**Gunnar Feldmann** 

Norfolk Southern

November 7-13, 2020

# FREIGHT RAILROAD TERMINAL CLOCK OPTIMIZER

2020 INFORMS Annual Meeting



# TABLE OF CONTENTS

- **01** Background
- **02** Terminal Clock Optimizer
- 03 Summary and Future Plan

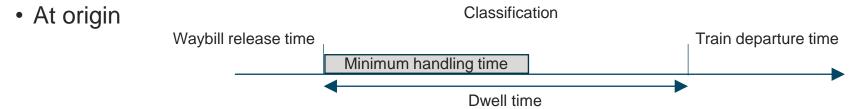
# 01

## BACKGROUND

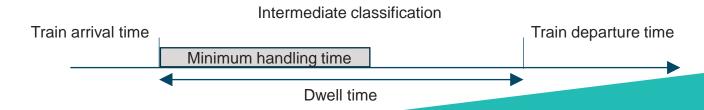


# PRECISION SCHEDULED RAILROADING AT NORFOLK SOUTHERN

- Shift from implementation to "continuous improvement" phase
- Development of a tool for continuous improvement of:
  - Reduce dwell time
  - Increase car velocity
- Business requirements:
  - Ability to improve an existing plan or a plan that is under development
  - Tight integration with existing planning tools such as Operating Plan Developer (OPD)
  - Automated data transfer for loading and promoting
  - Norfolk Southern's Network Planning & Optimization (NPO) department can run multiple iterations per day if needed


## 02

# TERMINAL CLOCK OPTIMIZER




## TERMINAL CLOCK OPTIMIZER (TCO)

- Objective: Reduce car dwell time and optimize terminal clock imbalance
  - Car dwell times considered:

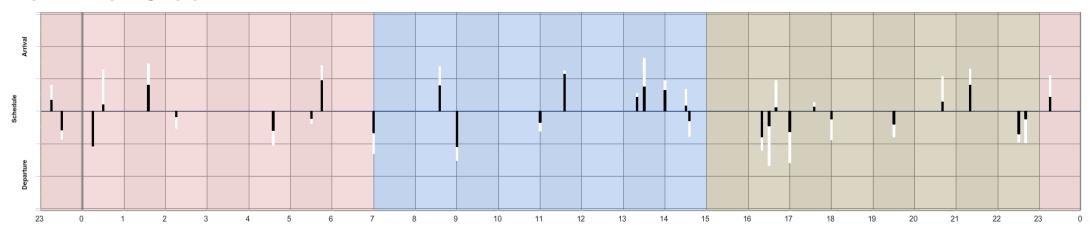


Intermediate classification

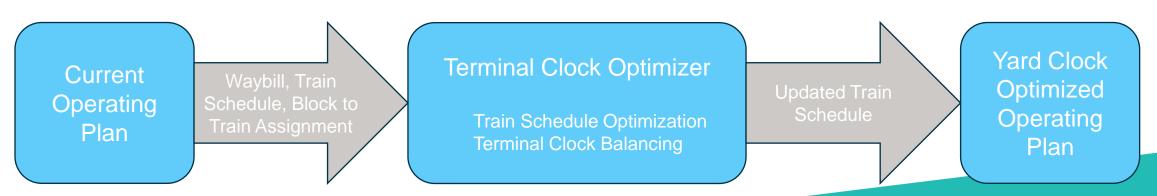




6


## YARD CLOCK SCHEDULE OPTIMIZATION

 Train Connection Train B Current connection time min. handl. time Location A Maximum reduction of connection time Train A Time




## TERMINAL CLOCK OPTIMIZER (TCO)

#### Terminal Clock



#### Data Flow:



# TERMINAL CLOCK SCHEDULE OPTIMIZATION

#### Algorithm flow

Initial Trip Plan

 Run NS algorithmic blocking and classification (ABC) car routing algorithm

**Evaluation** 

• KPI based yard and train selection for schedule change

Schedule Change

- Shift connecting trains schedules
- Schedule changes are constraint by
  - minimum handling time
  - terminal clock imbalance

Evaluation

 Rerun NS algorithmic blocking and classification (ABC) car routing algorithm Repeat yard selection process until stopping criteria is reached



### TERMINAL CLOCK BALANCING

Trains are shifted if the number of events exceed a set capacity in a terminal clock bucket

- Event-based capacity constraints
- Bucket size derived from current operating plan or provided by user
- Bi-directional shift



## 03

## SUMMARY AND FUTURE PLAN

### SUMMARY AND FUTURE PLAN

- Showcased how the Terminal Clock Optimizer is used for network studies at Norfolk Southern
- Continue enhancement of model by incorporating
  - minimum time gap constraint between same train event types
  - train frequency optimization

## **ACKNOWLEDGEMENTS**

#### TCO Team:

- Peiheng Li
- Behzad Zahiri
- Maulik Dave

#### Development Supporting Team:

- Clark Cheng
- Edward Lin
- Co-ops

