Analytics for an Online Retailer: Demand Forecasting and Price Optimization

Kris Johnson – MIT, Operations Research Center
Alex Lee – MIT, Systems Design & Management
Murali Narayanaswamy – Rue La La, VP Pricing & Operations Strategy
Philip Roizin – Rue La La, Chief Financial Officer
David Simchi-Levi – MIT, Operations Research Center
Jonathan Waggoner – Rue La La, Chief Operating Officer
Online Retailing: Online Fashion Sample Sales Industry

- Offers extremely limited-time discounts (“flash sales”) on designer apparel & accessories
- Emerged in mid-2000s and has had nearly 50% annual growth in last 5 years
- Key players
 - Rue La La (US)
 - Gilt Groupe (US)
 - Markafoni (Turkish)
 - Trendyol (Turkish)
Snapshot of Rue La La’s Website

From the Reserve: Watches by Rolex & Cartier
CLOSING IN 2 DAYS, 19:47:42

Judith Ripka Jewelry & Watches
CLOSING IN 2 DAYS, 19:47:42

Check Off His List: Gift Ideas Under $100
CLOSING IN 2 DAYS, 19:47:42

Saucony Women
CLOSING IN 1 DAY, 19:47:42

Furs by Christian Dior & More: Picks by WGACA
CLOSING IN 1 DAY, 19:47:42

Saucony Men
CLOSING IN 1 DAY, 19:47:42
“Style”

Saucony "Triumph 10" Running Shoe
$130.00 $79.90

Saucony "Progrid Guide 6" Running Shoe
$110.00 $65.90

Saucony "Triumph 10" Running Shoe
$130.00 $79.90
“SKU”

Saucony "Progrid Guide 6" Running Shoe

$110.00 $65.90

<table>
<thead>
<tr>
<th>Size</th>
<th>5</th>
<th>5.5</th>
<th>6</th>
<th>6.5</th>
<th>7</th>
<th>7.5</th>
<th>8</th>
<th>8.5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.5</td>
<td>10</td>
<td>10.5</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quantity

1

ADD TO BAG

Sign up for Quick! Buy it. Never miss out on something you love.
Flash Sales Operations

- Merchants purchase items from designers
 - Designers ship items to warehouse*
 - Merchants decide when to sell items (create “event”)
 - During event, customers purchase items
 - Sell out of item?
 - Yes: First event that style is sold = “1st exposure”
 - No: End
*Sometimes designer will hold inventory
Video 1 Placeholder:

https://www.youtube.com/watch?v=ahOHAsECeIw&feature=youtu.be
Goal: Maximize expected revenue from 1st exposure styles

Demand Forecasting

Challenges:
- Predicting demand for items that have never been sold before
- Estimating lost sales

Techniques:
- Clustering
- Machine learning models for regression

Price Optimization

Challenges:
- Structure of demand forecast
- Demand of each style is dependent on price of competing styles → exponential # variables

Techniques:
- Novel reformulation of price optimization problem
- Creation of efficient algorithm to solve daily
Example Sales Curve for an Item that Doesn’t Sell Out

(sales < inventory)

\[\text{demand} = \text{actual sales} \]
Example Sales Curve for an Item that Does Sell Out

\(sales = inventory\)

stock out 10 hours into event

demand = actual sales + estimated lost sales during period after stock out
Estimating Lost Sales

• Use data from items that did not stock out to predict lost sales of items that did stock out

• For each event length…
 – Aggregate hourly sales given set of characteristics, i.e. event start time of day
 – Create sales curve for each set of characteristics
 • Results in hundreds of sales curves
 • Use clustering to help further aggregate
Example Clustering Results: Demand Curves for 2-Day Events

8PM event with 100 units inventory sells out after 5 hours

Demand = \(\frac{100}{0.50} \) = 200 units
Forecasting Model: Explanatory Variables Included

Products
- Department
- Class
- Color Popularity
- Size Popularity
- Brand Type A/B
- Brand Popularity

Combination
- Price
- % Discount = (1 – Price / MSRP)
- # Concurrent Events in Department
- # Styles Sold in Same Subclass and Event (i.e. # Competing Styles)
- Relative Price of Competing Styles
- # Branded Events in Previous 12 Months

Events
- Year
- Month
- Week Day / Time
- Event Type
- Event Length

Each input is calculated for a unique \{style, event\} pair.
Forecasting Model Approach

- Separate data by department; for each department...
 - Randomly divide into training & testing data sets
 - Apply several machine learning techniques to training data
 - Linear regression
 - Power regression
 - Semi-logarithmic regression
 - **Regression trees**
 - Use cross-validation to choose best model
Regression Tree – Illustration

If condition is true, move left; otherwise, move right

Demand prediction
Approach

Goal: Maximize expected revenue from 1st exposure styles

Demand Forecasting

Challenges:
- Predicting demand for items that have never been sold before
- Estimating lost sales

Techniques:
- Clustering
- Machine learning models for regression

Price Optimization

Challenges:
- Structure of demand forecast
- Demand of each style is dependent on price of competing styles \(\rightarrow \) exponential \# variables

Techniques:
- Novel reformulation of price optimization problem
- Creation of efficient algorithm to solve daily
Complexity

• Three of the features used to predict demand are associated with pricing
 – Price
 – % Discount = \(\frac{1 - \text{Price}}{\text{MSRP}} \)
 – Relative Price of Competing Styles = \(\frac{\text{Price}}{\text{Avg. Price of Competing Styles}} \)

• Pricing must be optimized concurrently for all competing styles
Key Observation

- Demand depends only on *average* price of competing styles

- Let \(N = \# \) competing styles (to be priced concurrently), and let \(k = \) the sum of prices of all styles
 - Average price = \(\frac{k}{N} \)
 - Relative price of competing styles = \(\frac{price}{k/N} \)

- Finite set of possible prices
 - Prices must end in $4.90 or $9.90
 - Consists of lower bound, upper bound, and every increment of $5.00 between the bounds
 - Ex: \{ $24.90, $29.90, $34.90, $39.90 \}
Key Idea for Algorithm

- Formulate integer optimization problem for each value of k, (IP_k)

\[
\text{Maximize Revenue}
\]
\[
\text{s.t. } 1) \quad \text{Each style must be assigned exactly one price}
\]
\[
2) \quad \text{Sum of prices of all styles must } = k
\]

- Can show that optimal objective of (IP_k) and its linear relaxation only differ by the revenue associated with a single style!
 - Independent of problem size

- Use this to develop efficient algorithm to solve on daily basis
IMPLEMENTATION & IMPACT
Pricing Decision Support Tool

Rue La La Enterprise Resource Planning System
- Products
- Transactions
- Events Planning
- Rue La La Database
- ETL Process
- Reports and Visualization
- Query / Drill Down Visualizer
- Ad hoc Reports
- Standard Reports
- Optimizer Database
- Optimal Price Recommendations
- LP Bound Algorithm
- Optimization Input
- LP_Solve API-based Optimizer

Retail Price Optimizer
- Statistics Tool - R
- Impending Event Data
- Regression Tree Prediction (Rscript)
- Inventory Information
- R Predictions
- Inventory-Constrained Demand Prediction
Video 2 Placeholder:
https://www.youtube.com/watch?v=lc4wV6O_YDA&feature=youtu.be
Live Tests

• Motivated by historical analysis
 – Suggests model recommended price increases will increase revenue by ~10% with little to no impact on demand
• Set lower bound on price = merchant suggested price
 – Model only recommends price increases (or no change)
• Identified ~1,300 event-subclass combinations where tool recommended price increases for at least one style
Live Tests

1,300 Event-Subclass Combinations

- Category A
 - Treatment (increase price)
 - Control (no change)

- Category B
 - Treatment (increase price)
 - Control (no change)

- Category C
 - Treatment (increase price)
 - Control (no change)

- Category D
 - Treatment (increase price)
 - Control (no change)

- Category E
 - Treatment (increase price)
 - Control (no change)

lowest price point

highest price point
Mann-Whitney / Wilcoxon Rank Sum Test

- Hypothesis test that assumes no particular distributional form on treatment or control groups
 - \(H_0 \): raising prices has no effect on sell-through
 - \(H_A \): raising prices decreases sell-through

- Idea of test
 - Combine sell-through data of treatment and control groups
 - Order data and assign rank to each observation
 - Sum ranks of all treatment group observations
 - If sum is too low, reject \(H_0 \)
Mann-Whitney / Wilcoxon Rank Sum Test

1,300 Event-Subclass Combinations

Category A
- Treatment (increase price)
- Control (no change)
- Rejects H_0 $\alpha = 1\%$

Category B
- Treatment (increase price)
- Control (no change)
- Does not reject H_0 $\alpha = 10\%$

Category C
- Treatment (increase price)
- Control (no change)
- Does not reject H_0 $\alpha = 20\%$

Category D
- Treatment (increase price)
- Control (no change)
- Does not reject H_0 $\alpha = 20\%$

Category E
- Treatment (increase price)
- Control (no change)
- Does not reject H_0 $\alpha = 20\%$
Visual Comparison

Comparison of Sell-Through: Treatment vs. Control Groups

- Category A
- Category B
- Category C
- Category D
- Category E

Sell-Through (% Inventory Sold)

Control
Treatment
Revenue Impact

- Treatment group’s increase in revenue, assuming demand is impacted by price increases as shown on previous slide
Video 3 Placeholder:

https://www.youtube.com/watch?v=AzJhAxkpkEU&feature=youtu.be
Conclusion

• Created and implemented pricing decision support tool that recommends prices for 1st exposure styles
 – Used clustering to estimate lost sales
 – Built regression trees to predict demand
 – Developed efficient algorithm to solve multi-product price optimization problem

• Implementation of these analytics techniques shows expected increase in revenue of \(~10\%\) with little impact on demand
Our Team

Murali Narayanaswamy – VP Pricing & Strategy
Philip Roizin – Chief Financial Officer
Jonathan Waggoner – Chief Operating Officer

Kris Johnson – Operations Research Center
Alex Lee – Systems Design & Management
David Simchi-Levi – Operations Research Center

Deb Mohanty
Hemant Pariawala

Marjan Baghaie, Andy Fano
Paul Mahler, Matt O’Kane

Page 32