Analytics for an Online Retailer: Demand Forecasting and Price Optimization

Kris Johnson – MIT, Operations Research Center

Alex Lee – MIT, Systems Design & Management

Murali Narayanaswamy – Rue La La, VP Pricing & Operations Strategy

Philip Roizin – Rue La La, Chief Financial Officer

David Simchi-Levi – MIT, Operations Research Center

Jonathan Waggoner – Rue La La, Chief Operating Officer

Online Retailing: Online Fashion Sample Sales Industry

- Offers extremely limited-time discounts ("flash sales") on designer apparel & accessories
- Emerged in mid-2000s and has had nearly 50% annual growth in last 5 years
- Key players
 - Rue La La (US)
 - Gilt Groupe (US)
 - Markafoni (Turkish)
 - Trendyol (Turkish)

Snapshot of Rue La La's Website

From the Reserve: Watches by Rolex & Cartier > CLOSING IN 2 DAYS, 19:47:42

Judith Ripka Jewelry & Watches

CLOSING IN 2 DAYS, 19:47:42

Check Off His List: Gift Ideas Under \$100 • CLOSING IN 2 DAYS, 19:47:42

Saucony Women 🕨

Furs by Christian Dior & More: Picks by WGACA CLOSING IN 1 DAY, 19:47:42

Saucony Men 🕨

CLOSING IN 1 DAY, 19:47:42

"Style"

Saucony "Triumph 10" Running Shoe \$130.00 \$79.90 Saucony "Progrid Guide 6" Running Shoe \$110.00 \$65.90 Saucony "Triumph 10" Running Shoe \$130.00 \$79.90

Page 4

"SKU"

Saucony "Progrid Guide 6" Running Shoe

Flash Sales Operations

Video 1 Placeholder:

https://www.youtube.com/watch?v=ahOHAsECeIw&feature=youtu.be

*Data disguised to protect confidentiality

Approach

Goal: Maximize expected revenue from 1st exposure styles

Price Optimization

Challenges:

- Structure of demand forecast
- Demand of each style is dependent on price of competing styles → exponential # variables

Techniques:

- Novel reformulation of price optimization problem
- Creation of efficient algorithm to solve daily

Example Sales Curve for an Item that Doesn't Sell Out

(sales < inventory)

Page 10

Example Sales Curve for an Item that Does Sell Out

(sales = inventory)

Estimating Lost Sales

- Use data from items that did not stock out to predict lost sales of items that did stock out
- For each event length...
 - Aggregate hourly sales given set of characteristics, i.e. event start time of day
 - Create sales curve for each set of characteristics
 - Results in hundreds of sales curves
 - Use clustering to help further aggregate

Example Clustering Results: Demand Curves for 2-Day Events

Forecasting Model: Explanatory Variables Included

Each input is calculated for a unique {style, event} pair.

Forecasting Model Approach

- Separate data by department; for each department...
 - Randomly divide into training & testing data sets
 - Apply several machine learning techniques to training data
 - Linear regression
 - Power regression
 - Semi-logarithmic regression

Regression trees

- Use cross-validation to choose best model

Regression Tree – Illustration

Approach

Goal: Maximize expected revenue from 1st exposure styles

Complexity

- Three of the features used to predict demand are associated with pricing
 - Price
 - $\% \text{ Discount} = \frac{1 \text{Price}}{\text{MSRP}}$
 - Relative Price of Competing Styles =

 Pricing must be optimized concurrently for all competing styles

Key Observation

- Demand depends only on *average* price of competing styles
- Let N = # competing styles (to be priced concurrently), and let k = the sum of prices of all styles

- Average price =
$$\frac{\kappa}{N}$$

Relative price of competing styles =
$$\frac{k/N}{k/N}$$

- Finite set of possible prices
 - Prices must end in \$4.90 or \$9.90
 - Consists of lower bound, upper bound, and every increment of \$5.00 between the bounds
 - Ex: {\$24.90, \$29.90, \$34.90, \$39.90}

Key Idea for Algorithm

• Formulate integer optimization problem for each value of k, (IP_k)

Maximize Revenue

- s.t. 1) Each style must be assigned exactly one price
 - 2) Sum of prices of all styles must = k
- Can show that optimal objective of (IP_k) and its linear relaxation only differ by the revenue associated with a single style!
 - Independent of problem size
- Use this to develop efficient algorithm to solve on daily basis

IMPLEMENTATION & IMPACT

Pricing Decision Support Tool

Video 2 Placeholder:

https://www.youtube.com/watch?v=lc4wV6O YDA&feature=youtu.be

Live Tests

- Motivated by historical analysis
 - Suggests model recommended price increases will increase revenue by ~10% with little to no impact on demand
- Set lower bound on price = merchant suggested price
 - Model only recommends price increases (or no change)
- Identified ~1,300 event-subclass combinations where tool recommended price increases for at least one style

Live Tests

Mann-Whitney / Wilcoxon Rank Sum Test

- Hypothesis test that assumes no particular distributional form on treatment or control groups
 - H₀: raising prices has no effect on sell-through
 - H_A: raising prices decreases sell-through
- Idea of test
 - Combine sell-through data of treatment and control groups
 - Order data and assign rank to each observation
 - Sum ranks of all treatment group observations
 - If sum is too low, reject H_0

Mann-Whitney / Wilcoxon Rank Sum Test

Page 27

Visual Comparison

Revenue Impact

• Treatment group's increase in revenue, assuming demand is impacted by price increases as shown on previous slide

Video 3 Placeholder:

https://www.youtube.com/watch?v=AzJhAxkpkEU&feature=youtu.be

Conclusion

- Created and implemented pricing decision support tool that recommends prices for 1st exposure styles
 - Used clustering to estimate lost sales
 - Built regression trees to predict demand
 - Developed efficient algorithm to solve multi-product price optimization problem
- Implementation of these analytics techniques shows expected increase in revenue of ~10% with little impact on demand

Our Team

Murali Narayanaswamy – VP Pricing & Strategy Philip Roizin – Chief Financial Officer Jonathan Waggoner – Chief Operating Officer

Kris Johnson – Operations Research Center Alex Lee – Systems Design & Management David Simchi-Levi – Operations Research Center

Deb Mohanty Hemant Pariawala

Marjan Baghaie, Andy Fano Paul Mahler, Matt O'Kane