

Air-high Speed Rail (AHSR) Intermodal Transport Network Design Problem of China

Presenter: Dandan Li

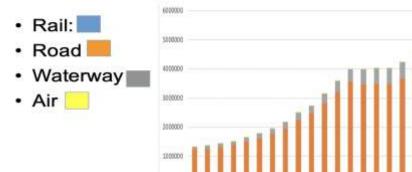
Mi Gan, Ph.D Associate Professor Dandan Li, Ph.D Candidate Mingfei Wang, Master

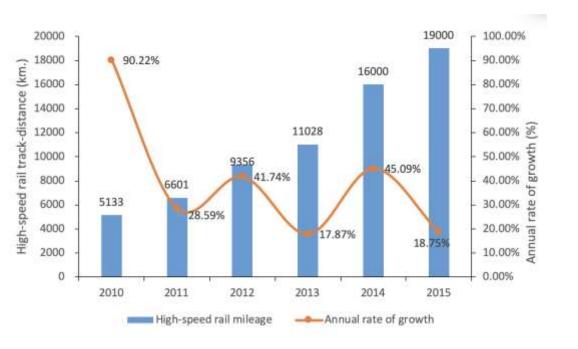
Southwest Jiaotong University, Chengdu E-mail: migan@swjtu.cn

Outline

- 1. Introduction
- 2. Design of Operation mode of AHSR
- 3. Planning of the AHSR network
- 4. Conclusions

(8)


Background


Transportation modes

1111111111111111111111

Background

China has become the world's greatest highspeed rail country,

The spatial-temporal distribution of passengers occupancy rate of the HSR is diversity.

There are some idle capacity existed in China's HSR system.

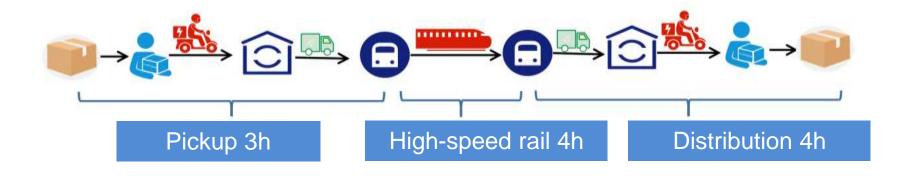
The HSR is environmental-friendly compares with air and highway transport.

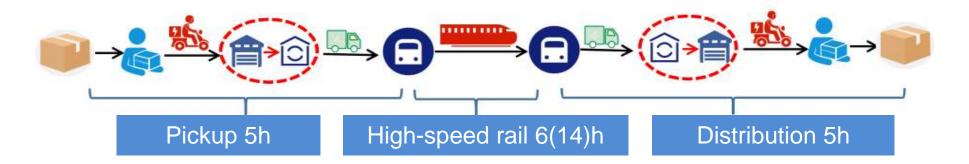
The meanning of Air-high Speed Rail (AHSR)?

The rapid growth of e-commerce and the existed idle capacity of high-speed railway in China result in a novel intermodal transport pattern for express delivery, which is airhigh speed rail freight transport(AHSR). In this research, the design of the Air-high speed rail network in China is studied.

2. The Design of Operation

mode of AHSR




China Railway High-speed Express (CRHE) is a "Door-to-Door" small parcel delivery service with high efficiency, quality and standard, and provide a wide range of customers with Time-limited Services (Same Day Delivery, Next Morning Delivery, Next Day Delivery) and Standard Services (Economic Express, Intra-city Express)

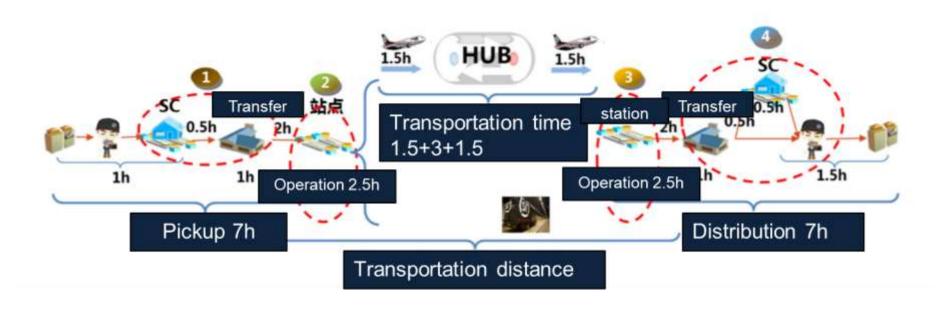
Same Day Delivery

Next Morning Delivery and Next Day Delivery



High speed railway freight train

High speed railway confirmation train

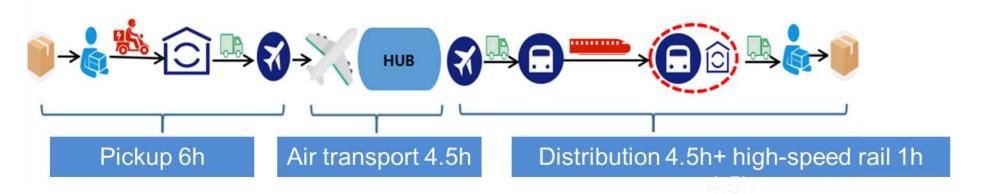

Passenger and freight mixed train

Passenger train pick up mode

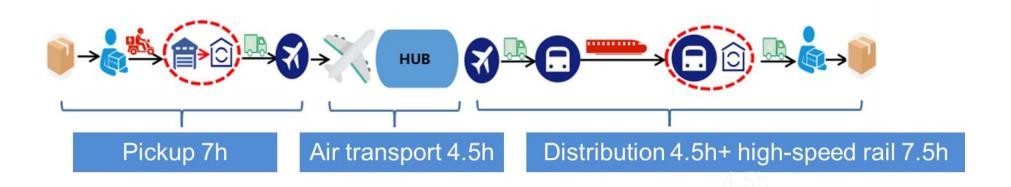
Air freight operation

Air-freight operation procedures

Air freight operation modes



	End-to-end	Stop-over	Hub-spoke mode	Luggage compartment of passenger airline	
	Direct flight from origin to destination	The plane stops over to refuel or load and unload goods	Centralize a series of routes to a hub airport, then connect and transfer flights in the shortest time, so as to obtain maximum market coverage	Transportation of goods with the spare capacity of airliner	
Advantages	The main operation mode of airlines at present, with few procedures and high efficiency	High aircraft utilization	Wide coverage, high efficiency and low cost	Main operation mode, standardized operation procedures, sufficient routes, low cost	
Disadvant ages	Small coverage area and insufficient point-to-point cargo volume lead to difficult cargo collection, long time, less routes and low resource utilization.	Small scale, low frequency, limited flight time and slightly higher cost	Complicated operation procedures. Poor timeliness	Limited by passenger routes, the scale of freight transportation is small.	


Air-high Speed Rail (AHSR) Intermodal Transport

Air-high Speed Rail (AHSR) Same Day Delivery

Air-high Speed Rail (AHSR) Next Day Delivery

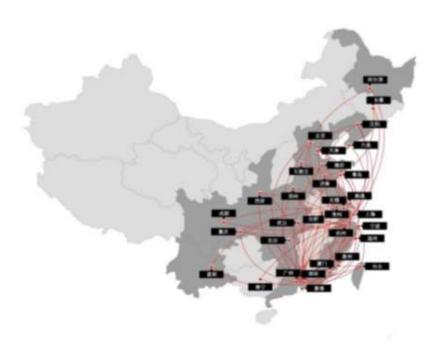
Air-high Speed Rail (AHSR) Intermodal Transport

Intermodal Transport comodes	capacity	Operation conditions	Technical feasibility	economic feasibility
Air-Passenger train pick sup mode	small	Fast loading and unloading, with standard cargo package, combined with high-speed railway timetable to optimize air cargo scheduling	easy	Increase a small amount of railway freight variable cost
Air-confirmation train N	Medium	Standard package, organizational load and unload, use railway time-window to optimize the cargo assembly	Need to Strengthen Railway Freight Organization	Increase a small amount of railway freight variable cost
Air-Passenger and L freight mixed train	Large	Reconstruct the luggage train, optimize the air arrangement considering high-speed railway timetable	Need to redesign luggage train, rebuild the railway station	Increase fixed asset investment and variable cost
Air-freight train L	Large	Need specialized freight station	rebuild the railway station	Increase fixed asset investment and variable cost

3. Planning of AHSR network

Background

High-speed Rail Network Of China



High-speed Rail Network Of China

Background

The Air-cargo network of China

SF Air-cargo **Freighters** network

SF Combi Aircrafts network

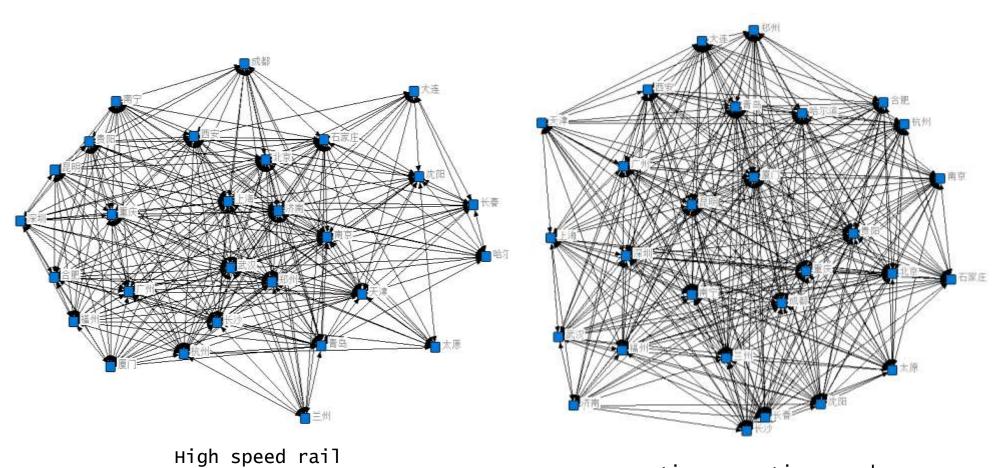
At present, there are a large number of cities with airports and high-speed rail stations. It is necessary to preliminarily select cities that meet the requirements of hub city from these cities.

Selection Criteria:

- (1) GDP ranked first
- (2) With policy support
- (3) Provincial capital city

Preliminary selection results:

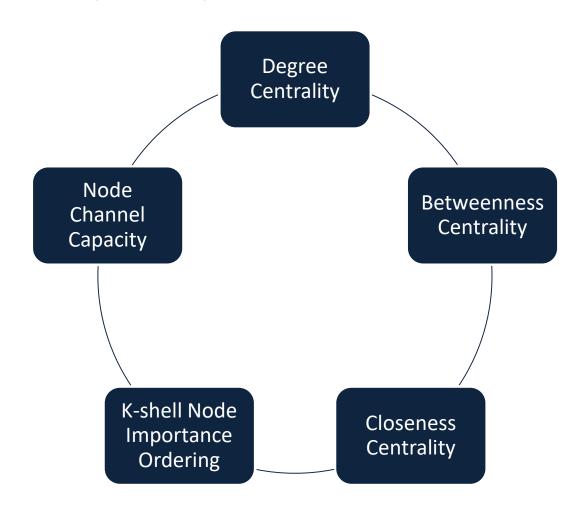
Harbin, Changchun, Beijing, Tianjin, Shijiazhuang, Nanjing, Hangzhou, Taiyuan,


Zhengzhou, Wuhan, Changsha, Nanning, Xi'an, Chengdu, Chongqing, Guiyang,

Lanzhou, Kunming, Dalian, Qingdao, Xiamen, Shenzhen, Shenyang, Jinan, Fuzhou,

Guangzhou, Shanghai, Hefei

connection graph



Air connection graph

Assessment of node city centrality

Assessment of node city centrality

Rank	City	Score	Rank	City	Score	Rank	City	Score
1	Beijing	0.644851	11	Tianjin	0.455876	21	Qingdao	0.424113
2	Shanghai	0.637877	12	Hangzhou	0.455179	22	Fuzhou	0.420628
3	Zhengzho u	0.593471	13	Taiyuan	0.450304	23	Harbin	0.420605
4	Wuhan	0.589851	14	Shenzhen	0.442475	24	Nanning	0.420097
5	Nanjing	0.578281	15	Chongqin g	0.436431	25	Changchu n	0.416104
6	Guangzho u	0.561747	16	Kunming	0.435915	26	Shenyang	0.41507
7	Xi'an	0.559934	17	Changsha	0.434153	27	Hefei	0.412178
8	Chengdu	0.508316	18	Xiamen	0.428543	28	Dalian	0.410621
9	Shijiazhu ang	0.486835	19	Guiyang	0.427595			
10	Jinan	0.456165	20	Lanzhou	0.424567			

Freight Volume Forecasting

Freight Volume Forecasting

	Beijing	Shanghai	Guangzho	Nanjing	Wuhan	Zhengzhou	Chengdu	Xi'an
			u					
Beijing	0	37306.84	21431	10857	13750	18035	8822	14042
Shanghai	33736	0	35374	17316	20675	15498	8871	12946
Guangzho	27830	50799	0	43089	26666	13979	13708	14730
u								
Nanjing	3650	18405	7714	0	6331	4543	2033	3152
Wuhan	9365	15572	13986	6468	0	6733	3486	5764
Zhengzhou	11456	10886	6838	3341	6279	0	2881	5662
Chengdu	9422	10477	11274	5681	5467	4844	0	9491
Xi'an	9701	9891	7836	3892	5847	6158	6139	0

AHSR network models

$$C = \min \left(\begin{array}{l} \sum\limits_{k} \left(C_{k} + WC_{k} \bullet \sum\limits_{i} \sum\limits_{k} \sum\limits_{m} \sum\limits_{j} D_{ij} X^{l}_{ikmj} \right) + \sum\limits_{i} \sum\limits_{j} \sum\limits_{l} D_{ij} C^{l}_{ij} X^{l}_{ij} \\ + \sum\limits_{i} \sum\limits_{j} \sum\limits_{k} \sum\limits_{m} \sum\limits_{z} D_{ij} \left(\rho C^{l}_{ik} + \gamma C^{l}_{km} + \rho C^{l}_{mj} \right) X^{l}_{ikmj} + \sum\limits_{i} \sum\limits_{j} \sum\limits_{l} D_{ij} TC^{l}_{ij} X^{l}_{ij} \\ + \sum\limits_{i} \sum\limits_{j} \sum\limits_{k} \sum\limits_{m} \sum\limits_{l} D_{ij} X^{l}_{ikmj} \left(TC^{l}_{ik} + TC^{l}_{km} + TC^{l}_{mj} + ZT \bullet X_{km} \right) \end{array} \right) \tag{5-1}$$

st:

$$\sum_{k} y_k = P \tag{5-2}$$

$$X^{l}_{ikmj} \le y_{k}, \forall i, j \in I, l \in L, k \in K \in I, m \in M \in I$$

$$(5-3)$$

$$X^{l}_{ikmj} \le y_{m}, \forall i, j, k, m \in I, l \in L$$
 (5-4)

$$\sum_{k} \sum_{m} \sum_{l} X^{l}_{ikmj} + X_{ij} = 1, \forall i, j \in I$$

$$(5-5)$$

$$X_{ilmi}^{l} \le Y_{k} + Y_{m}, \forall i, j \in I, l \in L, k \in K \in I, m \in M \in I$$

$$(5-6)$$

$$\sum_{i} \sum_{k} \sum_{m} \sum_{j} D_{ij} X^{l}_{ikmj} + \sum_{i} \sum_{j} D_{ij} X^{l}_{ij} = \sum_{i} \sum_{j} D_{ij}$$
(5-7)

$$Y_k, X^l_{ikmi}, X^l_{ii} \in \{0,1\}$$
 (5-8)

$$X_{km} \in \{1, 2\}$$
 (5-9)

Numerical results of AHSR network


Assessment of node city centrality

	beijing	shanghai	zhengzhou	wuhan	Xi'an	chengdu	xiamen	guangzho u	shenyang
Beijing	0	1	1	1	1	2- Xi'an -1	2- Wuhan -1	2- Wuhan -1	1
Shanghai	1	0	1	1	2	1- Wuhan -2	1	1	2- Beijing -1
Zhengzho u	1	1	0	1	1	1- Wuhan -2	1	1- Wuhan -2	2- Beijing -1
Wuhan	1	1	1	0	1	1	1	1	2- Beijing -1
Xi'an	1	1	1	1	0	1	1- Wuhan -2	2- Wuhan -1	2- Beijing -1
Chengdu	1- Xi'an -2	2- Wuhan -1	2- Wuhan -1	1	1	0	2- Wuhan -1	2-v-1	1- Xi'an -2- Beijing -2
Xiamen	1- Wuhan -2	1	1	1	1- Wuhan -2	1- Wuhan -2	0	1	1-Wuhan-2- Beijing -2
Guangzho u	1- Wuhan -2	1	1	1	1- Wuhan -2	1- Wuhan -2	1	0	1-v-2- Beijing -2
Shenyang	2	2- Beijing -1	2- Beijing -1	2- Beijing -2	2- Beijing -2	2- Beijing -2- Wuhan -2	2- Beijing -2- Wuhan -1	2- Beijing -2- Wuhan -1	0

1: High-speed rail 2:Aircraft

Numerical results of AHSR network

Air cargo network planning

4. Conclusions

Conclusions

- ◆ The Air-High Speed Railway inter-modal transport can integrate railway transport's stability, low price and air transport's rapid characteristic, it will be an important development direction in the field of freight transportation.
- ◆ The Air-High Speed Railway inter-modal transport meets the requirements of low-carbon and efficient development of China's freight transport.

THANKS

