Joint Optimization of Track Maintenance and Renewal planning

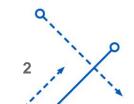
Reza Mohammadi, Ph.D. Candidate Qing He, Associate Professor ISE Department INFORMS Annual Meeting October, 2019

University at Buffalo The State University of New York



## Outline

- Introduction
- Track Maintenance and Renewal Model
- Data-drive robust optimization
- ➤ Case study
- Results and Discussion



## Introduction

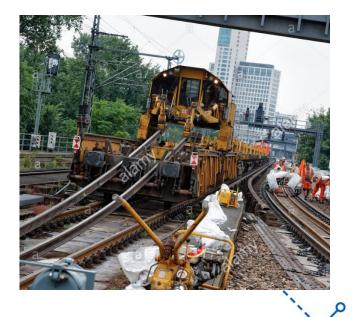
- Maintenance and Renewal (MR) is crucial to guarantee the reliability, availability, and safety of a railway network.
- Railway assets/components:
  - Tracks, switches and crossings.
  - Signaling system: safety and telecommunication equipment.
  - Catenary systems: energy supply installations.
  - o Vehicle
  - Bridges and tunnels.

Figure 2. Track geometry measurements



## **Track maintenance tasks**

- Tamping conducted to restore track geometry irregularities, could be corrective or preventive.
- Grinding: the process to maintain a predetermined profile on the head of the rail in order to maximize rail life and minimize rolling resistance reducing wheel wear and improving fuel economy.
- **Renewal:** replacing the current track.



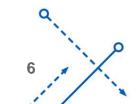
## **Motivation**

- > Maintenance tasks and renewal mostly studied separately.
- > Renewal has been studied mostly from economical perspective
- Uncertainties in the maintenance effect have not been studied
- Dependence and relation between different maintenance tasks requires joint optimization of maintenance and renewal



# **Mathematical Programming Model**

- Joint Optimization of track maintenance and renewal.
  Decisions Variables:
  - $x_{ij}^t$  1 if maintenance action/renewal j is performed in segment i at period t
  - $w_i^t$  Quality index time t
  - $\sigma_i^t$  TQI value of segment i at time t



#### > Objective Function:

$$\operatorname{Max} \sum_{i=1}^{I} \sum_{t=1}^{T} \alpha^{t} w_{i}^{t} \pi_{i}$$

> Initialization and set up constraints:

$$w_{i}^{t_{0}} = W_{i}^{0} \qquad \forall i \in I , \forall t \in T \qquad (2)$$

$$\sum_{j=1}^{J} x_{ij}^{t} \leq L \qquad \forall i \in I , \forall t \in T \qquad (3)$$

$$\sum_{t=1}^{T} x_{ij}^{t} \geq |I(i)| x_{ij}^{t} \qquad \forall i \in I , \forall j \in J \qquad (4)$$

$$y_{1j}^{t} \geq x_{1j}^{t} \qquad \forall j \in J , \qquad \forall t \in T \qquad (5)$$

$$y_{ij}^{t} \geq x_{ij}^{t} - x_{i-1j}^{t} \qquad \forall j \in J , \qquad \forall t \in T, \forall i \in I , i > 1 \qquad (6)$$



#### > Budget, resource and time constraint

$$\begin{split} \sum_{i=1}^{I} \sum_{j=1}^{J} (c_{ij}^{t} x_{ij}^{t} + F_{j} y_{ij}^{t} + Ps_{ij}^{t}) &\leq B_{t} \quad \forall t \in T \quad (6) \\ \sum_{t=1}^{T} x_{ij}^{t} &\leq N_{ij} \quad \forall i \in I , \forall j \in J \quad (8) \\ \sum_{i=1}^{I} b_{kj} x_{ij}^{t} &\leq A_{K}^{t} \quad \forall j \in J , \forall t \in T, \forall k \in K \quad (9) \\ \sum_{i=1}^{I} R_{j} x_{ij}^{t} &\leq g^{t} \quad \forall i \in I , \forall t \in T \quad (10) \end{split}$$



#### > Threshold constraints:

$$\begin{split} &\omega_i^t \leq w^{a2} \\ &w_i^t \leq w^a x_{i1}^t \\ &M(x_{ij}^t - 1) \leq h_j^t - w_i^t \leq M x_{ij}^t \end{split}$$

$$\sigma_i^1 = \sigma_i^{t0}$$
  

$$\sigma_i^t = \sigma_i^{t-1} + \rho_i^t - \theta_i^t x_{i2}^t$$
  

$$M(x_{i2}^t - 1) \le \sigma_i^t - \tau^t \le M x_{i2}^t$$

 $\forall i \epsilon I$ ,  $\forall t \epsilon T$  (12)

$$\forall i \epsilon I$$
,  $\forall t \epsilon T$  (13)

$$\forall i \epsilon I , \forall \epsilon J, j \\ \neq 2, \forall t \epsilon T$$
 (14)

$$= Z, \forall t \in I$$

$$\forall i \epsilon l$$
 (15)

$$\forall i \epsilon I , \forall t \epsilon T$$
 (16)

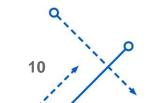
 $\forall i \epsilon I , \forall t \epsilon T$  (17)

> Suppression constraint:

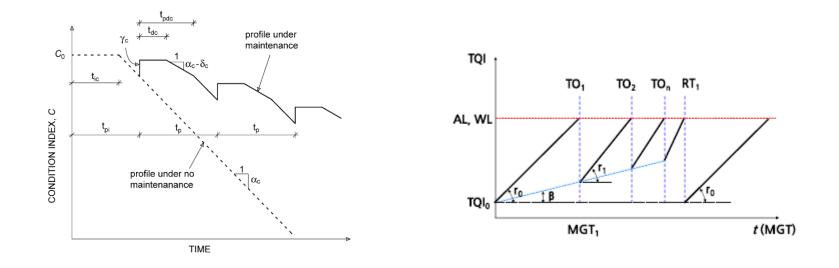
$$\sum_{te=1}^{TE_j} x_{ij}^{t+te_j} \le te_j \left(1 - x_{ij}^t\right) + Ps_{ij}^t \quad \forall i \in I, \forall j \in J, j \neq 2, \\ \forall t \in T, t+te < T \quad (18)$$

#### > Quality index equation:

$$\begin{split} \sum_{j=1}^{J} x_{ij}^{t} &\geq 2q_{ij}^{t} & \forall i \in I , \forall t \in T \quad (19) \\ \omega_{i}^{t} &= w_{i}^{t-1} - \lambda_{i}^{t} + \sum_{j=2}^{J} \delta_{j} x_{ij}^{t} + \gamma_{ij} q_{ij}^{t} & \forall i \in I , \forall t \in T \quad (20) \\ w_{i}^{t} &\leq \omega_{i}^{t} & \forall i \in I , \forall t \in T \quad (21) \end{split}$$



## **Maintenance recovery rate**



Modeled the uncertainty in maintenance recovery rate through a data-driven robust optimization.



# **Robust Optimization**

| <b>Deterministic Optim</b>                          | mization |
|-----------------------------------------------------|----------|
| $\inf_{\mathbf{x}} f(\mathbf{x}, \boldsymbol{\xi})$ | ξ •      |
| s.t. $\mathbf{x} \in X$                             | 5        |

#### **Stochastic Optimization**

 $\inf_{\mathbf{x}} \mathbb{E}_{\mathbb{P}} \{ f(\mathbf{x}, \boldsymbol{\xi}) \}$ s.t.  $\mathbf{x} \in X$ 

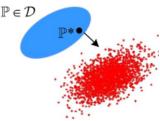


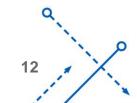
#### **Robust Optimization**

 $\begin{array}{l} \inf_{\mathbf{x}} \sup_{\boldsymbol{\xi} \in U} f(\mathbf{x}, \boldsymbol{\xi}) \\ \mathbf{\xi}_{\in U} \\ \text{s.t. } \mathbf{x} \in X \end{array} \qquad \boldsymbol{\xi}_{\in U}$ 

#### **DR Optimization**

 $\inf_{\mathbf{x}} \sup_{\mathbb{P} \in \mathcal{D}} \mathbb{E}_{\mathbb{P}} \{ f(\mathbf{x}, \boldsymbol{\xi}) \}^{\mathbb{P}}$ s.t.  $\mathbf{x} \in X$ 

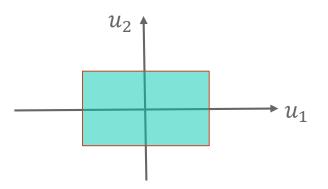




# **Classic Uncertainty Sets**

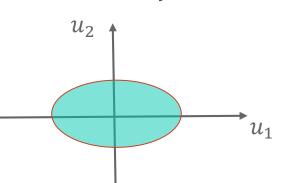
$$\succ U_{box} = \{ u | u_i^L \le u_i \le u_i^U, \forall i \}$$

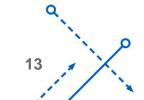
- Pros: Tractable
- Cons: Very Conservative



$$\succ U_{Ellipsoidal} = \{ \boldsymbol{U} | \boldsymbol{U}^T \sum \boldsymbol{U} \le 1 \} = \left\{ \boldsymbol{U} | \left\| \sum^{\frac{1}{2}} \boldsymbol{U} \right\|_2 \le 1 \right\}$$

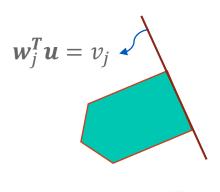
- Pros: Control Conservatism
- Cons: Nonlinearity



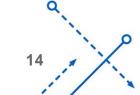


# **Classic Uncertainty sets**

- Budget/Gamma Uncertainty:
  - Bertsimas and Sim (2003)
  - $U_{budgeted} = \{u_i | u_i = \overline{u} + \Delta u_i, z_i, -1 \le Z_i \le 1, \sum_i |z_i| \le \Gamma_i, \forall_i\}$
  - Pros: Control Conservatism
  - Cons: Suitable for independent and symmetric uncertainty
- Polyhedral Uncertainty (see this paper later)
  - Bertsimas and Ruiter (2016)
  - $U_{polyhedral} = \{ \boldsymbol{u} | \boldsymbol{w}_j^T \boldsymbol{u} \le v_j, \quad \forall_i = 1, \dots, s \}$
  - Pros: Flexible structure
  - Cons: Difficulty in optimal Polyhedral



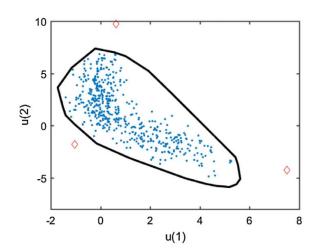
 $u_2$ 



 $\mathcal{U}_1$ 

## **Data-driven robust optimization**

- Uncertainty set using machine learning or statistical inference methods.
- Kernel Density Estimation
  - Shang et al, (2017)



$$\mathcal{U}(\mathcal{D}) = \left\{ \mathbf{u} \left| -2\sum_{i=1}^{N} \alpha_i K(\mathbf{u}, \mathbf{u}^{(i)}) \le -2\sum_{i=1}^{N} \alpha_i K(\mathbf{u}^{(i')}, \mathbf{u}^{(i)}), i' \in BSV \right. \right\}$$

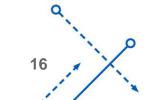


#### **Data-driven robust optimization**

Principal Component Analysis and Kernel Density Estimation:

- Ning and You, (2018)
- Pros: Very flexible
- Cons: Intractable

$$U_{\text{PCA+KDE}} = \left\{ \mathbf{u} \middle| \begin{array}{l} \mathbf{u} = \mathbf{\mu}_{0} + \mathbf{P}\boldsymbol{\xi}, \ \boldsymbol{\xi} = \underline{\boldsymbol{\xi}} \circ \mathbf{z}^{-} + \overline{\boldsymbol{\xi}} \circ \mathbf{z}^{+}, \\ \mathbf{0} \le \mathbf{z}^{-}, \ \mathbf{z}^{+} \le \mathbf{e}, \ \mathbf{z}^{-} + \mathbf{z}^{+} \le \mathbf{e}, \ \mathbf{e}^{T} \left( \mathbf{z}^{-} + \mathbf{z}^{+} \right) \le \Phi \\ \underline{\boldsymbol{\xi}} = \left[ \hat{F}_{\text{KDE}}^{(1) - 1} (\alpha), \dots, \ \hat{F}_{\text{KDE}}^{(m) - 1} (\alpha) \right]^{T} \\ \overline{\boldsymbol{\xi}} = \left[ \hat{F}_{\text{KDE}}^{(1) - 1} (1 - \alpha), \dots, \ \hat{F}_{\text{KDE}}^{(m) - 1} (1 - \alpha) \right]^{T} \end{array} \right\}^{T}$$



0

10

 $u_2$ 

Uncertainty data

PC2

Uncertainty set

20

15

## **Proposed Uncertainty set construction methods**

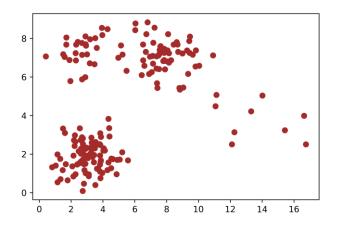
- > Outer Approximation using a convex hull
- > Outer Approximation OA-2; a tighter approximation
- Outer Approximation 3: Classic uncertainty set + cuts



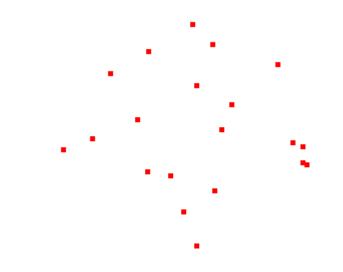
## **OA-1**

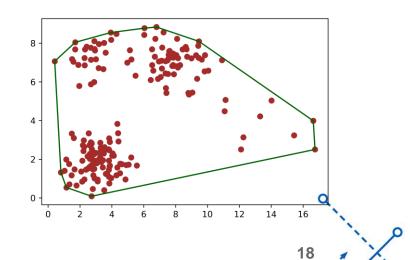
➢ Used Qhull algorithm to find the convex hull











#### **Uncertainty set for OA-1**

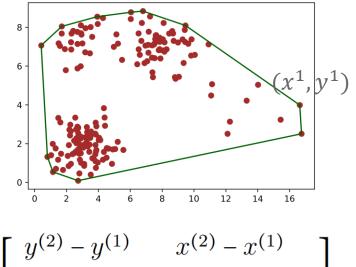
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(k)}, y^{(k)})$$
  
 $U^{\xi} = \mathbf{S}\xi + \mathbf{t} \ge 0$ 

(2)

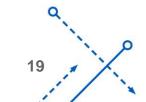
(1)

(1)

(2)



$$S = \begin{bmatrix} y^{(2)} - y^{(1)} & x^{(2)} - x^{(1)} \\ \vdots & \vdots \\ y^{(k+1)} - y^{(k)} & x^{(k)} - x^{(k+1)} \\ \vdots & \vdots \\ y^{(1)} - y^{(k)} & x^{(k)} - x^{(1)} \end{bmatrix}_{K \times 2} t = \begin{bmatrix} y^{(2)} - y^{(1)} & x^{(2)} - x^{(1)} \\ \vdots & \vdots \\ y^{(k+1)} - y^{(k)} & x^{(k)} - x^{(k+1)} \\ \vdots & \vdots \\ y^{(1)} - y^{(k)} & x^{(k)} - x^{(1)} \end{bmatrix}_{K \times 1}$$



## **Robust Counterpart Model**

$$\omega_i^t = w_i^{t-1} - \lambda_i^t + \sum_{j=2}^J \delta_j x_{ij}^t + \gamma_{ij} q_{ij}^t \qquad \forall i \epsilon I , \forall t \epsilon T$$

$$w_i^{t-1} - \lambda_i^t + \sum_{j=2}^J \bar{\delta_j} x_{ij}^t + \gamma_{ij} q_{ij}^t + \sum_{l=1}^L \vartheta_l \mu_l \le \omega_i^t$$

 $\forall i \epsilon I$ ,  $\forall t \epsilon T$ 

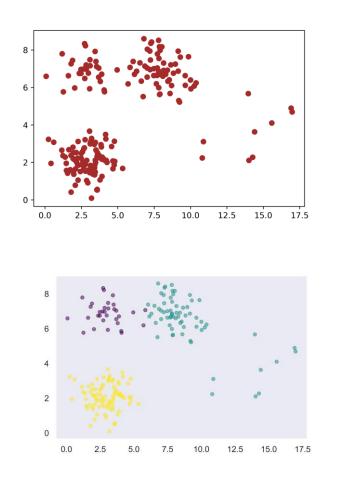
$$-\sum_{l}^{L} \varphi_{l} \mu_{l} = \hat{\delta}_{j} x_{ij}^{t}$$

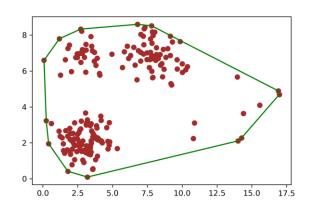
INFORMS, Railroad Maintenance

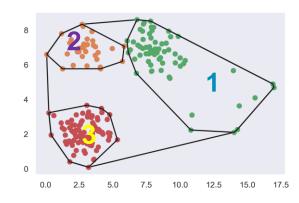
 $\mu_l \geq 0$ 

 $\forall i \epsilon I , \forall t \epsilon T, j = 2,3^{\mathbf{Q}}$ 20

**OA-2** 

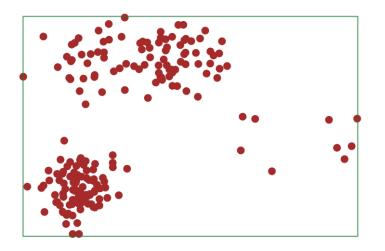


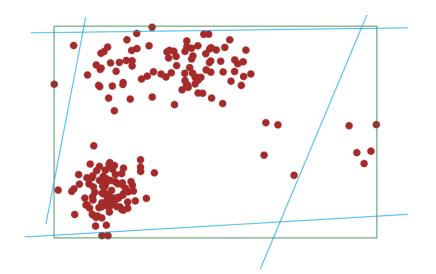


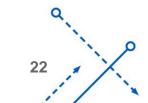


# **OA-3**

- Fit a classic uncertainty set
- $\succ$  Choose  $\alpha$ % of the as outliers
- Cluster outliers again
- > Fit linear regressions to generate some cuts







## **Robust Counterpart Model for OA-3**

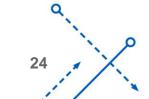
$$\begin{array}{ll} \max & z = cx + dy \\ s.t. & \sum_{j} a_{ij} x_{j} + \sum_{l} b_{il} y_{l} + \max_{\xi \in U} \left\{ \sum_{j \in J_{i}} \xi_{ij} \hat{a}_{ij} x_{j} + \sum_{l \in L_{i}} \eta_{il} \hat{b}_{il} y_{l} \right\} \leq p_{i} \quad \forall i \\ & x_{j} \in X, y_{l} \in \{0,1\} \qquad \forall j,l \end{array}$$

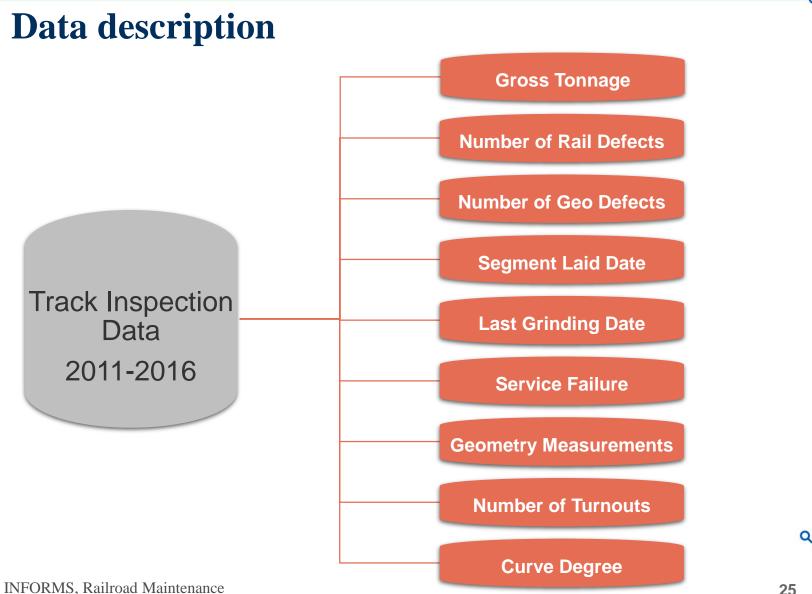
$$\sum_{h \in J_i \cup L_i} eta_{kh} \zeta_{ih} + d_k \ge 0, \, \forall i, k = 1, 2, \dots, q$$



## **Robust Counterpart Model for OA-3**

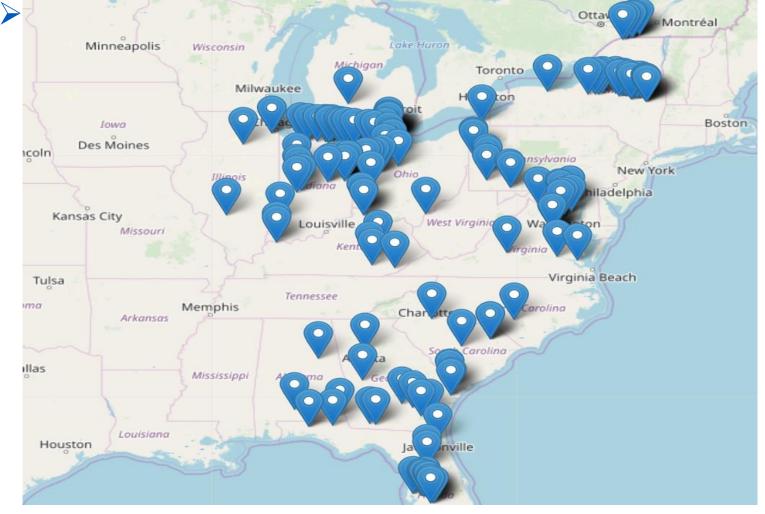
$$\begin{split} \sum_{j} a_{ij}^{1-\gamma_{i}} x_{j} + \sum_{l} b_{il}^{1-\gamma_{i}} y_{l} + \sum_{j \in J_{i}} u a_{ij} + \sum_{l \in L_{i}} u b_{il} + \sum_{k=1}^{q} d_{k} \tau_{k} \leq p_{i}, \forall i \\ -u a_{ij} \leq c_{ij} \hat{a}_{ij}^{\max} x_{j} + c_{ij} \sum_{k=1}^{q} \beta_{kj} \tau_{k} \leq u a_{ij}, \forall j \in J_{i} \\ -u b_{il} \leq \mu_{il} \hat{b}_{il}^{\max} y_{l} + \mu_{il} \sum_{k=1}^{q} \beta_{k,l+|J_{i}|} \tau_{k} \leq u b_{il}, \forall l \in L_{i} \\ \tau_{k} \geq 0, \forall k \\ u a_{ij} \geq 0, \forall i, j \in J_{i} \\ u b_{il} \geq 0, \forall i, l \in L_{i} \\ x_{j} \in X, y_{l} \in \{0,1\}, \forall j, l \end{split}$$





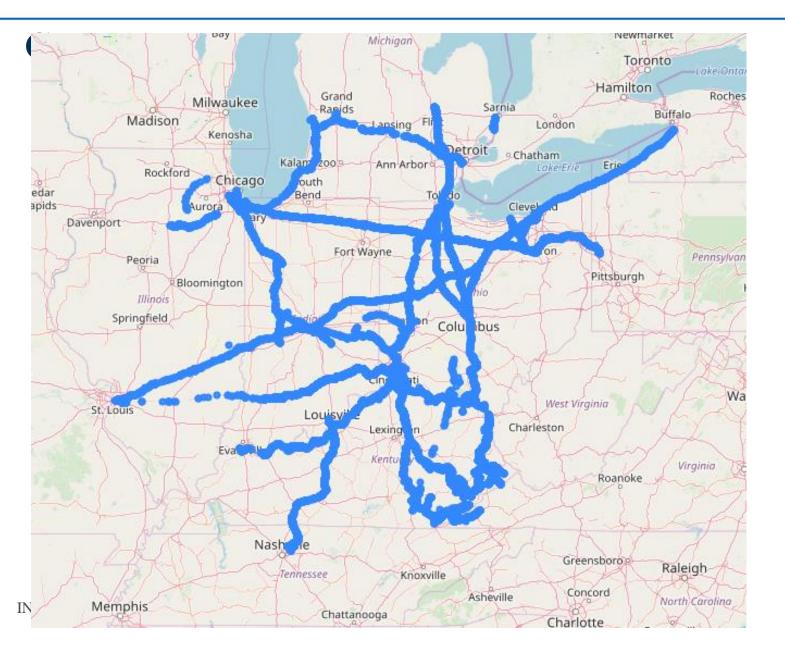


## **Distribution of service failure**



INFORMS, Railroad Maintenance

26



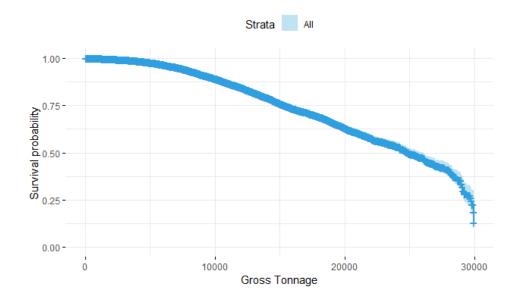


 $\frown$ 

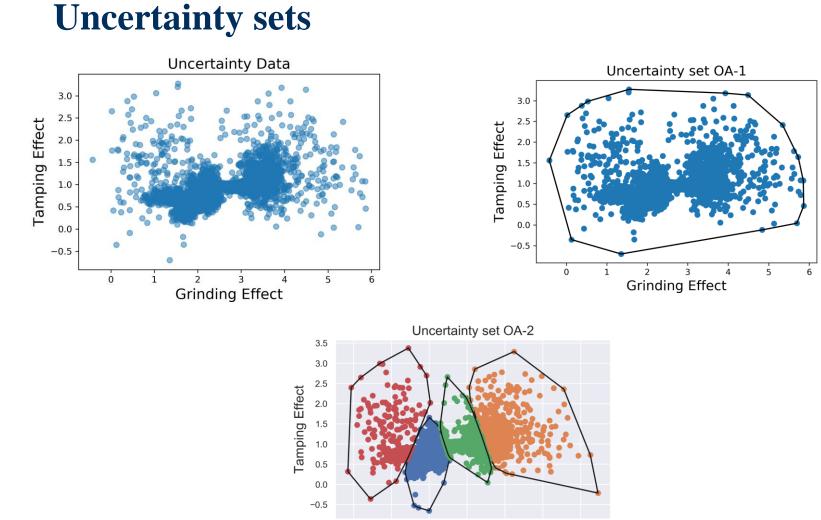
## **Model Parameter estimation**

## > Quality Index;

- Fitted a Cox hazard model
- Predicted the hazard rate for each segment
- Inverse of the Hazard rate is used as a quality index

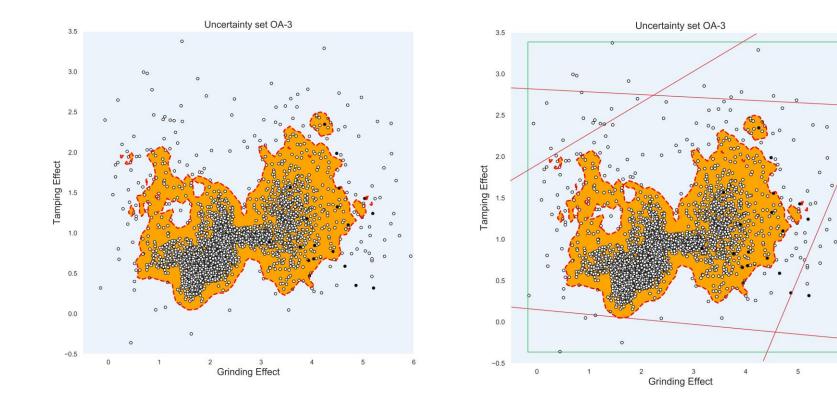


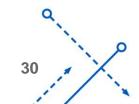




Grinding Effect

## **Uncertainty set OA-3**

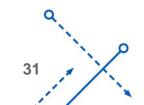




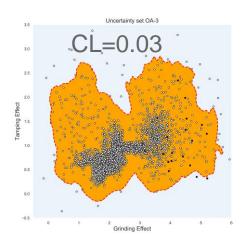
## **Computation results**

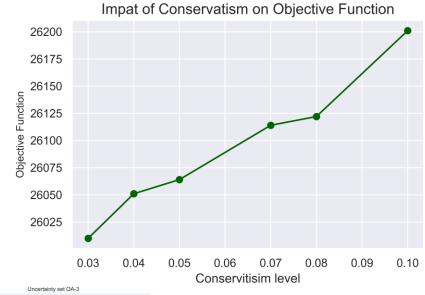
> Gurobi is used to solve the model.

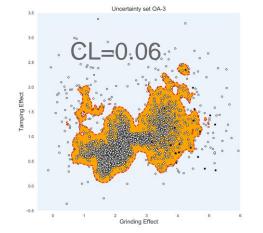
|                       | Deterministic<br>Model | OA-1          | OA-2          | OA-2  |
|-----------------------|------------------------|---------------|---------------|-------|
| CPU Time              | 5802                   | 7464          | 11400         | 8750  |
| Objective Function    | 26430                  | 25961         | 25961         | 26010 |
| Gap%                  | 2%                     | 2%            | 2%            | 2%    |
| Level of Conservatism | -                      | Worst<br>Case | Worst<br>Case | 0.03  |

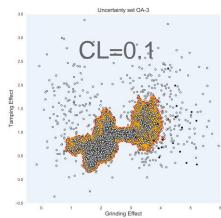


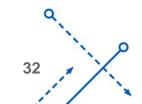
## **OA-3 Conservatism level**



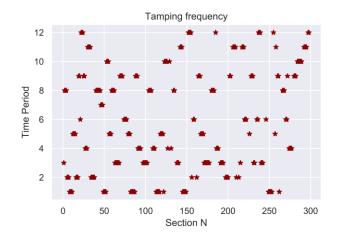


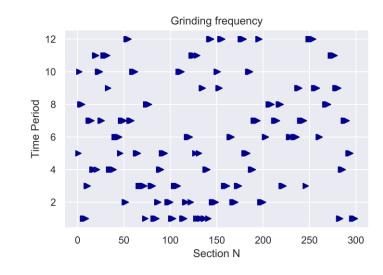


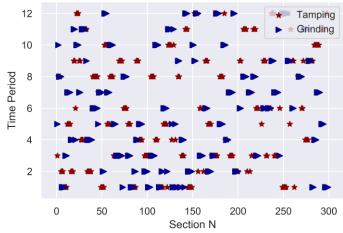




## **Tamping and grinding frequency**

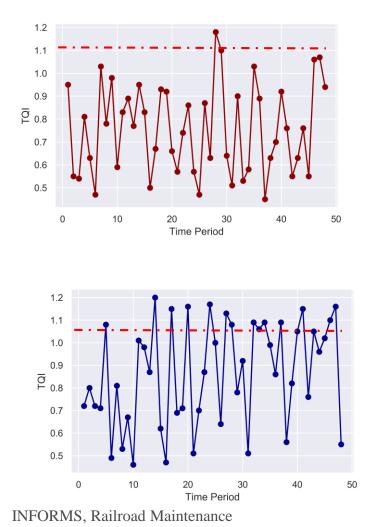




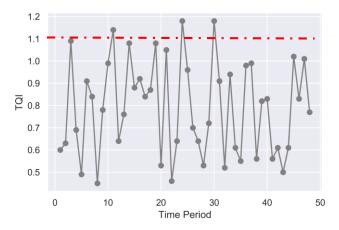




## **TQI results for selected segments**



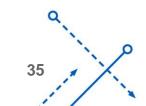
 $\begin{bmatrix} 1.2 \\ 1.1 \\ 1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ Time Period \\ \end{bmatrix}$ 



34

## Conclusion

- Data-driven uncertainty modeling results in more reliable and robust track condition with the same amount of budget
- Level of uncertainty could be adjusted based on the importance of the segment
- Joint optimization of maintenance task results in quality index improvement
- Considering features such as suppression time and maintenance task correlation results in more realistic model





# **Questions?**

