Investigating Intermodal Terminal Capacity Using AnyLogic Simulations

Wesley Chen, Michael Pugh, C. Tyler Dick, PE

INFORMS Annual Meeting
November 6, 2018
Outline

► Introduction
► Literature Review
► Simulation Model
 • Model Assumptions
 • Model Development
 • Experiments
► Future Work
► Conclusion
Introduction

► In 2017, intermodal accounted for 24% of overall Class 1 revenue
 • Largest single source of revenue
 • 2018 YTD volumes up 5.7% from 2017 values (as of 10/27/18)

► Transloading cost is critical to competing with highway transport
 • Rail + truck + transloading \(\rightarrow\) competitiveness
 • Increasingly important as trucks improve efficiency and reduce costs through automation

► Facilities are costly to build and operate
 • Capital: what is the ideal facility size to handle projected traffic volumes?
 • Operating: how to best allocate a facility’s resources to maximize productivity?

► Strong economic incentive to minimize transloading costs by matching intermodal facility capacity with current and projected demand
Current Methodology

► How is capacity (in lifts per day) currently estimated?
 • Three primary contributing factors (current AREMA practice)

 - Lifting Equipment Capacity
 - Strip Track Capacity
 - Storage Area Capacity

 (minimum)

 Terminal Capacity

► Limitations
 • Assumes full potential utilization of above elements
 • Resource allocation (ex. hostlers) not considered
 • Facility layout arrangement (tracks, roads, parking) not considered
 • Physical capacity with no consideration of performance or level of service

► There is a need to better understand fundamental capacity and performance relationships between truck and rail operations within a terminal
Example Facility Layouts

1 \times 8000 \text{ ft} \\
\\
2 \times 4000 \text{ ft} \\
\\
4 \times 2000 \text{ ft} \\
(one-side parking) \\
\\
4 \times 2000 \text{ ft} \\
(center parking) \\

The current method says that all four of these facilities have equal capacity. But do they really?
Research Objectives

► Better understand the relationships between the various factors affecting terminal capacity and performance
 • Quantify the influence of specific layouts
► Are there other level of service (LOS) metrics to define capacity?
Literature Review

► Past Simulation Efforts
 • Canadian National (1984)
 - Analyze new inland terminal designs and capital improvements
 • BNSF (2017)
 - Terminal-specific models
 - Address capacity issues, mitigate bottlenecks
 • Esmer (2008) and Baldassarra et al (2010)
 - Capacity analyses of seaport facilities

► Understanding the Terminal Process
 • Existing process flowcharts
 • Site visits
*Bottlenecks are hard to locate, and capacity is difficult to estimate!
AnyLogic® Discrete-Event Simulation (DES) software

- Transportation planning and optimization
- Supply chain design
- Warehouse operations problems

Users include Amtrak, CSXT, NS, BNSF, Aurizon and several railway consultants

Used in academia to address capacity questions
- Similar to Rail Traffic Controller (RTC)

AnyLogic® can simulate intermodal terminal operations
- Special-purpose libraries
- Operational logic organized as a flowchart
- Use of agents allows for more fluid modeling
- Combination of logic blocks and Java text coding
AnyLogic® Features

Physical Network

Logic Flowchart

Logic Block Parameters

Java Actions
Unloading Process

• Train Arrival
 - Consist and contents verified
 - Train spotted on strip track(s)
 - Road power removed
 - Cars are inspected for defects

• Unloading
 - Rubber tired gantry crane unloads unit
 - Hostler/reach stacker moves unit to storage
 - Container: stacking
 - Trailer: parking
 *Some units will be picked up directly from the loading/buffer zone

• Truck Departure
 - Driver arrives
 - Driver picks up load from storage or buffer zone
 - Check out at kiosk
 - Exit scan for damages
Loading Process

- **Truck Arrival**
 - Entry scan for damages
 - Check in at kiosk
 - Movement to storage
 - Container: stacking
 - Trailer: parking

- **Loading**
 - Hostler/reach stacker removes unit from storage
 - Unit moved to loading/buffer zone
 - Rubber-tired gantry crane loads unit onto train

- **Train Departure**
 - FRA brake tests
 - Road power arrives, couples to train
 - Dispatcher gives train permission to depart
Experimental Layouts

1×8000 ft
< support yard

2×4000 ft
< support yard

4×2000 ft (one-side parking)
< support yard

4×2000 ft (center parking)
< support yard

trailer parking

loco maint.
Model Assumptions

- Trains arrive at uniform rate (i.e. constant headway)
- Trailer traffic only
 - Containers are placed on chassis
 - No double stacking
- No delays between events
Model Status

<table>
<thead>
<tr>
<th>Process</th>
<th>Loading</th>
<th>Unloading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate processing</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gate-storage movements</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Storage-loading movements</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Train arrival</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Train departure</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Locomotive servicing</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Support yard capabilities (train queueing)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Truck-train transloading</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Switching movements</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Double stacking on railcars</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model Animation
Data Collection and Analysis

- Data collection is specified in the logic chain
- Values updated during runtime and exported to Excel
- Run each model under different traffic volumes
 - Dwell-volume curves
 - Pre-determine capacity by level of service (LOS) or minimum acceptable performance

<table>
<thead>
<tr>
<th>Tag</th>
<th>Entry Load</th>
<th>Exit Load</th>
<th>Time in</th>
<th>Time Out</th>
<th>Total Time</th>
<th>In</th>
<th>Trailer Idle Start</th>
<th>Out</th>
<th>Idle End</th>
<th>Idle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0 Trailer</td>
<td>Empty</td>
<td>0.55</td>
<td>11.675</td>
<td>11.125</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 Trailer</td>
<td>Empty</td>
<td>0.925</td>
<td>12.05</td>
<td>11.125</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 Trailer</td>
<td>Empty</td>
<td>1.19</td>
<td>14.93</td>
<td>13.74</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3 Trailer</td>
<td>Empty</td>
<td>1.315</td>
<td>15.885</td>
<td>14.57</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4 Trailer</td>
<td>Empty</td>
<td>1.625</td>
<td>12.87</td>
<td>11.245</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5 Trailer</td>
<td>Empty</td>
<td>2.04</td>
<td>13.495</td>
<td>11.455</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6 Trailer</td>
<td>Empty</td>
<td>2.195</td>
<td>15.965</td>
<td>13.77</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7 Trailer</td>
<td>Empty</td>
<td>2.74</td>
<td>16.32</td>
<td>13.58</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8 Trailer</td>
<td>Empty</td>
<td>2.82333</td>
<td>14.195</td>
<td>11.37167</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9 Trailer</td>
<td>Empty</td>
<td>3.135</td>
<td>14.505</td>
<td>11.37</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10 Trailer</td>
<td>Empty</td>
<td>4.035</td>
<td>17.905</td>
<td>13.87</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11 Trailer</td>
<td>Empty</td>
<td>4.15</td>
<td>17.935</td>
<td>13.785</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12 Trailer</td>
<td>Empty</td>
<td>4.945</td>
<td>18.97</td>
<td>14.025</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13 Trailer</td>
<td>Empty</td>
<td>5.215</td>
<td>19.5</td>
<td>14.285</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>14 Trailer</td>
<td>Empty</td>
<td>5.395</td>
<td>17.765</td>
<td>12.37</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future Work

► Additional Development
 • “fine tuning”
 - operational accuracy
 • Grade crossings
 • Road vs switcher locomotives
 • Support yard integration
 • Model validation (Huelsz 2015)

► Future Experiments
 • Varying traffic distributions (peak and off-hours)
 • Varying parameters
 - Containers and trailers
 - Container stacking in storage
 - Double stacked cars
 - Load priority
 - Loads requiring special handling (ex. hazmat)
 - Different crane types (ex. widespan vs gantry)
Thank you for your attention!

Wesley B. Chen
Graduate Research Assistant
wbchen3@illinois.edu

University of Illinois at Urbana-Champaign (UIUC)
Rail Transportation and Engineering Center (RailTEC)

This project is supported by the National University Rail Center (NURail), a US DOT-OST Tier 1 University Transportation Center, and the Association of American Railroads.