
 

 

 

 

 

Proceedings	of	
the	2014	
Cincinnati‐Dayton	
INFORMS	
Symposium	

  August	29,	2014	
Wright	State	University,	Dayton,	Ohio	
 
 
 
 
 
 

Sponsored by: 

Department of Biomedical, Industrial and Human Factors Engineering, Wright State University 

Perduco Group 

Applied Research Solutions 

Goldmeier Consulting LLC 

In Cooperation with: 

Institute for Operations Research and the Management Sciences (INFORMS) 

Cincinnati‐Dayton INFORMS Chapter  



Contents 
1.  Introduction .......................................................................................................................................... 4 

Conference Committee Message .............................................................................................................. 4 

Conference Steering Committee .............................................................................................................. 4 

Cincinnati‐Dayton INFORMS Chapter and the Symposium ...................................................................... 4 

Presented Research and Keyword Index .................................................................................................. 5 

Sponsors .................................................................................................................................................... 6 

Attendees and Presenters ....................................................................................................................... 10 

2.  Schedule .............................................................................................................................................. 11 

3.  Keynote Address: Outstanding Young OR/MS Award Winner ........................................................... 13 

Examining vaccine economics using operations research .................................................................. 13 

4.  Invited Speakers .................................................................................................................................. 15 

Utilizing Feature‐Based Cost Estimation in Preliminary Design .......................................................... 15 

The Origins of Operations Research:  Science at War ........................................................................ 16 

Introduction to Criminal Justice and Military Applications of Social Network Analysis ..................... 17 

Sports Analytics ................................................................................................................................... 18 

5.  Abstracts for Presentations and Papers .............................................................................................. 19 

Multi‐objective optimization of stochastic black‐box systems using direct search and indifference 

values .................................................................................................................................................. 19 

An Overview and Investigation of the Weapon‐Target Assignment (WTA) Problem ......................... 19 

The Optimal Synchronization of Average Throughput in Supply Chain Networks ............................. 19 

The Influence of Load on Service Times ............................................................................................. 20 

Intro to Data Visualization Principles .................................................................................................. 20 

Improved Visualization of n‐Dimensional Data Using Hyper‐Radial Values ....................................... 20 

Supplemental Instruction and Undergraduate Business Statistics Student Performance ................. 23 

A Simulation of Decision‐Making Under Imperfect Situation Awareness .......................................... 23 

Consideration of Product Exposure in Retail Design .......................................................................... 24 

Planning Inpatient Discharges at Hospitals ......................................................................................... 24 

Incentive‐Compatible Multi‐level Triage in Emergency Medical Services .......................................... 25 

6.  Abstracts for Posters ........................................................................................................................... 26 

Using Past Scores and Regularization to Create a Winning NFL Betting Model ................................. 26 

Improving non‐linear approaches to anomaly detection, class separation, & data visualization ...... 26 

2



PHEV Battery Exchange Station Inventory Control Markov Decision Problem .................................. 27 

7.  Full Papers ........................................................................................................................................... 28 

Multi‐Objective Optimization of Stochastic, Black‐Box Systems Using Direct Search and Indifference 

Values .................................................................................................................................................. 28 

 

	

  	

3



1. Introduction 

Conference Committee Message 
 The organizing committee welcomes you to the Cincinnati-Dayton INFORMS 
Symposium. The symposium is hosted by Wright State University's Biomedical, Industrial, and 
Human Factors Engineering Department, with corporate sponsors: Perduco Group, Applied 
Research Solutions, and Goldmeier Consulting. We feel that the scientific and social exchange 
among symposium attendees will give us a much needed opportunity to interact in the Miami 
Valley area.   
 We have been pleased by the volume and breadth of submissions with topics ranging 
from X to Y and was more than sufficient to completely fill the entire day. The amount and 
variety of attendees has also been refreshing. We therefore hope that this will be the first of many 
technical symposiums offered by the Cincinnati-Dayton INFORMS chapter.   
 We hope that you will be able to participate in our social happy hour and attend as many 
talks as possible.  If you need anything during your attendance, please do not hesitate to let us 
know. 
-Cincy-Dayton INFORMS Conference Steering Committee 

Conference Steering Committee 
Trevor Bihl, 2014 Program Chair 
Air Force Institute of Technology 

Trevor.Bihl@afit.edu 

James Cordeiro, 2014 Co-Chair 
Air Force Institute of Technology 

James.Cordeiro@afit.edu  
Kellie Schneider, 2014 Co-Chair 

University of Dayton 
kschneider2@udayton.edu  

David Gerson, 2014 Co-Chair 
Illumination Works LLC 
gersondave@gmail.com  

Todd Paciencia, 2014 Assistant Chair 
Air Force Institute of Technology 

Todd.Paciencia@afit.edu 

Cincinnati-Dayton INFORMS Chapter and the Symposium 
 The Cincinnati-Dayton Chapter of INFORMS was established in 1995 as one of the 
regional chapters of INFORMS. Regional chapters are separate from student chapters and 
encourage interchanges between professionals, faculty, researchers, and students; regional 
chapters are relatively few in number and the Cincinnati-Dayton chapter is the only local 
regional INFORMS chapter in Ohio, Indiana, Kentucky or West Virginia. The Cincinnati-
Dayton chapter has been successful in its mission by sponsoring the annual Arnoff lecture, 
offering chapter awards and social events, and encouraging facility tours, guest speakers and 
symposiums. Our chapter current has approximately 90 members, and 400 prior members, many 
no longer in the Miami Valley area. Your patronage of the symposium both helps us to expand 
our chapter and facilitate needed technical interchanges. 

 More details can be found on our chapter webpage: 

https://www.informs.org/Community/Cincinnati-Dayton-Chapter 
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Presented Research and Keyword Index  

2014 Keyword List 
Keyword Abstract Numbers Page Numbers 

Business Analytics 9 24 
Cost Estimation I1 15 
Data Mining and Applied Statistics 6-7 20-23 
Educational Practice  7 23 
Engineering Applications I1 15 
Health Care/Medical and Biomedical  Keynote, 10-11 13-14, 24-25 
History of OR and Ethics I2 16 
Image and Sensor Data Analysis P2 26-27 
Linear/Nonlinear and Integer Programming 3-4 19-20 
Local Companies in OR I2, I4, 5, 8 16, 18, 20, 23-24 
Logistics and Supply Chain Management 3 19-20 
Military OR Applications I2-I3, 2 16-17, 19 
Optimization (incl. network & general) 1-2 19, 28-53 
Simulation (i.e. agent based & discrete event) 8 23-24 
Social Network Analysis  I3 17 
Sports/Hospitality and Recreation I4, P1 18, 26 
Stochastics 1 19, 28-53 
Student Projects and Research 1-2, 6, 8-11, P1-P3 19,20-53 
Transportation P3 27 
Visualizations 5, 6, P2 20-22, 26-27 
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Sponsors  
The Cincinnati/Dayton Chapter would like to thank the following sponsors:  

 Department of Biomedical, Industrial and Human Factors Engineering, Wright State 
University 

 Perduco Group 

 Applied Research Solutions 

 Goldmeier Consulting LLC 

 

The Department of Biomedical, Industrial & Human Factors Engineering (BIE) is the only 
academic unit, nationally, to share programs in these disciplines. Our programs are human-
centered and focused on improving today's complex human-technical systems. 

The BIE Department vision is to be nationally recognized for excellence in education and for 
cutting-edge research in specific engineering areas of biomedical, industrial and systems, human 
factors and operations research. Students experience a variety of engineering-related 
educational experiences through bachelor's degree programs in Biomedical Engineering and 
Industrial & Systems Engineering. 

Our Master of Science features programs in the Biomedical Engineering and Industrial & 
Human Factors Engineering. Also, research is prominent in the Ph.D. in Engineering program 
in three focus areas: Industrial & Human Systems, Material and Nanotechnology, and Sensor 
and Signal Processing. The Master of Science in Industrial & Human Factors Engineering can 
be earned entirely online through Distance Education. 

Contact Information: 

Thomas Hangartner 
Professor and Chair 

Department of Biomedical, Industrial and Human Factors Engineering 
207 Russ Engineering Center 

Wright State University 
3640 Colonel Glenn Highway 

Dayton, Ohio, 45435 
Phone: 937-775-5044 

http://cecs.wright.edu/bie/  
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The Perduco Group is an analytics company.  

We transform data into useful information and then extract insights to support decision makers 
facing complex problems. 

The Perduco Group uses technical expertise like data structuring, programming, operations 
research, simulation, and business intelligence to provide you with insight into your strategies, 
budget decisions, and policy making. 

We work in multiple domains, including defense, commercial, healthcare, and sports. 

Contact Information: 

Stephen Chambal, PhD 
Vice President 
Perduco Group 

3610 Pentagon Blvd 
Suite #210 

Beavercreek, OH 45431 
Phone: 937-401-0268 

www.theperducogroup.com/  

  

7



 

ARS is the small business partner you can count on for your technical service needs in the 
mission domains of Cyber, Intelligence, and Information Technology. Our professionals deliver 
end-to-end systems engineering support, world class software engineering/development, and 
intelligence production results to a multitude of mission partners and customers. We specialize 
in staffing Top Secret/SCI cleared professionals across these mission domains. 

Contact information: 

51 Plum St. Suite 240 
Beavercreek, OH 45440 

Phone: 937.912.6100 
http://www.appliedres.com/ 
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A member of the Excel And Access LLC Consulting Network.  

Make your spreadsheet sing. 

I can help you. 

 VBA/Macros 

 Formulas 

 Access and .Net integration 

 Dashboards 

 Data Visualization 

 Operations Research and Financial Models 

 Decision Support Systems 

Or, become a spreadsheet rockstar. 

 Training for your organization 

 One-on-one Excel coaching 

Contact Information: 
Jordan Goldmeier 
1021 Tudor Road 

Dayton, Ohio 45419 
Toll Free: (844) 272-9525 

Office: (937) 329-6212 
http://www.goldmeierconsulting.com/ 
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Attendees and Presenters 
The Cincinnati-Dayton INFORMS Chapter would like to thank the attendees and presenters, 
without whom this symposium would not be occurring.  It is interesting and reassuring to see the 
diverse affiliations of those attending our symposium.   

 

Figure 1, Presenter and Attendee Affiliations 

 

 

Figure 2, Academia and Industry 
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2. Schedule  
Friday, August 29, 2014 

Time Berry 1 Berry 2 Berry 3  
0830-0900 Registration and Coffee 

0900-0920 
Welcome and Agenda, INFORMS, Cincinnati-Dayton INFORMS, Schedule 

Presenting authors: Trevor Bihl, Air Force Institute of Technology 
James Cordeiro, Air Force Institute of Technology 

Registration and 
Coffee (on-going) 

 
Track 1 – Optimization, Supply Chains, 

and the History of OR 
Chair: Jennifer Geffre 

Track 2 – Cost Analysis and Data 
Visualization 

Chair: Trevor Bihl 

0920-0940 

Multi-objective optimization of stochastic 
black-box systems using direct search and 

indifference values 
Presenting author: Todd Paciencia, Air 

Force Institute of Technology 
Co-authors: James Chrissis, Air Force 

Institute of Technology 
Abstract-1 

Utilizing Feature-Based Cost 
Estimation in Preliminary Design 

Presenting author: Dale Masel, 
Ohio University 

Abstract-I1 

0940-1000 

An Overview and Investigation of the 
Weapon-Target Assignment (WTA) 

Problem 

Presenting author: Carl Parson, Air 
Force Institute of Technology 

Co-authors: Darryl Ahner, Air Force 
Institute of Technology 

Abstract-2 

1000-1020 

Optimal Synchronization of Average 
Throughput in Supply Chain Networks  
Presenting author: George Polak, 

Wright State University 
Co-authors: Gregory Kellar, Xinhui 

Zhang Wright State University 
Abstract-3 

Sponsor and 
Industry 

Representatives 

1020-1040 

The Origins of Operations Research:  
Science at War 

Presenting author: Michael W. 
Garrambone, InfoSciTex Corporation, a 

DCS Company 
Abstract-I2 

Influence of Load on Service Times  
Presenting author: Kenneth 
Schultz, Air Force Institute of 

Technology 
Abstract-4

1040-1100 Intro to Data Visualization Principles 
Presenting author: Jordan 

Goldmeier, Goldmeier Consulting 
Abstract-5

1100-1020 

1120-1130 

1130-1200 

Improved Visualization of n-
Dimensional Data Using Hyper-

Radial Values 
Presenting author: Todd 

Paciencia, Air Force Institute of 
Technology 

Co-authors: Trevor Bihl, Kenneth 
Bauer, Air Force Institute of 

Technology 
Abstract-6

1200-1300 Lunch Buffet 
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 Track 1 – Education and Decision Making 
Chair: James Cordeiro 

Track 2 – Social Network Analysis  
Track 3 –Poster 

Session 
Chair: Trevor Bihl

1300-1320 Supplemental Instruction and 
Undergraduate Business Statistics Student 

Performance   
Presenting author: Angela Mitchell, 

Wilmington College 
Co-authors: James Fitz-Simmons, 

Wilmington College 
Abstract-7 

 

Introduction to Criminal Justice and 
Military Applications of Social 

Network Analysis 
Presenting author: James Morris, 

Department of the Air Force 
Abstract-I3 

 

Poster setup 
1320-1340 

1340-1400 

A Simulation of Decision-Making Under 
Imperfect Situation Analysis 

 Presenting author: Victor Middleton, 
ORSA Corporation 

Co-authors: Frank Ciarallo, Wright 
State University 

Abstract-8 

Student Posters 
 

1400-1440 Snack Break and Student Posters 
 

 Track 1 – Sports Analytics 
Track 2 – Service and Healthcare 

Chair: Kellie Schneider

1440-1500 

Sports Analytics 
Presenting author: Jacob Loeffelholz, 

The Perduco Group 
Abstract-I4 

Consideration of Product Exposure in 
Retail Design  

Presenting author: Corinne 
Mowrey, Wright State University 

Co-authors: Pratik Parikh, Wright 
State University 

Abstract-9

1500-1520 

Planning Inpatient Discharges at 
Hospitals 

Presenting author: Nicholas 
Ballester, Wright State University 
Co-authors: Pratik Parikh, Wright 
State University Nan Kong, Purdue 

University 
Abstract-10

1520-1540 

Incentive-Compatible Multi-level 
Triage in Emergency Medical 

Services  
Presenting author: Eric Webb, 

Indiana University - Bloomington 
Co-authors: Alex Mills, Indiana 

University – Bloomington 
Abstract-11

1540-1640 
Keynote address: “Examining vaccine economics using operations research” 

Presenting author: Matthew JD Robbins, Air Force Institute of  Technology 

1640-on Awards presentation, then Social and Networking 
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3. Keynote Address: Outstanding Young OR/MS Award Winner 

Examining vaccine economics using operations research 
Matthew JD Robbins (Air Force Institute of Technology) 

Presentation 

Abstract: Vaccination is one of the most important and successful public health endeavors in 
human history, profoundly reducing mortalities caused by infectious diseases. In the United 
States, the incidence of many childhood diseases has dramatically decreased, even as the 
number of diseases preventable by vaccination has increased. The comprehensive success of 
large scale pediatric immunization programs results from the collaboration of an interdependent 
system of government and industry stakeholders. A stakeholder in this system acts independently 
in pursuit of its own interests; yet, the actions of one stakeholder may profoundly affect the 
welfare of another stakeholder. It is imperative that these stakeholders understand the nature of 
their interdependence and the holistic impact of their behavior on the entire vaccine market. Of 
particular concern is the economic competition within the vaccine industry, the impact of 
government regulatory policies on the vaccine industry, and the attendant impact on the vaccine 
system's ability to ensure the adequate provision of pediatric vaccines. 

 This presentation highlights three research papers in which operations research methods 
are applied to aid market participants in making more informed decisions regarding the pricing 
and purchasing of vaccines in the public sector of the United States pediatric vaccine market. 
The first paper examines pricing strategies for pediatric combination vaccines and their impact 
on the United States pediatric vaccine market. The resulting analysis determines if a 
combination vaccine is competitively priced when compared to its competitors, for a given set of 
federal contract prices. The second paper presents a static Bertrand oligopoly pricing model that 
characterizes oligopolistic interaction between asymmetric firms in a multiple homogeneous 
product market. The repeated game version of the model enables examination of tacit collusion 
in an underlying market of interest. The third paper presents an operations research approach 
that addresses the issue of the pediatric vaccine industry's continuing viability from the 
perspective of the Centers for Disease Control and Prevention (CDC). The proposed model can 
be used to design a pricing and purchasing policy for the CDC that establishes a sustainable and 
stable capital investment environment in which the reliable provision of pediatric vaccines so 
essential to public health can occur. 
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Bio:  Matthew J. Robbins received the B.S. degree in computer engineering from the University 
of Arkansas, AR, USA, in 1999, the M.S. degree in operations research from the Air Force 
Institute of Technology, Wright-Patterson Air Force Base, OH, USA, in 2005 and the Ph.D. 
degree in industrial engineering from the University of Illinois, Champaign, IL, USA, in 2010. 
He is an active duty Air Force officer, serving an appointment as an Assistant Professor of 
Operations Research with the Department of Operational Sciences, Air Force Institute of 
Technology, Wright-Patterson Air Force Base, OH, USA. His research interests include 
sequential decision making under uncertainty, game theory, network science, and applications of 
operations research in the military and public health-care domains. Dr. Robbins has been 
recognized with a number of awards, most notably winning the 2011 Pritsker Doctoral 
Dissertation Award (First Place) from the Institute of Industrial Engineers (IIE). 
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4. Invited Speakers 
Abstract-I1 
Berry 2 
0920-1020 

Utilizing Feature-Based Cost Estimation in Preliminary Design 
Dale Masel (Ohio University) 

Presentation 

Abstract: The cost to manufacture a product is determined by the product’s design, so decisions 
made early in the design process can have a significant impact on the manufacturing cost. 
Therefore, to minimize the cost of manufacturing the product, designers should consider cost 
when they are evaluating the advantages of different designs. 

 However, this is often difficult for design engineers to do. They often lack the expertise to 
determine the appropriate processes to use in manufacturing the product. In addition, even if the 
processes are known, the design may not be detailed enough to determine the time (and cost) to 
perform the process. Once the necessary details have been determined to a sufficient level to 
allow estimation of the time, it will often be too late to change the design even if it is found that 
the cost can be reduced. 

 One approach to dealing with these issues is the use of parametric cost estimation 
models. These models estimate cost as a function of just a few of the part’s parameters, such as 
weight, overall length, or performance. However, parametric models provide limited insight on 
how to reduce the cost of a design, since only a reduction in one of the chosen parameters will 
reduce cost. 

 More useful information can be provided to designers by utilizing process-based models 
for the manufacturing processes that are performed. So that designers don’t have to select the 
processes, the typical process plan for different part types can be predefined. And to deal with 
the limited design data available, the detailed process parameters can be calculated from the 
preliminary design information available, using relationships based on typical design practice. 

 This approach to cost estimation has been successfully implemented for a variety of 
products, including jet engines, gas turbines, and wind turbines. The approach has been shown 
to provide a high accuracy in estimating cost while also providing insight into how much 
different part features contribute to the part’s cost. 

Keyword: cost estimation 
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Abstract-I2 
Berry 1 
1020-1200 

The Origins of Operations Research:  Science at War  
Michael W. Garrambone (InfoSciTex Corporation, a DCS Company) 

Presentation 

Abstract: In 1934 Sir Henry T. Tizard, Rector of the Imperial College of Science and 
Technology was selected by the Air Ministry as chairman of the Committee for the Scientific 
Survey of Air Defence.  It was from this appointment and the first meeting of the “Tizard 
Committee“ that over the next five years the applications of Radar were explored by scientists 
and engineers who would become the first formal generation of what we know today as military 
operations research analysts.  In hand with senior Armed Services officers such as Air Chief 
Marshal Hugh Dowding, the military drew closeness with their research and development 
scientists, and thus the serving officers and university research scientists aligned in confidence 
and mutual understanding to take on the eminent problems facing the defense of Britian.  It was 
at his point, that the Services recognized that scientifically trained researchers could play a vital 
part not only in the development of weapons and tools of war, but also in the study and execution 
of military operations.  Attendees will find this short presentation on the origins of Military 
Operations Research to be both enlightening and entertaining for it focuses on the early 
developments of our profession by our British counterparts—indeed, for their times and ours OR 
continues to be a revolutionary and important notion in making applications of science and 
scientists to the operational aspects of war. 

Keyword: military OR applications, history of OR 

  

16



Abstract-I3 
Berry 2 
1300-1400 

Introduction to Criminal Justice and Military Applications of Social Network 
Analysis 

James Morris (Department of the Air Force) 
 

Presentation 

Abstract: Social Network Analysis (SNA) employs a collection of methods to analyze the 
structure of human social networks.  Primarily conducted to increase the efficiency of 
organizations or for researching aspects of collective human behavior, the past decade has 
found SNA incorporated into criminal justice and military operations.  This introductory 
overview will discuss criminal justice and Department of Defense applications of SNA while 
providing a foundational understanding of rudimentary SNA techniques. 

Keyword: social network analysis, military OR application 
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Abstract-I4 
Berry 1 
1440-1540 

Sports Analytics 
Jacob Loeffelholz (The Perduco Group) 

Presentation 

Abstract: Moneyball, Numbers Never Lie, Odds and Perduco Sports – all of these have one 
thing in common – Sports Analytics.  Sports Analytics is a rapidly growing field in which more 
and more professional, collegiate, and amateur organizations are partaking.  With the 
availability of massive amounts of data (whether good or bad), the need for analysts to organize, 
understand, and translate data into meaningful insight is imperative.  Some of the top European 
football (soccer) clubs hire teams of PhDs to gain even the slightest edge over the competition.   

 This talk will cover one small company’s journey through the uncertain landscape of 
Sports Analytics.  Our experience and engagement across the sports industry will be discussed, 
including applications related to professional and collegiate teams, fantasy sports, gaming, 
agent analytics and much more!  A wide array of Operations Research techniques such as the 
Traveling Salesman Problem, Heuristics, Value Focused Thinking, Bayes Theorem and others 
will be demonstrated with regards to their application in Sports Analytics.  Whether you enjoy 
your sport on turf, grass, hardwood or even ice, this presentation will cover it all!   

Keyword: Sports, Hospitality, and Recreation 
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5. Abstracts for Presentations and Papers  
 

Abstract-1 
Berry 1 
0920-0940 

Multi-objective optimization of stochastic black-box systems using direct 
search and indifference values 

Todd Paciencia (Air Force Institute of Technology) 
James Chrissis (Air Force Institute of Technology) 

Paper (pages: 28-53) and Presentation 

Abstract: In this work, a general framework is developed to solve black-box, multi-objective 
problems to a desired level of resolution or completeness of the Pareto front. This framework 
can be used to solve problems with or without closed form representation and can be expanded 
easily for stochastic responses. An indifference region-based method is developed to help 
determine the completeness of a Pareto approximation and to find any possible missing portions 
of the optimal front. This method is used with optimization of single-objective formulations via 
direct search methods to complete the approximation. The resulting algorithm is evaluated on 
systems with up to eight objectives and is shown to provide a reasonably complete 
approximation of the Pareto set, and to do so efficiently. 
Keyword: optimization, stochastics  

Abstract-2 
Berry 1 
0940-1000 

An Overview and Investigation of the Weapon-Target Assignment (WTA) 
Problem 

Carl Parson (Air Force Institute of Technology) 
Darryl Ahner (Air Force Institute of Technology) 

 
Presentation 

Abstract: The weapon-target assignment (WTA) problem is a fundamental, and classic 
combinatorical non-linear optimization problem in the field of military operations research. The 
WTA can be found under many different names and formulations, all which share certain 
structural similarities. The generalized WTA problem will be presented, as will several of the 
variations found in literature. The structural components which can be exploited are discussed 
as well as some interesting results. 
Keyword: optimization, military OR applications 

Abstract-3 
Berry 1 
1000-1020 

The Optimal Synchronization of Average Throughput in Supply Chain 
Networks   

Gregory Kellar (Wright State University) 
George Polak (Wright State University) 
Xinhui Zhang (Wright State University) 

Presentation 

Abstract: We propose a mode of synchronizing discrete lots practicable for crossdocking via 
bulk-breaking or consolidation, indicated by the equality of average throughput at steady state. 
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We formulate an original nonlinear mixed general integer program that determines optimal 
order lot-sizing that indicate the relative degree of “push” or “pull” between facilities. 
Keywords: Logistics and Supply Chain Management, Linear/Nonlinear and Integer 
Programming 
 
Abstract-4 
Berry 2 
1020-1040 

The Influence of Load on Service Times 
Kenneth Schultz (Air Force Institute of Technology) 

Presentation 

Abstract: Dependence of service times on load has been documented recently in various 
systems. We develop a general framework to help both empirical and analytical researchers to 
investigate and model how load impacts service times. We examine interactions among “load 
characteristics,” “system components,” and “service time determinants” while studying the 
effect of load on service times. We characterize load in terms of three dimensions: 
“changeover,” “load,” and “overwork.” We distinguish between three system components: 
“server,” “customer,” and “network.” We decompose service time into “work content” and the 
“service speed.” To validate the framework, we use it to explain the results of published 
empirical papers that document dependency of service times on load. We illustrate use of the 
framework to generate hypotheses about service times in an EMS system. 
Keywords: Logistics and Supply Chain Management 
 
Abstract-5 
Berry 2 
1040-1130 

Intro to Data Visualization Principles 
Jordan Goldmeier (Goldmeier Consulting Co LLC)  

Presentation 

Abstract: Visualization is powerful tool to reveal insight and meaning within data. However, 
many organizations do not follow data visualization research when presenting information, 
creating environments for potentially misinformed and hazardous decision-making. In this 
workshop, I will present data visualization research and how best to use this information in your 
organization. Specifically, I will review Gestalt principles of perception and preattentive 
attributes, which describe how we perceive quantities in the visual world. Finally, we conclude 
with a few quality examples of good and bad data presentations. 
Keyword: Visualizations 

Abstract-6 
Berry 2 
1130-1200 

Improved Visualization of n-Dimensional Data Using Hyper-Radial Values 
Todd Paciencia (Air Force Institute of Technology) 

Trevor Bihl (Air Force Institute of Technology) 
Kenneth Bauer (Air Force Institute of Technology)  

 
Presentation 

 
Abstract: High-dimensional data is naturally difficult to visualize in a meaningful way, as 
anything with more than four dimensions provides challenges.[1] Unfortunately, many realworld 
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datasets have much greater than four dimensions and have complex interactions between 
features, making a simple plotting of feature subsets impractical for most purposes. The problem 
of visualizing high-dimensional data has become increasingly relevant, as systems generate 
more data faster and processing efficiency demands continue to increase in order to find 
information. Decisions based on very large data has become critical to areas of business, 
clinical treatments, cyber and national security, and disaster management.[2] Visualization of 
data can help with parameter choice and understanding of data characteristics for many 
algorithms and applications. Additionally, visualization can provide confidence in data 
exploration and is more intuitive than complex algorithms.[3] For the purposes of this research, 
we are interested in being able to utilize visualization to identify general characteristics of a 
multivariate dataset such as overlap of classes and outliers. In the application of classification, 
this visualization enables data complexity comparisons, possible class identification, and an 
evaluation of linear or non-linear algorithm appropriateness. Many multi-dimensional 
visualization techniques exist, but frequently these are not intuitive or do not lend themselves to 
the visualization of many data features. Additionally, some become computationally expensive as 
the number of data features increases. Surveys of various methods include those by Chan [4], 
Kehrer and Hauser [5], Keim [3], Kromesch and Juhasz [6], and Grinstein, Trutschl, and 
Cvek.[7] Due to limitations of existing methods, the authors propose extending the Hyper-Radial 
Visualization (HRV) method for visualizing multivariate data. 

 The approach presented herein extends the HRV method  of Chiu and Bloebaum for 
visualization of Pareto frontiers in multi-objective optimization problems.[8] This method is 
powerful in that data features are really only aggregated, vice transformed, to create the 
resulting visualization and generation of the visualization itself is very efficient. Whereas HRV 
was originally designed for comparison of competing optimal designs, we broaden its use for 
visualizing class and exemplar characteristics in multivariate data. In order to improve the 
visualization, we also present optimization strategies to generate the groups required for both 
supervised and unsupervised cases. Because as the number of features increases, any two-
dimensional visualization becomes inherently limited in being able to display the information 
present, the authors also create a three-dimensional version to enable visualization for larger 
numbers of features. For examples, and in order to compare our HRV methods to existing 
visualization methods, we apply our visualizations to various well-known data. Clarification is 
necessary for the MNIST dataset, in that features (pixels) with zero range were removed. These 
sets were chosen to showcase flexibility to number of exemplars, number of features, number of 
classes, and general complexity.  

 After reviewing existing visualization methods next, we make the following contributions 
in order:  
1) Extend HRV to multivariate data. 

2) Develop optimal group algorithms for the HRV visualization, in both cases of having and not 
having class information. 
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3) Develop a three-dimension version of HRV incorporating our optimization strategies. 
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Abstract-7 
Berry 1 
1300-1340 

Supplemental Instruction and Undergraduate Business Statistics Student 
Performance 

Angela Mitchell (Wilmington College) 
James Fitz-Simmons (Wilmington College) 

 
Presentation 

 
Abstract: This presentation session is focused on Supplemental Instruction (SI) in business 
statistics courses.  Often statistics classes can be challenging for undergraduate students.  
Supplemental Instruction sessions provide a means to facilitate learning in such challenging 
courses. SI is offered on a weekly basis during the semester.  The SI sessions are one hour long 
and are led by a student who has previously excelled in the course.  SI was developed in 1973 
and is student-driven and “encourages collaborative learning.” (A. Harding et. al, 2011).  
Several studies demonstrate that SI attendance improves course performance (A. Harding et. al, 
2011; M. Oja, 2012; J. Price et. al, 2012). As SI is an optional part of our courses, we wanted to 
explore the correlations between SI participation and learning assessments in these courses to 
see if we should be further encouraging students to attend SI sessions or possibly to make 
attendance at them mandatory. 
 Data were collected from two business statistics courses (Business Statistics I & II) at a 
small, private, liberal arts college.  Business and accounting majors are required to take the 
course.  Data collected included final grade, average quiz score, average exam score, and SI 
participation. We are using these initial data in a pilot study to explore correlations between SI 
participation and the learning assessment variables. This presentation will focus on the results of 
the analysis of the data collected as well as a discussion of where we might go from here. 
References: 
Harding, A. (2011). Implementing supplemental instruction for a large group in mathematics. International Journal of 

Mathematical Education in Science & Technology, 42(7), 847-856. 
Oja, M. (2012). Supplemental instruction improves grades but not persistence. College Student Journal, (2), 344. 
Price, J., Lumpkin, A. G., Seemann, E. A., & Bell, D. (2012). Evaluating the impact of supplemental instruction on short- and 

long-term retention of course content. Journal of College Reading and Learning, (2), 8. 

Keywords: Educational Practice, Data Mining and Applied Statistics 
 
 
Abstract-8 
Berry 1 
1340-1400 

A Simulation of Decision-Making Under Imperfect Situation Awareness 
Victor Middleton (ORSA Corporation) 

Frank Ciarallo (Wright State University) 
 

Presentation 
 

Abstract: This presentation introduces a methodology to represent imperfect and uncertain 
situation awareness and situation understanding (SA/SU), as well as the effects of such SA/SU on 
decision-making. The methodology is implemented in an agent-based model (ABM) simulating a 
specific, easily understood, and quantifiable example of the impact of imperfect SA/SU on human 
behavior: intelligent agents being spatially “lost” while trying to navigate in a simulation world.  
The simulation is called MOdeling Being Intelligent and Lost (MOBIL). 
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We present results of using MOBIL to investigate decision-making under uncertainty and error, 
by conducting a set of virtual experiments that examine how an intelligent agent’s behavior is 
affected by information of varying levels and quality.  These experiments vary aspects of an 
agent’s perceived worldview to study how a mistaken understanding of ground truth affects 
achievement of the agent’s goals.  They provide insight into multiple aspects of decision-making 
as affected by problem complexity, information quality, risk tolerance, and decision strategies. 
Keywords: Simulation (i.e. agent based & discrete event) 
 

Abstract-9 
Berry 2 
1440-1500 

Consideration of Product Exposure in Retail Design 
Corinne Mowrey (Wright State University) 
Pratik J. Parikh (Wright State University) 

 
Presentation 

 
Abstract: A retail facility should effectively engage consumers during their shopping trips if 
they want to convert demand into purchases. Unfortunately, the complexity of the retailing 
environment and lack of scientific tools often results in gut-feel approaches experimented in 
practice. A key aspect of retail facility design, often alluded to but rarely analyzed, is product 
exposure to the shopper along their travel path. From a shopper's perspective, a greater amount 
of product exposure means less time spent searching for items of interest. From a manager’s 
perspective, converting a shopper's time from searching to purchasing would likely result in 
increased sales. We define the extent of the shopper's field of vision in order to determine the 
actual exposure of products experienced by a traveling shopper. In so doing, we can explore the 
effect rack orientation has on product exposure. We also consider that some locations are 
exposed to traveling shoppers more frequently than others, referred to as the intensity of 
exposure, and explore how intensity changes with rack orientation. Our main contributions 
include defining product exposure and developing an approach to estimate it at any point along 
the travel path. Since changing the orientation of racks would also affect the overall space and 
shape of the sales floor, we develop a space model that is generalized for a variety of layouts. 
Our results indicate that certain rack orientations result in product exposures as high as 2.5 
times that of the traditional 90° orientation.  
Keywords: Business Analytics 
 
Abstract-10 
Berry 2 
1500-1520 

Planning Inpatient Discharges at Hospitals 
Nicholas Ballester (Wright State University) 

Pratik J. Parikh (Wright State University) 
Nan Kong (Purdue University) 

Presentation 

Abstract: Recently, we completed a study with a local hospital to examine the day-of-discharge 
process and its effect on upstream patient boarding time. Using a simulation, we examined 
several strategies such as reducing discharge processing time and advancing discharge order 
writing earlier in the day. One of the examined strategies was actually implemented by the 
hospital and so far shows promising improvement. Now we ask the question, is there an optimal 
strategy that minimizes patient boarding time? If we assume that all discharge orders are written 
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by 9 a.m., then the problem becomes that of finding a discharge schedule that minimizes 
boarding time of newly-admitted patients. We use data from a Trauma Unit at a Midwest US 
hospital for the year 2012 and consider a simulation-optimization approach to identify near-
optimal sequences and compared them with traditional scheduling policies. A secondary 
measure of discharge lateness is also considered. Our results indicate that the discharge 
schedules are highly dependent on the nurse workload assignments and schedules of ancillary 
services.     
Keywords: Health Care/Medical and Biomedical, Simulation (i.e. agent based & discrete event) 

Abstract-11 
Berry 2 
1520-1540 

Incentive-Compatible Multi-level Triage in Emergency Medical Services 
Eric Webb (Indiana University, Bloomington) 
Alex Mills (Indiana University, Bloomington) 

 
Presentation 

 
Abstract: The Emergency Medical Services (EMS) system is designed to handle life-threatening 
emergencies, but a large and growing number of non-emergency patients are accessing hospital-
based healthcare through EMS.  A recent national survey estimated that 17% of ambulance trips 
to hospital Emergency Departments (EDs) were medically unnecessary, and that medically 
unnecessary trips make up an increasing proportion of all EMS trips.  These non-emergency 
patients do not need the high level of care that an ED provides and could often be treated at an 
outpatient facility at considerably lower cost.  Preliminary studies have shown that EMS 
ambulance workers could identify and filter out non-emergency patients with high accuracy, if 
given the chance.  However, current reimbursement policies preclude this kind of triage at the 
ambulance, as most ambulance services only get reimbursed for providing transportation to the 
ED.  Without triage at the ambulance, non-emergency patients often end up in congested ED 
waiting rooms for extended periods, because EDs strictly prioritize emergency patients.  These 
non-emergency patients are therefore a prime target for reducing the load on EDs in order to 
meet quality-of-service goals, such as waiting time targets, without increasing costs or reducing 
quality of care.  Our study uses a queueing model to examine the feasibility and benefit of 
constructing alternative arrangements whereby the hospital incentivizes the ambulance service 
to divert non-emergency patients to outpatient facilities.  The usefulness of such arrangements 
depends upon the average hospital costs and reimbursements of emergency and non-emergency 
patients and on the current ambulance reimbursement rates through insurance and Medicare.  
We identify multiple scenarios where both the hospital and ambulance service can benefit by 
agreeing upon a certain level of triage by the ambulance service. 
Keyword: Health Care, Medical, and Biomedical 
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6. Abstracts for Posters 
 

Abstract-P1 
Berry 3 
 

Using Past Scores and Regularization to Create a Winning NFL Betting Model
Eric Webb (Indiana University, Bloomington) 

Wayne Winston (University of Houston) 
 

Poster  
 

Abstract: Many papers have been published in recent decades discussing whether or not the 
National Football League (NFL) betting market is efficient.  The authors have devised a betting 
model that would win 52.9% of the 7,554 bets against the spread it would have made over 33 
NFL seasons, enough to make a profit.  This performance is statistically greater than winning 
just 50% of the bets (p<.0001).  Each week of the season, NFL scores from previous weeks are 
used to build a model estimating the point value of each team’s offense and defense.  These 
offensive and defensive point values combine with the average scoring in previous games and the 
average “home edge” of around 3 points to predict the scores for next week’s games.  These 
predictions are compared to an advertised point spread and a bet is made for the home/away 
team if the model predicts the home/away team will do better than the advertised spread 
suggests.  The sum of the squares of the offensive and defensive point values are constrained to 
be less than a given regularization constant.  Results from older weeks are discounted in the 
model via a weekly discount factor.  The authors searched over all possible combinations of 
potential regularization constants and discount factors to find the combination that led to the 
best results.  The bettor would win 52.9% of the games that do not push if he bets on every game.  
The bettor can be more selective of the games in which he bets and increase his performance 
further.  For example, if the bettor only bets when the spread is 10 points or higher, he will win 
54.6% of the 910 games that do not push. 
Keyword: Sports, Hospitality, and Recreation 

Abstract-P2 
Berry 3 
 

Improving non-linear approaches to anomaly detection, class separation, & 
data visualization 

Todd Paciencia (Air Force Institute of Technology) 
Kenneth Bauer (Air Force Institute of Technology) 
James Chrissis (Air Force Institute of Technology) 

Mark Oxley (Air Force Institute of Technology) 
 

Poster 

Abstract: In hyperspectral imagery (HSI), radiance is collected across hundreds of spectral 
bands for an area being imaged. As materials reflect electromagnetic (EM) energy differently, 
each pixel has a unique signature. We often seek pixels that are significantly different than the 
rest of the image in order to find objects of interest (anomalies). 

 Linear methods have become popular for this problem and others due to their easy 
interpretation and speed. However, such methods can be improved when the data has non-linear 
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structure. Unfortunately, non-linear methods also increase computational requirements, and 
make interpretation more difficult. 
Keyword: Visualizations, Image and Sensor Data Analysis 

Abstract-P3 
Berry 3 
 

PHEV Battery Exchange Station Inventory Control Markov Decision Problem 
Rebecca S. Widrick (Air Force Institute of Technology) 

Sarah G. Nurre (Air Force Institute of Technology) 
Matthew J. Robbins (Air Force Institute of Technology) 

Poster 

Abstract: Increasing popularity of plug-in hybrid electric vehicles (PHEVs) has led to research 
in implementing battery exchange stations. These stations are similar to gas stations where a car 
can pull up and have their depleted battery exchanged for one fully charged. To manage an 
exchange station the number of batteries to charge at each time period needs to be determined in 
order to satisfy uncertain demand. Herein, we seek to determine the optimal charging policy for 
one exchange station over a 7 day period where exchange demand is distributed Poisson. We 
model this problem as a Markov decision process seeking to maximize net profit where the 
optimal policy is found using backward induction. This model is validated on a data set 
associated with an exchange station where many parameters are projections based on gas 
station usage. 
Keyword: Transportation 
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Multi-Objective Optimization of Stochastic,

Black-Box Systems Using Direct Search and

Indi�erence Values

Todd J. Paciencia1 and James W. Chrissis2

Air Force Institute of Technology, WPAFB, OH, 45433

In this work, a general framework is developed to solve black-box, multi-objective

problems to a desired level of resolution or completeness of the Pareto front. This

framework can be used to solve problems with or without closed form representation

and can be expanded easily for stochastic responses. An indi�erence region-based

method is developed to help determine the completeness of a Pareto approximation

and to �nd any possible missing portions of the optimal front. This method is used with

optimization of single-objective formulations via direct search methods to complete

the approximation. The resulting algorithm is evaluated on systems with up to eight

objectives and is shown to provide a reasonably complete approximation of the Pareto

set, and to do so e�ciently if performed smartly.

Nomenclature

fg = Utopia point

f b = Nadir point

ωi = Indi�erence value in objective i

1 Student, Air Force Institute of Technology.
2 Associate Professor, Air Force Institute of Technology, AFIT/ENS, 2950 Hobson Way, WPAFB, OH 45433, USA.
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I. Introduction

THERE are many existing methodologies for optimization over multiple objectives, but most

carry limitations. As discontinuity, non-convexity, a large number of objectives or decision variables,

black-box systems, and/or uncertainty are introduced, existing methodologies may fail to �nd a

relatively complete Pareto approximation in an e�cient manner. During black-box, or simulation-

based optimization this is very important, as each function evaluation may be expensive and decision-

makers and analysts may not have enough knowledge of the system apriori to �x focus on only a

part of the Pareto set. Therefore, the priority becomes achieving a desired level of completeness,

while maintaining e�ciency.

Three methods using direct search were introduced that each sought to avoid the limitations of

other methods in order to solve a problem with no closed form representation relatively completely

and e�ciently. Walston introduced the �rst method, Stochastic Multi-Objective Mesh Adaptive

Direct Search (SMOMADS).1 SMOMADS uses aspiration and reservation levels within the context

of scalarization functions to solve single-objective formulations. Using design of experiments with

the aspiration and reservation level as factors, di�erent regions of the Pareto front can be found.

SMOMADS uses Ranking and Selection (R&S), a method where sample means are used to select a

best candidate via probability of correct selection, to determine best points to account for variation.2

The speci�c R&S procedure used by Walston was Sequential Selection with Memory (SSM) by

Pichitlamken and Nelson.3

Audet, Savard, and Zghal introduced the second and third methods, Bi-Objective MADS (Bi-

MADS) and Multi-Objective MADS (MultiMADS).4,5 BiMADS is only for two objectives, and uses

single-objective formulations and the ordering property in two objectives to complete the Pareto

approximation. MultiMADS also uses single-objective formulations, but generates reference points

for these formulations using an alternate simplex to the Convex Hull of Individual Minima (CHIM).

Both of these methods were developed for deterministic problems, but are easily extended to the

stochastic case by using R&S.

All of these methods use Mesh Adaptive Direct Search (MADS), or its mixed-variable form,

MV-MADS, to solve their sub-problems.6,7 MADS allows for an in�nite set of directions to explore
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the set of decision variables and uses the concept of a mesh to control the search. More recently,

OrthoMADS was introduced, where the polling directions are chosen deterministically such that

they are orthogonal to each other so that the convex cones of missed directions at each iteration

are minimal in size.8 Further, the convergence results for OrthoMADS hold deterministically, rather

than with probability one, and allow for non-linear constraints. The true limitation of using MADS

is the growth of the poll set as the the number of decision variables increases.

This paper �rst discusses a few other multi-objective and black-box approaches for the sake of

discussion. SMOMADS, BiMADS, and MultiMADS are then discussed in more detail. Next, an

indi�erence-region based method is introduced to �nd potential missing parts of the Pareto front.

This method is used to modify the MADS-based algorithms such that their objective functions

can be used in a framework to create a n-dimensional algorithm, without the addition of further

constraints or the need to build an alternate simplex. Results and parameter settings are also

discussed.

II. Multi-Objective Optimization with a Stochastic Response

The multi-objective problem to be solved may include both continuous and discrete variables,

as well as some level of noise or uncertainty in each objective. The speci�c problem formulation is:

Minimize: E [F (x)] = E [f(x) + εw(x)] (1)

subject to: gi(x) ≤ 0, i ∈ {1, . . . , N} ,

x ∈
{
Rnc

× Znd
}

where F (x) ∈
{
Rnc × Znd

}
→ RN , F = (F1, F2, . . . , FN ) is the set of objective functions, εw(x)

is the random error or noise such that E [εw(x)] = 0, and x is the set of continuous and discrete

design variables. Here, the objectives need not be smooth.

This formulation can have many optimal solutions depending upon the importance of the objec-

tives to a decision-maker. Therefore, the Pareto set is the set of solutions such that no one solution

is better than another in all objectives. Otherwise that solution is dominated. The deterministic
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form of this problem may be easier to solve, as points do not need to be sampled repeatedly to

�nd a "best" response. Two points of signi�cance in the multi-objective context are the utopia and

nadir points. The utopia point, fg, is the vector consisting of the minimum objective function value

of each objective over all feasible points. This can be "easily" found by minimizing each objective

independently. The nadir point, f b, is the vector consisting of the maximum objective function value

of each objective over all Pareto solutions. This is often approximated by the pseudo−nadir, found

using the maximum objective function value of each objective over those solutions corresponding to

fg. This is an approximation, as there may be multiple optima for any objective.

A. Methods to Solve the General Problem

There are many multi-objective optimization methods, but those that can �nd a complete front

for any system may still carry limitations once considering e�ciency if applied to a stochastic

response, black-box system. Messac and Mattson modi�ed the Normal Constraint (NC) method

to allow for exploration of the entire feasible space while �nding an even distribution of points.9

This method uses additional constraints built from the utopia plane to reduce the design space.

For a stochastic, blackbox system, R&S may not be su�cient to deal with the uncertainty both

in the objectives and these constraints. Shan and Wang10 proposed a Pareto-Set-Pusuing (PSP)

method to progressively sample closer to the Pareto front. This method is designed to generate

even-distributed solutions, but cannot guarantee evenness or a complete front. Kim and de Weck

designed an adaptive weighted sum technique to overcome the inability of weighted sum methods to

�nd nonconvex solutions or to easily �nd evenly distributed solutions.11 However, their technique

uses additional constraints, user-de�ned parameters in addition to any needed for the sub-problem

solver, and a complex construction of a Pareto front patching.

The use of surrogates is another tool often found in black-box optimization, and they can also

be used various ways within the framework presented here if means or a best candidate are used for

the responses. The use of surrogates is not a focus here, but is worthy of mention. It is important

to note that metamodels are entirely reliant on proper sampling and in some cases, picking the

correct parameters. Metamodels can have issues with highly non-linear or erratic systems, and dis-
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continuous objectives. Mullur and Messac designed metamodels to �nd Pareto solutions after using

NC to �nd near-Pareto solutions, but creating a non-linear metamodel for any of the sub-problems

requires a certain number of near-Pareto solutions in an area.12 Ryu, Kim, and Wan13 used a meta-

modeling, trust-region, and weighted sum combination to solve quadratic sub-problems to generate

evenly distributed solutions in a bi-objective problem. However, they used a Central Composite

Design to build the metamodels, again highlighting the possible issue of larger design spaces for sur-

rogates. Jones, Schonlau, and Welch14 designed an e�cient, global optimization algorithm (EGO)

using sampling, meta-modeling, cross-validation, and expected improvement. Couckuyt, et. al 15

developed an evolutionary algorithm to pick a best surrogate using expected improvement.

Although the research highlighted thus far is only a small fraction of the work related to multi-

objective or simulation-based optimization, other non-heuristic methods may not generate a well-

distributed Pareto front e�ciently in the general case. It is important to note again, however, that

using direct search to solve sub-problems for any algorithm may become ine�cient as the number

of decision variables increases. This will be discussed in further detail in the results. Next we will

discuss the three MADS-based algorithms that we leverage in this work.

B. SMOMADS

SMOMADS solves Eq. (1) for Pareto optimal solutions by minimizing a single-objective formu-

lation with a given aspiration level a and reservation level r,

Sr
a = −

(
min(u) + ε ·

N∑
i=1

ui

)
(2)

where ui =


αi · wi · (ai − fi) + 1, fi < ai,

wi · (ai − fi) + 1, ai ≤ fi ≤ ri,

βi · wi · (ri − fi) , ri < fi,

wi =
1

ri − ai
,

αi =


(0.1)

(
ri−ai

ai−fg
i

)
, ai 6= fgi ,

(0.1)
(
ri−ai

10−7

)
, o.w.,
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βi =


(−10)

(
ri−ai

ai−fb
i

)
, ai 6= f bi ,

(−10)
(
ri−ai

10−7

)
, o.w.,

Fig. 1 Intersection of Rays with

Pareto Front

and where ε was set to 5 in Walston's work. The func-

tion ui is of the type called component achievement

functions, i.e. strictly monotone functions of the ob-

jectives. The minimization of Eq. (2) provides proper

Pareto optimal solutions nearest the aspiration level.

Therefore, sampling over a variety of aspiration and

reservation levels can provide many solutions along the

Pareto front. This is depicted in Figure 1. A determin-

istic dominance check is performed for SMOMADS. As a tolerance is not always easily de�ned, and

the Pareto front may be unknown apriori, the deterministic check is also used for this research.

C. BiMADS

BiMADS approximates two-objective Pareto fronts by solving a series of single-objective

formulations.4 Speci�cally, BiMADS begins by �nding the solutions that correspond to the utopia

point components. As evaluating these solutions for both objectives yields the pseudo-nadir, this

also bounds the Pareto approximation. The algorithm works toward the Pareto front, using a

weighting strategy such that each current nondominated point has a corresponding δ. This δ equals

the sum of the distances from that point to its predecessor and successor in objective space (utilizing

the ordering property), divided by the current weight. A point is selected using the maximum δ. A

new single-objective formulation is then solved using a reference point derived from the maximum

objective function values of those predecessor and successor points. The weights are adjusted so

that no point is selected too many times, in the case of discontinuity. This creates a gap-�lling

strategy. Within the algorithm, every point evaluated is also considered for nondominance and the

algorithm terminates once the maximum δ is below some predetermined value.

There are two speci�c single-objective formulations that may be used with a reference point r.
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The single-objective normalized formulation is:

R̂r : min
x∈X

(
ψ̂r

)
= φ̂r (f1(x), f2(x), . . . , fN (x)) = max

i∈{1,2,...,N}

fi(x)− ri
si

(3)

where s ∈ Rn. The single-objective product formulation is:

R̃r : min
x∈X

(
ψ̃r

)
= φ̃r (f1(x), f2(x), . . . , fN (x)) = −

N∏
i=1

(
(ri − fi(x))+

)2
(4)

where (ri − fi(x))+ = max {ri − fi(x), 0} and i = 1, 2, . . . , N . These formulations were shown to

have convergence to Pareto solutions for any number of objectives using Clarke calculus for non-

smooth functions.4 The latter formulation restricts the choice of reference point whose dominance

zone should be non-empty, but preserves di�erentiability of the original problem.5

D. MultiMADS

MultiMADS was designed by Audet, Savard, and Zghal5 to solve problems with more than two

objectives without restricting the choice of reference point. They proposed a new single-objective

formulation:

Rr : min
x∈X

(
ψr

)
= φr (f1(x), f2(x), . . . , fN (x)) =


−dist2 (∂D, f(x)) , iff(x) ∈ D,

dist2 (∂D, f(x)) , o.w.,

(5)

where dist (∂D, f(x)) is the distance in the objective space from f(x) to the boundary ∂D of the

dominance zone relative to r in the objective space. Here, the L2-norm is used. The dominance

zone D is de�ned as {x ∈ Rn : fi(x) ≤ ri for i = 1, 2, . . . , p}. They showed that this formulation

provides a more �exible optimality condition than R̃r and that this formulation generalizes the R̂r

formulation. To construct a y ∈ ∂D relative to r,

yi =


ri, if i = î,

fi(x), o.w..

for i ∈ {1, 2, . . . , p} , (6)

where î ∈ argmin {|fi(x)− ri| : i ∈ {1, 2, . . . , p}} .
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To determine the reference points, �rst z∗ = minx∈X
∑p

i=1 sifi(x) is found where si is a positive

scaling factor. Then vectors are generated from the set B = {β ∈ Rp :
∑p

i=1 βi = 1, βi ≥ 0}. A

reference point is de�ned as r = fg + z∗βIp : β ∈ B. The set of these reference points is referred

to as the Tangent Hull, and is the alternate simplex. To generate a nice distribution of vectors to

create the reference points, the strategy from Normal Boundary Intersection (NBI) is used.16 In this

work, scaling factors of 1 are used in the formulation.

III. Determining the Completeness of a Pareto Approximation

It has been shown for SMOMADS19 that sampling the aspiration and reservation levels using

space-�lling designs such as Hammersley sequence sampling17 and Near-Uniform Design (NUD)18

can be a more reasonable approach to �nding a complete front. Furthermore, MultiMADS has been

shown to have desirable results on three-objective problems5. However, in some cases being able to

apply more of a gap-�lling approach such as that found in BiMADS may be a more e�cient and/or

more straightforward way to guarantee the generation of well-distributed Pareto approximations.

As the single-objective formulations of all of these methods can still be used if we can determine

reference points and gaps in the front, the true issue for greater than two objectives is how to

determine if, and where, these portions of the Pareto front are missing from the approximation.

Wu and Azarm developed metrics to compare approximations20 and Farhang-Mehr and Azarm

developed an entropy metric to determine the true quality of the approximation of an unknown

front.21 A useful concept implemented by these metrics is an indifference region, or indifference

values. Using indi�erence values, a decision-maker can attempt to apriori decide the required

�delity of the Pareto front appoximation in each objective, creating a hypercube or indi�erence

region around each point. We will show that this can be used to �nd gaps with resepect to individual

objectives in n-dimensional space.

Figure 2 depicts the basis behind Algorithm 1. In accordance with satisfying the decision-

maker's preferences, each point on the Pareto approximation ideally has another point preceding

and succeeding it within the indi�erence value ωi (and region) for each objective i as appropriate.

Such an indi�erence region is shown in Figure 2(a). By sorting data one objective at a time,
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(a) (b)

Fig. 2 Searching Around a Point.

and searching along that objective starting from each data point, gaps may be found using the

indi�erence values. However, as noted with BiMADS, sorting with more than two objectives no

longer puts points into order such that successive points are necessarily closest to or are near each

other in the space. Therefore, the distance between points relative to some fraction of a norm (here

L2 is used) of the indi�erence values can be used to ensure points under consideration are in the

correct portion of objective space. This method helps account for the fact that solutions lie on a

hypercurve, and are not necessarily "linearly" next to each other, and produces a gap consisting

of two endpoints. A reference point for R̃r, R̂r, orRr can be constructed from these gap endpoints

using their maximum values in the objective space. A reservation level for Sr
a can be constructed

in the same manner, with the aspiration level being formed by the minimum values. We will show

later that this very simple means of �nding gaps can be used to form an e�ective multi-objective

framework.

Figure 2(b) demonstrates a simple example. Assume the curve is the Pareto front, the green

point is the current solution being searched around, and the square and circle denote the indi�erence

hypercube and indi�erence L2-norm respectively. When searching "above" in the second objective,

Point 1 is within the indi�erence value, but outside the indi�erence norm. Point 2 is within the

indi�erence value, but outside the indi�erence region. The algorithm would then evaluate Point 3,

but as it and any succeeding points are outside the indi�erence value, a gap would be indenti�ed.
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Going by objective, this is a very quick way to search for gaps among multi-objective solutions.

To rectify the issue of the L2-norm not truly representing the indi�erence hypercube, 0.5 of the

L2-norm can be used, as shown in Figure 2(a).

Algorithm 1: Indi�erence Value-Based Gap Algorithm

Given c > 0, a vector of indi�erence values ~ω, and p non-dominated points:

1: Set dcrit = c· ‖ ~ω ‖.

2: Repeat for each objective n.

3: Sort the objective data in ascending order of function value. Set j = 1.

4: Repeat for each data point j, relative to the sorted data.

5: Set i = 1.

6: If j = 1 or j = p, set j = j + 1 or stop, respectively (extreme points).

7: Else, if |fnj − fnj−i| ≤ ωn and ‖ fnj − fnj−i ‖≤ dcrit, set j = j + 1.

8: Else, if |fnj − fnj−i| > ωn, �nd the closest point k to j (smallest L2-norm), from point

1 to j − 1.

9: If |fnj − fnk | ≤ ωn, set j = j + 1 (will �nd in another objective).

10: Else, add (j, k) as a gap. Set j = j + 1.

11: End If.

12: Else, i = i+ 1.

13: End If.

14: Search above using same process 5-12, except using j + i instead of j − i in lines 7-8,

and points j + 1 to p in line 8.

15: Remove gaps with a distance between their centers less than dcrit, retaining one.

Algorithm 1 is the resulting algorithm. Keeping in mind e�ciency, Algorithm 1 removes similar

gaps in its �nal step. Gaps may be found that are near each other in space when there are many

objectives, and a single sub-problem may �ll gaps for multiple objectives. If it does not, the gaps are

re-identi�ed in subsequent steps of the main optimization algorithm. Other steps in the algorithm

also serve to either reduce similar gaps found, or to increase computational e�ciency.
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Fig. 3 Algorithm 1 Limitation.

Algorithm 1 does has one known limitation. A single

point can satisfy both the "above" and "below" search for

more than one objective. Imagine a circle of points on the

surface of a sphere, depicted two-dimensionally in Figure 3.

These points can satisfy indi�erence and distance criteria,

while leaving a gap in the center of the circle. Fortunately,

the iterative nature of the formulations and the mesh con-

struct of MADS produces a low probability of such successive

points re-occurring as the main algorithm progresses. Further, dcrit could be reduced, but this may

a�ect the e�ciency of the algorithm. In the event of such an occurrence, n-dimensional visualization

techniques provide a means to potentially identify such gaps, after which reference points can be

formulated from surrounding solutions to �ll the gaps. Such techniques include Hyperspace Diag-

onal Counting (HSDC), where bins are created using a counting method away from the utopia to

the nadir in two groups of objectives.22 Parallel coordinates is another technique where objectives

are shown on parallel y-axes, and the Hyper Radial Value (HRV) is a third technique that splits

objectives into two groups and plots the hyper radius of each group from the utopia.23

IV. nMADS Algorithm

Adding Algorithm 1 and slightly changing the BiMADS strategy enables an n-objective algo-

rithm, nMADS, shown as Algorithm 2. To use Algorithm 1 in this framework, decision-makers do

not necessarily have to determine apriori their exact indi�erence values. Instead they may choose

a number of bins in each objective and use the utopia and pseudo-nadir to derive values. The only

caution in doing this is that the pseudo-nadir may vastly over-estimate the true nadir for certain

systems, such as those with many localized fronts and multiple optima for the utopia. In these cases,

adjusting the indi�erence values during the course of the algorithm is recommended, as otherwise

convergence to the true optimal front will be slowed. In this respect, some apriori knowledge as

to the scale of the objective space may be required. Indi�erence values set to approximately
fb
i−f

g
i

10

seem to work very well in practice.
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Algorithm 2: nMADS

INITIALIZATION:

Let size(g) denote the Euclidean distance between the two endpoints for a gap g.

1: Apply the OrthoMADS algorithm (with R&S if applicable) from initial iterate x0 to solve

minx∈X fi(x) for each objective i = 1, . . . , N .

2: Remove dominated points and run Algorithm 1 to identify a set of gaps G, given some

c > 0 and indi�erence value vector ~ω.

3: Initialize the weights w(g) to size(g) for all gaps g ∈ G. Initialize the weights v(g) to 1

∀g ∈ G.

MAIN ITERATIONS: Repeat while G 6= ∅ and max {w(g)} > c· ‖ ~ω ‖

4: For each g ∈ G:

5: If w(g) < c· ‖ ~ω ‖, set G = G \ g, go to next gap.

6: Else:

7: Build reference point r by using maximum objective values from the endpoints of g.

8: Solve a single-objective formulation using the OrthoMADS (-R&S) algorithm from the starting

iterate corresponding to one of the two endpoints of g.

9: End If.

10: End For.

11: Remove dominated points and run Algorithm 1 with resulting gaps G′.

12: If any center of g′ ∈ G′ is within ‖ ~ω ‖ of any center of g ∈ G (according to Euclidean

distance), set v(g′) = 2v(g), and set w(g′) = size(g′)/v(g′).

13: Else, set w(g′) = size(g′) and v(g′) = 1.

14: End If.

15: Set G = G′, REPEAT.

Using the same single-objective formulations from the algorithms in Section II, the reference

points can still be built using the boundaries of an identi�ed gap, as found by Algorithm 1. In the

case of R̂r, Rr, and S
r
a the optimal yields a solution in the dominance zone. Therefore, as Algorithm
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2 progresses, gaps in the front are successively found and �lled in to some acceptable resolution.

Starting iterates are chosen from the gap boundaries with the intent of aiding direct search e�ciency

and because gaps are no longer tied to a "center" solution as with BiMADS. Weighting on the gap

size is used to ensure that true discontinuities do not prevent termination of the algorithm.

Variations on the weighting scheme (such as an add-one to the denominator instead of doubling

in Line 12), the starting iterate(s) to use for a sub-problem, a norm to use, and the sub-problem

solver can also be applied to speed e�ciency for a given problem. If using MADS, it is important to

note that there is an optional search step where an experimental design can be used to sample on the

mesh to try and speed convergence. Due to this and the pattern-based search, a single sub-problem

may end up �lling more than one gap or a gap with respect to mutliple objectives. Therefore, it

may be even more e�cient to only solve the sub-problem for the largest gap during an iteration.

Additionally, other MADS parameters such as initial mesh size can a�ect the convergence rate. A

function evaluation (FEval) limit is typically imposed to prevent too many calls to an expensive

function while waiting for mesh convergence. Thus, it can be important to ensure that a high enough

limit is used to �nd an accurate fg or to allow the search to �nd improvement for a sub-problem. If

there are localized fronts in the problem, due to the FEval limit imposed, it may be most e�cient

to �rst focus on those gaps closest to the utopia in hopes of screening out local Pareto solutions

earlier. In the case when using R&S, the fact that solutions are being sampled repeatedly should

also be a consideration for choice of FEval limits.

To exemplify Algorithm 2, we will �rst use the following three-objective problem, Viennet3:

Minimize: F1(x, y) = 0.5(x2 + y2) + sin(x2 + y2) (7)

F2(x, y) =
(3x− 2y + 4)2

8
+

(x− y + 1)2

27
+ 15

F3(x, y) =
1

x2 + y2 + 1
− 1.1e−x

2−y2

subject to − 3 ≤ x, y ≤ 3

An initial approximation from searching for fg is as shown in Figure 4(a). Algorithm 1 identi�es

gaps from the current approximation using c = 0.5 and indi�erence values chosen as 1/10 of the
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(a) (b)

(c) (d)

Fig. 4 Three-Objective Example.

di�erence between estimated utopia and pseudo-nadir components. In this case, one of the gaps

identi�ed was as shown, corresponding to Objective 3. Figure 4(b) depicts those points found using

a sub-problem. Walston used SMOMADS to solve this problem, requiring 4,096 test points, or

approximately 2,048,000 function evaluations to �nd a relatively complete front.1 Instead, using

Algorithm 2 with Sr
a, a 10-sample Latin Hypercube in the MADS search step, and a 500 FEval limit

for all sub-problems, the front shown in Figure 4(c) was found. This only required 3,352 FEvals and

found 1,163 unique Pareto solutions. Adding one percent of the pseudo-nadir objective values to

each objective as noise, and using SSM as the R&S technique per Walston's work,1 the front shown

in Figure 4(d) was found. Although the e�ect of the noise and having to sample points repeatedly is

evident, this is still relatively representative. This required 11,622 FEvals, and found 110 solutions.

V. Three to Eight Objective Problems using nMADS

In the remaining examples shown, default settings from Nomadm7 were used, unless otherwise

noted. For Algorithm 2, when the responses are treated as stochastic, noise is set to less than or
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equal to one percent of f bi , and f
g and f b are estimated using two replications of the sub-problems.

A 10-sample Latin Hypercube is used in the MADS search step, and the zero vector is used for

x0. No cache of function evaluations was maintained between sub-problems. These settings are

meant to create a general aplication of the algorithm and to showcase its completeness, and are not

necessarily good or optimal for a problem. The number of function evaluations and unique solutions

are used as a comparison. Although the framework still works in only two objectives, it would be

very similar to BiMADS and so results are only given for more than two objectives.

A. 3 Objectives

Having seen Viennet3, we will next look at a problem with many local fronts, and then one with

disconnected Pareto regions. Consider the test problem DTLZ3:24

Minimize: F1(X) = (1 + g(X))cos(x1π/2)cos(x2π/2) (8)

F2(X) = (1 + g(X))cos(x1π/2)sin(x2π/2)

F3(X) = (1 + g(X))sin(x1π/2)

subject to 0 ≤ xi ≤ 1

whereg(X) = 100

|X| − 2 +

|X|∑
i=3

(xi − 0.5)
2 − cos (20π (xi − 0.5))

 .
This problem has 3|X|−2 − 1 local Pareto-optimal fronts, and a pseudo-nadir can highly over-

estimate the nadir. The global optimal front lies on the unit sphere. Figure 5(a) shows the front

found for the four-variable problem, using Algorithm 2 with Rr, an initial mesh size of 0.1, a FEval

limit of 500 for all sub-problems, and ωi = 0.1. Just over 1,890 solutions were found in 6,500

FEvals. When the initial mesh was changed to 1, just over 2,200 solutions were found in 13,200

FEvals. Figure 5(b) depicts the front found again using an initial mesh of 1, but with using the

solution found closest to the utopia as a starting iterate. This found almost 2,150 solutions in 12,900

FEvals. It is clear that various parameter settings may impact the e�ciency of the algorithm on

more di�cult problems, but it is also evident that the algorithm consistently �nds a relatively even

and complete front.
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(a) (b)

(c) (d)

Fig. 5 DTLZ3 Deterministic.

Next, the number of variables was changed to 12 and the FEval limit to 1,000 for a sub-problem.

Figure 5(c) is included to further clarify the notion of the algorithm. After the �rst iteration of

gap-�lling based on the search for the utopia, the approximation was as shown. The magenta points

depict the means of the gap endpoints for each identi�ed gap. Continuing the algorithm, the front in

Figure 5(d) was obtained, consisting of 1,759 solutions and requiring a total of 24,067 FEvals. For a

more complete front, with the trade-o� of e�ciency, a lower weighting scheme could be used. Here,

there were 310 − 1 local fronts. Performance on this problem can be variable in that if the FEval

limit is not chosen well, points found on these local fronts create gaps that may persist and thus

unnecessarily increase total FEvals used until a point is found that dominates them. In this sense,

an additional �lter could be useful to screen for such points and either remove them or increase

their associated sub-problem's FEval limit.

Next, we consider the stochastic response case for the four-variable problem, again using 500
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(a) (b)

Fig. 6 DTLZ3 Stochastic.

as a FEval limit. Figure 6(a) shows an approximation after 75,000 FEvals. We see that the noise

in the objectives has allowed bad solutions to escape the deterministic dominance check. However,

if we ignore these points and scale to the desired front (as seen in Figure 6(b)), we have in fact

obtained a good approximation. In fact, this front had nearly 1,350 solutions.

Now consider DTLZ7:24

Minimize: F1(X) = x1 (9)

F2(X) = x2

F3(X) = (1 + g(X))h(F, g)

subject to 0 ≤ xi ≤ 1

whereg(X) = 1 +
9

|X| − 2

|X|∑
i=3

xi

h(F, g) = 3−
2∑

i=1

[
Fi

1 + g
(1 + sin (3πFi))

]
.

Again using Rr, FEval limits of 1500, ~ω = [0.1, 0.1, 0.2], and 22 variables, the front shown in

Figure 7(a) was found. This took 20,950 FEvals with 1,369 solutions. However, as Pareto-optimal

solutions have x3,...,20 = 0, a starting iterate with X = ~0.5 is more di�cult. Adjusting the initial

mesh size to be 0.1 so as to be smarter relative to the variable range, Figure 7(b) shows the front

found using this new starting iterate. This found 699 solutions in just over 67,000 FEvals. Now

using a stochastic response with the X = ~0.5 starting iterate, the front shown in Figure 7(c) was

44



(a) (b) (c)

Fig. 7 DTLZ7.

found. This found 470 solutions but required 527,812 FEvals. Part of this was due to the trade-o�

between R&S and being able to move towards a better solution during a sub-problem. Additionally,

noise was added to F3 in addition to that already present in F1 and F2, perhaps making the problem

even more di�cult. It is important to note here that these results are still fairly e�cient given the

number of decision variables and the nature of direct search.

B. More Than 3 Objectives

Using the HRV representation, that groups normalized objectives into two groups and plots

their hyper-radial values, we can now also showcase the bene�t of Algorithm 2 using problems in

more than three objectives. We use a few problems that have deterministic published solutions using

HRV. The coloring of solutions depicted are HRV schemes to represent if all objective function values

for that solution are within some value of the utopia,23 and is not important here. We will use R̂r as

we have yet to show results using that formulation. All following results used stochastic responses,

default Nomadm parameters, both gap endpoints as starting iterates (replicated sub-problems), a

"plus-one" weighting strategy for the gap denominators instead of doubling, and indi�erence values

derived from the estimate of
fb
i−f

g
i

10 .
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(a) (b)

Fig. 8 4-Objective HRV Pareto Representation.

First, consider the following four-objective problem:

Minimize: F1(X) = 7.49− 0.44x1 + 1.16x2 − 0.61x3 (10)

F2(X) = 4.13− 0.92x1 + 0.16x2 − 0.43x3

F3(X) = −21.9 + 1.94x1 + 0.3x2 + 1.04x3

F4(X) = 11.33− x1 − x2 − x3

subject to F1(X)− 7.49 ≤ −3.1725

F2(X)− 4.13 ≤ −8.042

1.94x1 − 0.3x2 − 1.04x3 ≤ 18.4988

6.3969 ≤ x1 ≤ 7.0901

0.6931 ≤ x2 ≤ 2.8904

3.912 ≤ x3 ≤ 4.6052

Figure 8(a) shows a result, where [7, 2, 4.5] was used as the starting iterate. A FEval limit of 500

was used to �nd the utopia, and 150 was used for the gap sub-problems. Here, 1,414 solutions were

found in 5,176 function evaluations. The published solution is shown in Figure 9(b).25 Although

the proposed framework is somewhat robust to parameter settings in �nding a complete front, as

has been shown, parameter settings can have impact on the e�ciency of the approximation. Here,

high FEval limits were not needed and so sub-problems could be replicated and gaps weighted less

46



(a) (b)

Fig. 9 6-Objective Solutions.

so as to help mitigate the e�ect of noise.

Consider the following six-objective problem:

Minimize: F1(x1, x2) = x21 + (x2 − 1)2 (11)

F2(x1, x2) = x21 + (x2 + 1)2 + 1

F3(x1, x2) = (x1 − 1)2 + x22 + 2

F4(x1, x2) =
(x1 − 2)2

2
+

(x2 + 1)2

13
+ 3

F5(x1, x2) =
(x1 + x2 − 3)2

36
+

(−x1 + x2 + 2)2

8
− 17

F6(x1, x2) =
(x1 + 2x2 − 1)2

175
+

(−x1 + 2x2)
2

17
− 13

subject to − 2 ≤ x1, x2 ≤ 2

Figure 9(a) depicts an approximation using nMADS, a FEval limit of 500 for the utopia, and

a limit of 150 on the sub-problems. To investigate variability of e�ciency, 20 runs were conducted

of the double-weighting scheme against adding one to the weight denominator each iteration. An

average of 50 more solutions were found using the latter "plus-one" scheme. However, an average

of 400 more function evaluations were required. Table 1 shows metrics for the 20 double-weighted

scheme runs. Figure 9(b) depicts an approximation using the "plus-one" weighting scheme and the

same 150 function evaluation limit, with an additional iteration of gaps �lled once the algorithm

had terminated. In total, over 17,000 function evaluations were used to �nd 3,333 solutions. This
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demonstrates that in latter stages of Algorithm 2, or with non-optimal points that have yet to be

dominated, failing to adjust parameter values based on observation may cause unnecessary expense.

Table 1: 6-Objective Problem Metrics

FEvals Solutions

Mean 8897 1798

St Dev 638 127

Max 9894 2013

Min 7819 1553

Now we consider the following eight-objective problem to show the ability to �nd a relatively

complete and even front in a large number of objectives:

Minimize: F1(x, y) =
(x− 2)2

2
+

(y + 1)2

13
+ 3 (12)

F2(x, y) =
(x+ y − 3)2

175
+

(2y − x)2

17
− 13

F3(x, y) =
(3x− 2y + 4)2

8
+

(x− y + 1)2

27
+ 15

F4(x, y) =
(3x+ y + 9)2

34
+

(x+ 1)2

15
+ 29

F5(x, y) =
(4x− y − 4)2

22
− (y − 1)2

5
− 17

F6(x, y) =
(y + 14)2

8
+

(x+ y)2

10
+ 64

F7(x, y) =
(17− x− y)3

995
+

(8y − 5x)

65

F8(x, y) =
(7 + 2x+ 5y)

5
+

(y − 3x)3

235

subject to 4x+ y − 4 ≤ 0

− 1− x ≤ 0

x− y − 2 ≤ 0

− 4 ≤ x, y ≤ 4

Figure 10(a) shows the nMADS result in comparison to the published solution, Figure 10(b), again

using HRV to plot the data. The published solution was found via a genetic algorithm and had

625 solutions.23 nMADS (Algorithm 2) used 6,992 function evaluations and found 2,350 solutions
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(a) (b)

Fig. 10 8-Objective Solutions.

in this instance, using the "plus-one" weighting scheme and a function evaluation limit of 150 for

each sub-problem. Over 20 replications of nMADS without any additional iterations, an average

of 1,967 solutions were found using 5,773 function evaluations. The respective standard deviations

were 459 for function evaluations, and 154 for the number of solutions.

VI. Conclusion

In the stochastic case where R&S is required, the number of function evaluations may still be

too high for some real-world problems due to expense of a single function evaluation. Further,

as the number of decision variables or local Pareto fronts increases, the number of evaluations

needed for a sub-problem is likely to increase. There are several options to increase e�ciency that

warrant more rigorous investigation; these include: adaptive indi�erence regions, adaptive mesh

parameters, lowering the number of evaluations by R&S, choosing a best formulation for a problem,

using di�erent norms in the algorithms, and the use of surrogates. The algorithm could also be

made more e�cient by development of a �lter for clearly non-optimal solutions that persist until

that correct portion of the global front is found. Otherwise such points that occur on more di�cult

or noisy problems may cause the need for a larger FEval limit or repeated use of a sub-problem,

and may take several iterations to progressively work towards the global front.

Using the new iterate strategy and gap location algorithm enable the driving concepts behind

BiMADS to work in more than two objectives. Further, it seems that if used smartly, this framework

allows for a robust, yet e�cient, approximation relative to any multi-objective problem. The results
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on problems tested with up to eight objectives are promising, and have been similar on a variety

of other problems not shown here. nMADS' e�ciency relative to other algorithms wanes as the

number of decision variables increases due to direct search. However, nMADS avoids limitations

of many other multi-objective optimization algorithms and enables the solution of large numbers

of objectives. Unfortunately, parameter settings are not always trivial to create a most e�cient

instance for a problem, and in the stochastic case, a large number of function evaluations may be

unavoidable. These aspects require further study.
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