{p p}} t_{i p k_{s p}}^{d} \geq h_{f d}-M \cdot\left(3-y_{j i s p}-z_{i s b_{s}}-z_{j s b_{s}}\right) \quad(\forall i \in I, i \neq j, \forall s \in S)$


## OPTIMIZATION MODEL Train Timetable Rescheduling Model (TTR)

## Objective function

## Type1:Minimize direct effects of disturbances

- (1) Minimize the total arrival deviation at the stations with flags $\min Z_{1}=\sum_{i \in I}\left(t_{i s}^{A}-\bar{t}_{i s}^{-A}\right) \quad\left(s \in S_{l}^{\text {crew }} \cup S_{l}^{p s}\right)$
ㅁ(2) Minimize the total weighted dwell time of all trains

$$
\min Z_{2}=\sum_{i \in I} \sum_{s \in S}\left(\left(t_{i s}^{D}-t_{i s}^{A}\right) \tau_{i s}\right)
$$



## Type2:Minimize indirect effects of disturbances

(3) Minimize adjustment number of departure order

$$
\min Z_{3}=\sum_{i \in I} \sum_{j \in I} \sum_{s \in S} \sum_{p \in S}\left|y_{i j s p}-y_{i j s p}^{*}\right| \quad(i \neq j,(s, p) \in S(s, p))
$$



## SOLUTION

## Certain Transformation of uncertain inequalities constraints

## Locomotives

## Crews

Yards
(1) $\operatorname{Pr}\left(x_{i} \geq \xi_{i}\right) \geq \alpha_{i}$
(2) $\xi_{i} \sim \log \mathrm{~N}\left(\mu, \sigma^{2}\right)$
(3) $Y=\mathrm{LN}\left(\xi_{i}\right) \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
(4) $\operatorname{Pr}\left(x_{i} \geq K_{a}\right)=\alpha_{i}$
(5) $K_{a}=\sigma_{i} \cdot \Phi^{-1}\left(1-\alpha_{i}\right)+\mu_{i}$
(6) $\operatorname{Pr}(h(y) \geq Y)=F_{1}(h(y))=\Phi\left[\frac{h(y)-\mu}{\sigma}\right] \geq \alpha$
(7) $h(y) \geq K_{a}=\sigma_{i} \cdot \Phi^{-1}\left(1-\alpha_{i}\right)+\mu_{i}$

## Multiple objectives

OPTIMIZATION MODEL Train Timetable Rescheduling Model (TTR)

- departure time constraints
$\sum_{p \in S} \sum_{K_{j} \in K_{p}} t_{i p k_{p,}}^{a} \geq t_{i s} \quad(\forall i \in I ; \forall(s, p) \in S(s, p))$


- dwell time constraints

$$
\begin{aligned}
& \text { stop }_{i}^{s} \geq \overline{t s}_{i}^{s} \quad(\forall i \in I ; \forall s \in S) \\
& \operatorname{Pr}\left(\text { stop }_{i}^{s} \text { tssesi }^{5} \geq \gamma \quad\left(\forall i \in I ; \forall s \in S_{l}^{\text {crew }}\right)\right.
\end{aligned}
$$

- running time on sidings constrain

$$
\sum_{k_{p} \in K_{\bar{p}}} t_{i p k_{p}}^{d}-\sum_{k_{p} \in K_{F}} t_{i p p k_{\xi}}^{a}=t_{s p}+t_{r} \cdot \sum_{k_{p} \in K_{\bar{p}}} m_{i p k_{p}} \quad(\forall i \in I ; \forall(s, p) \in S(s, p))
$$

- Standard form
- Set it as an equation
- Calculated by the formula
- Transform into deterministic inequality

Reference: Liu B. Uncertain planning and application [M]. Beijing: Tsinghua University Press, 2003.

$$
E v a=\lambda_{1} \cdot Z_{1}+\lambda_{2} \cdot Z_{2}+\lambda_{3} \cdot Z_{3} \quad\left(\lambda_{1}+\lambda_{2}+\lambda_{3}=1\right)
$$

## SOLUTION

Two-dimensional chromosome coding strategy
train timetable

train departure order

|  | Train 1 | Train 2 | Train 3 | Train 4 |
| :---: | :---: | :---: | :---: | :---: |
| Station 1 | 1 | 3 | 2 | 4 |
| Station 2 | 1 | 2 | 3 | 4 |
| Station 3 | 2 | 1 | 4 | 3 |
| Station 4 | 1 | 2 | 4 | 3 |

(a)

| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 2 | 1 | 4 | 3 |
| 3 | 2 | 1 | 4 |$\quad$ mutatio

(b)


Chenck and updata according to original departure sequence
(c)


## CASE STUDY

## Line description and Parameter settings



- 62 stations, 254.9 km in length.

| Random variable | Distribution function <br> (unit: h) | Lower bound of delay_K <br> (3) <br> $(\alpha=\beta=\gamma=90 \%)($ unit: $\min )$ <br> (3)$\quad$ CREW_AVAIL | $X_{1} \sim \log N(0.1,1)$ |
| :---: | :---: | :---: | :---: |
|  | LOCO_AVAIL | $X_{2} \sim \log N(0.25,0.1)$ | 18.40 |
|  | YARD_AVAIL | $X_{3} \sim \log N(0.5,0.25)$ | 51.37 |

(4) | Case | Time window | Number of trains | Number of total passing stops |
| :---: | :---: | :---: | :---: |
| 1 | $[0,240]$ | 64 | 1442 |
| 2 | $[0,2520]$ | 405 | 7658 |

## CASE STUDY

## Optimized results and analysis

(1) Performance of the S-MOGA algorithm


Case \begin{tabular}{c|c|c|c|}
\hline Time <br>
window

 

Population scale/ <br>
Number of <br>
iterations

$\quad$

CPU time <br>
(h:m:s)
\end{tabular}

Optimization result of the total objective of Case 1
Test using an Intel Core 158400 hexa-core processor with 2.8 GHz and 8 GB RAM and python 3.7

## CASE STUDY

## Optimized results and analysis

## (2) Sensitivity analysis on dynamic priority adjustment threshold








## CASE STUDY

## Optimized results and analysis

(2) Statistics of the delay at the destination
units: minutes

| Statistics | Threshold | 10 | 20 | 30 | 40 | 50 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Case 1 | Summary | 15205 | 14053 | 13933 | 14919 | 13711 | 14575 |
|  | Average | 233.9 | 216.2 | 214.4 | 229.5 | 210.9 | 224.2 |
|  | Max | 379 | 350 | 380 | 384 | 336 | 378 |
|  | Min | 121 | 90 | 90 | 90 | 90 | 90 |
|  | Standard deviation | 47.9 | 51.9 | 56.5 | 58.5 | 57.6 | 56.9 |
| Case 2 | Summary | 135358 | 116557 | 113387 | 111755 | 111095 | 110702 |
|  | Average | 335.0 | 288.5 | 280.7 | 276.6 | 275.0 | 274.0 |
|  | Max | 800 | 813 | 633 | 682 | 590 | 540 |
|  | Min | 42 | 42 | 52 | 42 | 42 | 42 |
|  | Standard deviation | 97.7 | 75.5 | 72.0 | 72.1 | 72.5 | 70.1 |

## CASE STUDY

## Optimized results and analysis

(3) Comparison between timetables


Scheduled timetable


Rescheduled timetable

## CONCLUSION AND FUTURE WORK

## Conclusion

- (1) A multi-objective railway freight timetable rescheduling optimization model with extensive and stochastic delays was proposed.
- (2) Re-time, Re-order and Re-track.
- (3) The comprehensive level: static level + dynamic level.

ㅁ (4) The solution (S-MOGA) was designed.

- (5) The threshold of $\mathbf{5 0 ( 6 0 )}$ is suggested for timetable rescheduling in our case 1(2).


## Thank you for your attention



