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Omnichannel retail refers to a seamless integration of the e-commerce channel and the network of brick-

and-mortar stores. New cross-channel interactions emerge from the integration: (i) cross-channel fulfillment

allows inventory to be shared between channels, and (ii) accessible price information induces price-based

channel substitution. However, existing price optimization systems have not been able to keep pace with

these new interactions. In this paper, we propose a novel multistage stochastic program for the dynamic

pricing of a product offered in an omnichannel network incorporating the new interactions. We propose a

deterministic and a robust heuristic where, in each period, omnichannel prices and cross-channel fulfillment

inventories are jointly optimized via computationally tractable mixed integer programs. In extensive simula-

tions, the heuristics incur an average revenue loss of less than 4% and 8%, respectively. The key benefits of

these approaches arise from inventory rebalancing using omnichannel prices (more cross-channel fulfillment

inventories from stores with low sell-through rates) and through better management of channel demands.

In experiments with historical consumer electronics data of a major U.S. retailer, the proposed analytics

shows a 6–12% increase in markdown revenue over the retailer’s actual revenue across different categories.

A proprietary implementation of the analytics is now commercially available as part of the IBM Commerce

Markdown Price Solution and has been piloted for clearance pricing at the retailer. A causal model analysis

on the live pilot data shows a 12% increase in clearance period revenue.

Key words : Omnichannel, pricing, attraction demand, markdown pricing, e-commerce fulfillment,

cross-channel, elasticity

1. Introduction

Omnichannel retailing is a recent trend sweeping companies across the retailing industry (Bell et al.

2014). An omnichannel strategy promises to revolutionize how companies engage with customers by

creating a seamless customer shopping experience through an alignment of the retailer’s multiple

sales channels. The following are just a few examples of the new capabilities enabled by omnichannel

retail. A customer can purchase a product from the online store while she is in a brick-and-mortar

store after finding through her mobile phone that it is offered at a cheaper price in the retailer’s

online store. A customer who purchased a product online might choose a “buy online, pick up in

store” option since he prefers the convenience of receiving the product sooner than having to wait
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for the package to be shipped to his address. The package that an e-commerce customer receives

might have been fulfilled from a nearby store since the e-commerce fulfillment center is out of stock.

From a customer’s perspective, an omnichannel environment makes it easier to compare prices

between stores and online, to purchase a product from any channel, and to receive the product

conveniently through any of the retailer’s multiple cross-channel fulfillment options. These capabil-

ities allow the retailer to remain competitive in a crowded e-commerce market. With the fast pace

of online sales growth (US Census Bureau 2017 reported that online sales grew 14–16% compared

to the previous year), retailers that are unable to quickly adapt to the changing retail landscape

could be left behind, as seen through the recent wave of store closures in the US (Rupp et al. 2017).

Amazon.com, the largest U.S. e-commerce retailer, is poised to benefit from a sustained trend of

online sales growth due its efficiency in fulfilling online orders from its multiple fulfillment centers.

In contrast, primarily brick-and-mortar retailers only have a few fulfillment centers due to the

significant fixed cost of each. Hence, an operational benefit from omnichannel integration is to

enable the use of the brick-and-mortar store network to fulfill online sales via ship-from-store (SFS)

fulfillment or buy-online-pickup-in-store (BOPS). Other benefits of cross-channel fulfillment include

faster delivery times and the flexibility to better utilize capacity (e.g., e-commerce fulfillment can be

assigned to stores with slow-moving inventory). An operations manager for a books/media retailer

stated that enabling stores to fulfill e-commerce sales has driven cost down by 18% and revenue

up by 20% (Forrester Consulting 2014).

Despite the many benefits of an omnichannel environment, it introduces many new challenges for

price optimization, specifically to retailers whose existing pricing systems are based on traditional

revenue management models. Traditional retail pricing models assume separate pools of inventory

for each channel, and optimizes channel prices considering the available channel inventory. However,

with store fulfillment, it is not clear which portion of store inventory is used for the online channel

versus the store. Another challenge is due to potential demand substitution between the online

store and brick-and-mortar store, which is affected by the prices offered on the two channels.

Channel substitution is ignored in the traditional revenue management model which assumes price

only affects demand in the same channel. Despite these new challenges due to the omnichannel

environment, many omnichannel retailers utilize legacy price optimization systems that do not

account for any channel interdependencies.

In the presence of cross-channel effects, using legacy pricing systems can have negative con-

sequences which we demonstrate using a real-world example from a major U.S. retailer. Fig. 1

shows weekly channel prices (e-commerce price and average brick-and-mortar price) and weekly

channel sales for a Tablet computer that has been marked for clearance in both channels starting

from Week 40. At the start of the clearance period, the legacy pricing software sets steep initial
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Figure 1 Time series data for the channel prices and the channel sales of a Tablet SKUs.

markdowns in the brick-and-mortar stores to clear off all store inventory over the next 12 weeks

from walk-in store customers (see topmost panel). However, not all store inventory is at risk of

becoming unsold since all e-commerce sales are fulfilled through ship-from-store during the clear-

ance period (see middle panel). Because of the steep store markdowns, after an initial sales spike,

total brick sales steadily decline due to an increasing number of stores stocking out (see bottom

panel). In contrast to the steep brick markdowns, the legacy system initially sets the regular price

for the online channel (since inventory in the e-commerce warehouse is depleted by Week 40, hence

the system assumes there is no inventory left for online sales). However, due to the substitution

effect, setting the online price significantly higher than brick price causes channel cannibalization.

Merchandise managers would override the price outputs from the system to reduce this difference

by making ad-hoc adjustments to the system inputs. A common adjustment used to set the online

price (also applied to the Tablet example of Fig. 1) is to inject artificial inventory into the online

channel. In discussions with merchandise managers, this manual adjustment process was revealed

to be unmanageable, labor-intensive, and time consuming, and the bigger concern was the steep

brick markdowns resulting in systemwide margin erosion.

As part of a joint partnership with IBM Commerce, a leading provider of merchandising solutions,

we engaged with the omnichannel retailer in the example. The retailer generates over $40 billion

sales annually through its more than 1,000 brick-and-mortar stores in the U.S. and an online store.

This paper describes the advanced analytics model we developed to address the novel challenges

in omnichannel revenue management. The following are the contributions of our paper:

1. Model formulation. For a short lifecycle item without inventory replenishments, we propose

a novel multistage stochastic programming formulation for the dynamic pricing problem in a
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network of stores and an online channel. In the model, online sales are fulfilled using store

inventories and demand exhibits channel substitution. The key idea is that we approximate

the cross-channel fulfillment flows, which might be exogenously determined by an independent

fulfillment engine, as endogenous model variables.

2. Pricing policies based on store inventory partitioning. We introduce “inventory parti-

tion” variables to approximate the optimal future use of omnichannel inventory. These variables

ration the amount of store inventory to be used for online fulfillment, similar to booking lim-

its in capacity control. In capacity control problems, the booking limits are met by accepting

or rejecting customers. In contrast, the inventory partitions are met by directly influencing

omnichannel demand through price management. Since the networkwide optimal inventory par-

titions depends on future prices, we propose two policies which jointly optimize multiperiod

omnichannel prices (OCP) and inventory partitions in the cross-fulfillment network (X). We

refer to this class of policies as OCPX.

(a) The Deterministic OCPX policy optimizes prices and inventory partitions by solving a

deterministic multiperiod non-convex optimization model under the expected demand.

(b) The Robust OCPX policy chooses prices and partitions that have acceptable revenue for

a set of demand sample paths (specified by a budget of uncertainty) via solving a robust

max-min-max problem.

Given any demand model, if the feasible price set is discrete, then the Deterministic OCPX

model can be reformulated exactly as a mixed integer program (MIP), while the Robust OCPX

model can be approximated by a MIP. Moreover, a variety of business constraints can be added

to both models. These policies are computationally tractable and can be solved efficiently using

commercial off-the-shelf solvers such as CPLEX, making these policies suitable for a produc-

tion environment. The key benefits of these approaches arise from inventory rebalancing using

omnichannel prices (more SFS inventories from stores with low sell-through rates) and through

better management of channel demands.

3. Commercialization of OCPX and partnership with large U.S. retailer. A proprietary

implementation of the proposed OCPX analytics was commercialized in May 2016 as part of

the IBM Commerce Markdown Price Solution. The new system was piloted at a major U.S.

omnichannel retailer for clearance pricing. We demonstrate through computational experiments

with historical data, independent tests of the production team, and analysis of the pilot data,

that the OCPX analytics increases markdown revenue over the incumbent approaches. The

OCPX system also results in shallower brick markdowns due to inventory partitions. A causal

model analysis of the live pilot data shows that the improvement on clearance period revenue

by OCPX is over 12%.
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1.1. Literature review

Omnichannel retailing is a relatively new area, hence there are few academic papers on optimiza-

tion of omnichannel operations, including pricing and/or cross-channel fulfillment. But broadly

our work is in the area of revenue management, where most papers either adopt price controls

(use prices to control demand(s)) or capacity control (allocate capacity of resource(s) to classes of

demand). A novel aspect of this paper is that it employs both: cross-channel demand substitution

that is managed through pricing, and allocation (partition) of capacities (inventories in multiple

locations) optimally across channels. In addition, the capacities themselves are substitutable, as

online demand can be fulfilled using inventory from any store. To better emphasize this distin-

guishing characteristic of the paper, we organize the literature review around these three groups.

For comprehensive surveys of dynamic pricing, see Bitran and Caldentey (2003), Elmaghraby and

Keskinocak (2003), Chen and Simchi-Levi (2012). Single-product dynamic pricing models consider

a finite amount of perishable inventory being sold to price-sensitive customers over a finite horizon.

Typically, there is no inventory replenishment, an assumption applicable for hotel rooms, airline

flights, and products with short selling periods and long lead times. Assuming that the demand

follows a Poisson process with known time-dependent intensity as a function of price, Gallego

and van Ryzin (1994), Bitran and Mondschein (1997), Zhao and Zheng (2000) characterize the

optimal policies as functions of time and inventory. Bitran and Mondschein (1998) extend this basic

model to a network of brick-and-mortar which coordinate prices and allow inventory transshipment

between stores. However, while the model allows for inventory flows between locations (similar to

cross-channel fulfillment), it only assumes the existence of a single channel and does not model

substitution. Caro and Gallien (2012) discuss the development and implementation of a clearance

pricing model for the fast-fashion retailer Zara.

Dynamic pricing models for multiple substitutable products assume that the price of one product

affects the demand rates of multiple products. A popular model of incorporating customer choice

in operation models is using discrete choice models. A common technique adopted by many papers

is to convert the resultant nonconvex pricing problem into an equivalent convex problem in the

market share or sales probability space (Aydin and Porteus 2008, Song and Xue 2007, Dong et al.

2009, Li and Huh 2011). A recent paper by Harsha et al. (2015) develops a price optimization

model for omnichannel demand, by modeling channel substitution using discrete choice models.

Their model however assumes there are no inventory constraints or cross-channel fulfillment flows.

Our work is also related to papers where multiple products share multiple resources of limited

capacity. Gallego and van Ryzin (1997) consider the problem of dynamic pricing for products, where

products consume a fixed capacity of shared resources. Maglaras and Meissner (2006) study the

problem where the products share a single resource. In omnichannel pricing, the channel-location
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can be viewed as a “product” and the inventories in different locations as “resources”, however,

consumption is not known a priori since it is determined by cross-channel fulfillment decisions.

Most of the above referenced papers, assume that the demands can be characterized completely

using probability distribution function. But some recent papers have also considered formulations

and models that avoid specifying complete distributional information for the unknown parame-

ters. One such approach is using robust optimization formulations, based on either maximizing

the minimum possible revenue (Adida and Perakis 2006, Thiele 2009), minimizing the worst-case

regret (Perakis and Roels 2008), or maximizing the competitive ratio (Lan et al. 2008).

A related stream of literature is the topic of network capacity control, wherein unlike price-based

controls, the goal is to allocate resources across products at fixed prices by deciding which subset

of products to offer. In fact, the store inventory partitions introduced in our paper are similar

in spirit to booking limits or protection limits in capacity control problems. Early papers in this

topic assumed product independence (Talluri and van Ryzin 1999, Topaloglu 2009) while more

recent papers model consumer substitution across products (Liu and van Ryzin 2008, Bront et al.

2009). Cross-channel fulfillment is related to supply-side substitution in capacity control literature.

Gallego and Phillips (2004) introduce the idea of a “flexible product” which is a menu of alternative

products. The customer purchases a flexible product knowing that the seller will assign the final

product later. Gallego and Phillips (2004) models the capacity control problem of a single flexible

product composed of two specific products. In the omnichannel setting, products purchased online

are flexible products, since the retailer can later fulfill the purchase from a variety of store locations.

Product upgrades also allow sellers to better utilize capacities. For example, Shumsky and Zhang

(2009), Yu et al. (2015) study the dynamic capacity allocation problem of multiple classes, where

customers purchasing a demand class can be upgraded to a higher class.

We briefly mention a few papers on pricing and/or fulfillment for a pure e-commerce retailer.

Acimovic and Graves (2014) discuss the development of a dynamic fulfillment system to optimize

outbound shipping costs (affected by shipping distances and split shipments). Jasin and Sinha

(2015) propose heuristics based on solving a deterministic linear program approximation. A paper

by Lei et al. (2016) study dynamic pricing and fulfillment of pure e-commerce retailer and similarly

propose solving a deterministic approximation.

Finally, there is significant literature on multichannel pricing in marketing. Surveys by Zhang

et al. (2010), Grewal et al. (2011) provide a good overview. Our work differs in that our goal is to

develop a computationally tractable models and a decision support system for omnichannel pricing.

2. The omnichannel revenue management model

In this section, we introduce a multiperiod stochastic pricing model for omnichannel retailing. At

the beginning of each time period, the retailer can set chain-wide prices based on the current
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inventory levels across the entire retail network. Our model includes supply-side and demand-

side cross-channel interactions. The former is from cross-channel inventory flows that allow store

inventory to be used to fulfill online demand in any location. The latter is from modeling channel

substitution by allowing the channel demand model to depend on the cross-channel price.

We describe the basic model in this section, while deferring a discussion of possible extensions to

Section 6. Consider a retailer selling a product with finite inventory over T sales periods. Inventory

that is not sold by period T can be salvaged at a per-unit value q. Customers can purchase the

product either through the retailer’s online store or through any brick-and-mortar store in its

network of retail stores. The retailer has one e-fulfillment center (EFC) that can fulfill any online

purchase. Suppose that the retailer has stores in Z geographical zones, where we assume there is

one retail store for each zone. The model can be trivially extended to the case with multiple EFC

locations, multiple stores per zone, or no stores in some zones. We assume that customers in region

z can only purchase from the online store or from the store in region z, and are not willing to travel

to a store in another region z′. The retailer can only change prices at the start of each period.

At the start of period t, let xte be the inventory level in the EFC, and let xtbz be the inven-

tory available in store z ∈ Z = (z1, z2, . . . , zn). After observing the period t inventory levels in

the retail network xt = (xte, x
t
bz1
, . . . , xtbzn), the retailer then determines the network-wide prices

pt = (pte, p
t
bz1
, . . . , ptbzn). We assume that the retailer charges the same e-commerce price pte for all

online customers but can set retail store prices according to the store’s geographic zone. Depending

on the retailer’s pricing strategy, alternative pricing constraints are easy to incorporate, such as

setting e-commerce prices by geography or setting a uniform price offerings across channel. After

setting the price, the channel-zone-level demands are then realized. For zone z ∈ Z and channel

m∈ {e, b}, we model the stochastic channel-zone demand as Dt
mz(p

t
e, p

t
bz, ξ

t
mz) = ξtmz × dtmz(pte, ptbz),

where dtmz(·) is a deterministic demand function and ξtmz is a nonnegative random variable with

mean 1. Hence, note that dtmz(p
t
e, p

t
bz) is the expected demand value in channel m, zone z. Note

that the expected channel demands in zone z are functions of the online price and the store price

in zone z, but is independent of store prices in other zones. We denote by Dt = (Dt
ez,D

t
bz)z∈Z the

random vector of all channel-zone demands. We refer to this as the omnichannel demand model.

The retailer also determines how to fulfill the realized online demand, either with EFC inven-

tory or with store inventory through cross-fulfillment. In practice, price management systems are

independent from the order management system (OMS) which automates the fulfillment of online

sales. Therefore, fulfillment is exogenous to the price optimization model. Online orders are fulfilled

by OMS based on operational cost minimization models that include a variety of costs incurred

by a retailer to serve orders along with several business rules. We denote by ytez the zone z online

demand that has been fulfilled by EFC inventory, which we assume to incur a per-unit fulfillment
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cost cez. We denote by ytz′z the zone z online demand that has been fulfilled by store inventory

from zone z′, which has a per-unit fulfillment cost cz′z. Zone z′ can either be the same zone as z

or a different zone. The fulfillment costs include shipping costs and handling costs. We denote the

vector of fulfillment variables at time t by yt = (ytez, y
t
z′z)z,z′∈Z . The channel sales in zone z ∈Z are

denoted by stez and stbz. The vector of sales variables is st = (stez, s
t
bz)z∈Z .

The starting inventory for the next period, xt+1 = F (xt, st), is determined from a transition

function F of the current starting inventory, the sales variables, and implicitly on the realized

fulfillment of online sales. Motivated by our setting of clearance products, we assume a short selling

period, hence inventory is not replenished in the EFC or in the stores. This assumption is suitable

for seasonal, fast-fashion items or for clearance products. Due to the short horizon, we also assume

that there are no inventory holding costs and shortage costs, although the model can be easily

modified to include these costs.

If Π is the set of all non-anticipatory pricing and fulfillment policies, then the optimal policy π∗

maximizes the total expected profit:

J∗ = max
π∈Π

Eπ

T∑
t=1

rt(x
t, pπ,t), (2.1)

where rt is the period t revenue. The optimal policy should satisfy the following Bellman equations:

V t
∗ (xt) = max

pt∈Ω
Eξt

(
max

st∈St(xt,pt,ξt)
pt>st +V t+1

∗

(
F (xt, st)

))
, t= 1, . . . , T, (2.2)

V T+1
∗ (xT+1) = q

(
e>xT+1

)
, (2.3)

where e is the vector of all ones, and St is the set of all feasible sales variables (the online sales

are feasible if they can be fulfilled). Since there is no explicit form of the state transition function

F due to its dependence on fulfillment decisions determined by an independent OMS, solving the

Bellman equations directly is challenging.

We introduce endogenous fulfillment variables yt to approximate the exogenous fulfillment deter-

mined by the OMS. The state variables for t+ 1 then become xt+1
e = xte −

∑
z∈Z y

t
ez and xt+1

bz =

xtbz − stbz −
∑

z′∈Z y
t
zz′ for all z. We denote this linear mapping as xt+1 = f(xt, yt, st). Since OMS

determines the fulfillment decisions by minimizing operational costs, we introduce a penalty into

the objective function proportional to the fulfillment costs. This results in the Bellman equations:

V t(xt) = max
pt∈Ω

Et

(
max

(st,yt)∈X t(xt,pt,ξt)
pt>st− c>yt +V t+1 (f(xt, yt, st))

)
, t= 1, . . . , T, (2.4)

V T+1(xT+1) = q
(
e>xT+1

)
. (2.5)

X t(xt, pt, ξt) is the feasible set of period t fulfillment variables and sales variables. The optimality

of the pricing policy solution to (2.4)–(2.5) under the original system depends on how accurately
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the fulfillment variables yt approximate the actual fulfillment vectors from the exogenous OMS.

In Section 5.3, we report the accuracy of this prediction in the commercial pilot implementation.

Feasible set X t depends on the current inventory levels and the demand realizations:

X t(xt, pt, ξt) =


s≥ 0, y≥ 0

∣∣∣∣∣∣∣∣∣∣∣

stmz ≤ ξtmz × dtmz(pte, ptbz), m= e, b, ∀z ∈Z∑
z∈Z y

t
ez ≤ xte,

stbz +
∑

z′∈Z y
t
zz′ ≤ xtbz, ∀z ∈Z,

stez = ytez +
∑

z′∈Z y
t
z′z, ∀z ∈Z,


. (2.6)

The first set of constraints ensure that the sales variables do not exceed the realized demand. The

second constraint is that the EFC inventory used to fulfill online sales should not exceed the xte.

The third constraint is that the store z sales plus store inventory used for cross-fulfillment should

not exceed xtbz. The last constraint imposes that all online sales in zone z must be fulfilled.

If we assume that dtmz(p
t
e, p

t
bz) only takes nonnegative values, and since the random demand

has multiplicative uncertainty, the realizations of channel-zone demands are nonnegative. Thus,

starting from nonnegative inventory levels x1 at t = 1, it follows that for any sample path of

ξ = (ξ1, . . . , ξT ), the sequence of feasible sets X t(xt, pt, ξt) are nonempty, where t= 1, . . . , T .

In (2.4), Ω is the set of all feasible price vectors p = (pe, pbz1 , . . . , pbzn). This set may include

any linear constraints that couple prices across time, zones or channels. For example, a business

rule may be that the prices are nonincreasing over time (as often the case in clearance pricing), a

group of neighboring zones offer the same store price or that the e-commerce price always be the

lowest price offered and possibly a maximum markdown budget. Other linear price constraints that

the retailer may want to impose are upper or lower bounds on the prices. For example, to ensure

competitiveness, the retailer may want to set price bounds which are percentages of historical

competitor prices. We also allow Ω to be discrete by allowing a finite number of feasible prices. For

example, retailers often restrict markdowns to fixed discount levels (e.g. 20%, 30%, 40%) or prices

with magic number endings (e.g. those ending with $0.99) to exploit customer psychology.

3. Pricing policies based on inventory partitions

Solving Bellman equations (2.4)–(2.5) suffers from the curse of dimensionality since the state is a

(n+ 1)-dimensional vector. In this section, we introduce heuristic pricing policies by approximat-

ing the value-to-go function V t(xt) with the optimal value V̂ t(xt) of a computationally tractable

optimization model.

Algorithm 1 provides a description of the pricing policy from an approximation V̂ t of the value-

to-go function. At the beginning of each time period t when we observe the current inventory levels

xt, we set the prices according to p̂t, which we define as the maximizer of function Û(pt;xt), where:

Û t(pt;xt) = max
(y,s)∈X t(xt,pt,e)

(
pt>s− c>y+ V̂ t+1(f(xt, y, s))

)
. (3.1)
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Algorithm 1 Heuristic pricing policy

Require: A vector of initial inventory levels x1, and feasible price set Ω
Ensure: Determine a sequence of online prices and zone-level store prices

1: t← 1
2: while t≤ T do
3: Set price p̂t, where p̂t ∈ arg max

pt∈Ω

Û t(pt;xt)

4: Demands Dt(pt, ξt), sales st, and fulfillments yt are realized exogenously
5: xt+1← f(xt, yt, st)
6: t← t+ 1

After setting period t prices, online demands and store demands are realized. The fufillment and

sales variables are exogenously determined by a standalone OMS. (The optimal decision variables

(ŷ, ŝ) resulting from the optimization model of Û t(p̂t, xt) are approximations for how inventory

will be used at time t.) At the end of time t, the new state variables xt+1 are observed, and the

algorithm proceeds to determine the prices for the next time period t+ 1.

We next propose two approximations for V t based on introducing inventory partition variables.

These variables ration the amount of store inventory to be used for online fulfillment, similar

to booking limits in capacity control. The inventory partitions are met by directly influencing

omnichannel demand through price management. To motivate the partitions, let us revisit the

legacy pricing system which we described in the introduction. Recall that the legacy system utilizes

a pricing model that assumes a single-store environment. Therefore, the store z prices outputted

by the legacy system aim to approximate the solution to the following Bellman equations:

V t
bz(x

t
bz) = max

p
Eξt

(
max

s≤min{xtbz ,Dt
bz

(p,ξt)}
ps+V t+1

bz (xtbz − s)

)
, t= 1, . . . , T, (3.2)

V T+1
bz (xT+1

bz ) = qxT+1
bz . (3.3)

Let us denote by πL the optimal policy which solves (3.2)–(3.3). Even if the zone z demand model

in (2.4)–(2.5) does not have channel substitution (i.e., dtbz(p
t
e, p

t
bz) = dtbz(p

t
bz)) for all z, πL is still

be suboptimal in the omnichannel environment. This is because the single-store model assumes

that store z inventory is only depleted by store z sales, yet store inventory is also used for fulfilling

online sales through SFS. Hence, policy πL would result in low store prices leading to significant

margin erosion and stockouts in stores that are used for cross-channel fulfillment.

This example demonstrates that optimizing period t omnichannel prices can be aided by iden-

tifying “partitions” of store inventory units by their usage (e.g. store sales or online fulfillment).

However, the true optimal partitions are unknown at time t, since they depend on future demand

realizations. To see this, suppose that π∗ is the optimal pricing policy that solves Bellman equa-

tions (2.4)–(2.5). The optimal portion of store z inventory to use for online fulfillment is Y t,π∗
z ,∑T

k=t

∑
l∈Z y

k,π∗

zl , and the optimal portion to leave in the store is xtbz−Y t,π∗
z . However, since π∗ is a
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Figure 2 Time-space network for deterministic omnichannel model with two zones. The label on an arc is its

(flow, capacity, value). Dashed arcs are cross-channel fulfillment flows.

non-anticipatory policy, then the value of yk,π
∗

zl is only known at time k. Hence, the value of Y t,π∗
z

is unknown when determining prices for time t. In this section, we propose pricing policies which

approximate the optimal inventory partitions with values that can be computed in time t.

3.1. Deterministic inventory partitions

Because the optimal partition of store inventory not only depends on the fulfillment costs and

salvage cost, but also on the future prices in the whole retail network, we approximate the value-

to-go function V t by the optimal value V̂ t
D of a deterministic multiperiod optimization model that

jointly optimizes prices (pt, pt+1, . . . , pT ) and optimal inventory partitions. In particular,

V̂ t
D(xt) = maximize

p,s,Y,θ

T∑
k=t

∑
z∈Z

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z∈Z

cezYez −
∑
z∈Z

∑
z′∈Z

czz′Yzz′ + q

(
θe +

∑
z∈Z

θbz

)
subject to skez ≤ dkez(pke , pkbz), k= t, . . . , T, ∀z ∈Z, (D-OCPX.1)

skbz ≤ dkbz(pke , pkbz), k= t, . . . , T, ∀z ∈Z, (D-OCPX.2)∑
z∈Z

Yez + θe = xte, (D-OCPX.3)

T∑
k=t

skbz +
∑
z′∈Z

Yzz′ + θbz = xtbz, ∀z ∈Z, (D-OCPX.4)

T∑
k=t

skez = Yez +
∑
z′∈Z

Yz′z, ∀z ∈Z, (D-OCPX.5)
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s≥ 0, Y ≥ 0, θ≥ 0, (D-OCPX.6)

pk ∈Ω, k= t, . . . , T. (D-OCPX.7)

The variables Yez and Yzz′ determine the channel-zone use of EFC inventory and store inventory

(i.e., inventory partitions). We refer to the optimization model above as D-OCPX.

Note that when there is no demand uncertainty and ξtmz = 1, then V t can be reformulated as

a deterministic multiperiod optimization model. By setting Yez =
∑T

k=t y
k
ez and Yzz′ =

∑T

k=t y
k
zz′ , it

is easy to check that V̂ t
D is equal to V t if demand is deterministic. Therefore, optimization model

D-OCPX can be visualized through the time-space network illustrated in Fig. 2. In the diagram,

each time-zone has a brick inventory node and two demand nodes (e-commerce and brick). The

dashed arcs are cross-channel fulfillment flows. The label on each arc is the flow, capacity, and

value of the arc. If prices (in blue) are fixed, then the problem is a simple network flow model.

This figure demonstrates that a challenge for solving D-OCPX is that the prices are also decision

variables which determine the arc capacities and arc values. Model D-OCPX is nonconvex, since the

objective function is bilinear, and the feasible set could be nonconvex (e.g., if the demand function

is a nonconcave MNL function). However, as we will discuss in Section 3.1.1, this optimization

model can be reformulated as a mixed integer linear program if price set Ω is discrete (a common

practical requirement).

We refer to as Deterministic OCPX the Algorithm 1 pricing policy that results from setting

V̂ t+1 = V̂ t+1
D to define Û t in (3.1). Note that the period t prices which maximize (3.1) can be found

by solving model D-OCPX.

3.1.1. Linearization of model D-OCPX. We are now going to assume that the feasible

price set Ω is discrete, which in practice is a common constraint imposed on prices due to the

requirement of magic number endings. Under a general demand model, we next discuss how we can

reformulate model D-OCPX as a linear optimization model that can be solved to near-optimality

in practice by commercial solvers such as CPLEX.

Assumption 1 (Discrete prices). Ω = Ωe ×Ωbz1 × · · · ×Ωbzn, where Ωe = {ωi}i∈Ie and Ωbz =

{ωi}i∈Ibz for z ∈Z.

For ease of discussion in this section, Assumption 1 allows no constraints that couple prices across

zones or channels. However, these can be readily incorporated with additional linear constraints

to the model. In fact, this a major benefit of a network approach to optimizing omnichannel

prices – the ability to include interchannel or interzone business constraints (such as an aggregate

markdown budget). The legacy system is only able to meet such constraints heuristically, since it

solves multiple separate single-store or single-channel price optimization models.
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If Ω satisfies Assumption 1, we can introduce the binary decision variables:

µkei ∈ {0,1}, k= t, . . . , T, ∀i∈ Ie, (3.4)

µkzj ∈ {0,1}, k= t, . . . , T, ∀z ∈Z, ∀j ∈ Ibz, (3.5)

λkzij ∈ {0,1}, k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie, ∀j ∈ Ibz, (3.6)

where µkei = 1 if and only if pke = ωi, where µkzj = 1 if and only if pkbz = ωj, and where λkzij = 1 if and

only if both pke = ωi and pkbz = ωj. Hence, we impose the following linear constraints:∑
i∈Ie

µkei = 1, (3.7)∑
j∈Ibz

µkzj = 1, ∀z ∈Z, (3.8)

λkzij ≤ µkei , ∀z ∈Z, ∀i∈ Ie, ∀j ∈ Ibz, (3.9)

λkzij ≤ µkzj , ∀z ∈Z, ∀i∈ Ie, ∀j ∈ Ibz, (3.10)

We can rewrite constraint (D-OCPX.1)–(D-OCPX.2) as the following linear constraints:

skez ≤
∑
i∈Ie

∑
j∈Ibz

λkzij d
k
ez(ωi, ωj), k= t, . . . , T, ∀z ∈Z, (3.11)

skbz ≤
∑
i∈Ie

∑
j∈Ibz

λkzij d
k
bz(ωi, ωj), k= t, . . . , T, ∀z ∈Z. (3.12)

And we can write the objective of D-OCPX as:
T∑
k=t

∑
z∈Z

(∑
i∈Ie

ωiµ
ke
i s

k
ez +

∑
j∈Ibz

ωjµ
kz
j s

k
bz

)
−
∑
z∈Z

cezYez −
∑
z∈Z

∑
z′∈Z

czz′Yzz′ + q

(
θe +

∑
z∈Z

θbz

)
. (3.13)

Note that while all the constraints are now linear, the objective function (3.13) is bilinear. We can

simulate the nonlinear model using a linear model by “lifting” the problem to a higher dimensional

space. This is done by introducing additional variables W k
ezi = µkei s

k
ez and W k

bzj = µkzj s
k
bz, for all

i, j, k, z. The constraints of the original problem can be used to derive linear constraints for the

higher dimensional problem. From any feasible solution of the linear model, we can obtain a feasible

solution to D-OCPX by projecting it onto the original solution space. Note that any feasible solution

to the bilinear model D-OCPX maps to a feasible solution of the higher-dimensional linear model,

and achieves the same objective value in both models. Hence, if V̄ ∗ is the optimal value of the

linear model, then V̄ ∗ is an upper bound to the optimal value of D-OCPX. The following theorem

shows that this bound is tight, thus the linear model solves D-OCPX.

Theorem 1. Suppose the feasible price Ω satisfies Assumption 1. Let V̄ ∗ be the optimal value

of the following mixed integer program:

maximize
s,Y,θ,µ,λ,W

T∑
k=t

∑
z∈Z

(∑
i∈Ie

ωiW
k
ezi +

∑
j∈Ibz

ωjW
k
bzj

)
−
∑
z∈Z

cezYez −
∑
z∈Z

∑
z′∈Z

czz′Yzz′ + q

(
θe +

∑
z∈Z

θbz

)
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subject to Constraints (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12)

Constraints (D-OCPX.3), (D-OCPX.4), (D-OCPX.5), (D-OCPX.6)∑
i∈Ie

W k
ezi = skez, k= t, . . . , T, ∀z ∈Z, (3.14)∑

j∈Ibz

W k
bzj = skbz, k= t, . . . , T, ∀z ∈Z, (3.15)

W k
ezi ≤

∑
j∈Ibz

λkzij d
k
ez(ωi, ωj), k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie, (3.16)

W k
bzj ≤

∑
i∈Ie

λkzij d
k
bz(ωi, ωj), k= t, . . . , T, ∀z ∈Z, ∀i∈ Ibz, (3.17)

W ≥ 0. (3.18)

Then, V̂ t
D(xt) = V̄ ∗.

The proof of the theorem can be found in the electronic companion (Section EC.2). The proof

constructs a feasible solution to D-OCPX from the optimal solution to the MIP which achieves an

objective value V̄ ∗, implying that V̂ t
D(xt) = V̄ ∗.

Theorem 1 states that the price optimization problem D-OCPX can be solved using a MIP.

When the demands follow discrete choice attraction models (see Section EC.3 in the e-companion),

then it is possible to reduce the number of binary variables of the linear model from O(I2) to

O(I), where I refers to the maximum number of discrete prices used in any channel. Interested

readers can find this result and its proof in the e-companion (Section EC.4). In our computational

experiments later in the paper, when implementing this model in CPLEX for realistic problem

sizes, the solver with its out-of-box parameter settings solves most instances in less than 40 seconds

(see Section EC.1).

3.2. Robust inventory partitions

The heuristic in the previous section approximates the value function by assuming the stochastic

demand would equal its expected value. Hence, for given price variables, the fulfillment variables

ykez and ykzz′ will minimize the fulfillment cost of the deterministic demand. However, when demand

is uncertain, a strategy that minimizes fulfillment cost of the expected demand might result in

significant lost in-store sales and fulfillment costs (higher than expected demand) under some

sample paths or low revenue (lower than expected demand) in other some other sample paths.

As we discussed in the previous section, finding the optimal fulfillment under stochastic demand

is challenging even if we can enumerate the demand realizations for each time period and use a

scenario-tree approach. Thus, in this section, we will introduce a pricing policy which is based

on robust inventory partitions determined from assuming that an adversary chooses the demand
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realization that results in the worst-case firm profit for the given inventory positions. Hence, the

performance of the robust pricing policy is guaranteed for many of the possible sample paths.

Applying standard robust optimization approaches to OCPX results in the adversary choosing

low demand realizations systemwide. This policy is too conservative to implement in practice. We

additionally want the adversary to consider certain high demand sample paths that result in worst

case out-of-stock and fulfillment cost scenarios. We achieve this by ensuring that the budget of

uncertainty set permits local demand fluctuations, yet preserves chain level demand. Optionally, we

can incorporate a penalty for lost sales (i.e., denial-of-service to in-store shoppers due to stockouts)

to quantify a cost for inventory imbalances in sample paths.

Suppose that we can bound the demand multiplicative factor: ξtmz ∈ [1− δ̂tmz,1 + δ̂tmz], for some

δ̂tmz ≤ 1. That is, we can express any realization of the factor as ξtmz = 1 + δ̂tmzw
t
mz for some wtmz ∈

[−1,1]. It is improbable that all w factors take on extreme values. Hence, we introduce the following

uncertainty set for w:

W (Γ,∆) =

{
wkmz ∈ [−1,1], ∀k,m,z :

∑
m,z

|wkmz| ≤ Γk,
∣∣∣∑
m,z

akmzw
k
mz

∣∣∣≤∆k

}
, (3.19)

where Γ,∆≥ 0 are budgets of uncertainty. Γ limits the number of zones and channels that have

large deviations from the expected demand. ∆ limits the aggregate chain level error in demand

and is motivated from commonly observed behavior that aggregated demand tends to have lower

error rates than its disaggregated counterparts. Here, scalars akmz are normalization constants. For

example, a statistic of the absolute percentage weekly error in estimated demand in channel m

and zone z can be used as a proxy for δ̂kmz, and similarly at the chain level for ∆k. The constants

akmz can be set to δ̂kmzd̄
k
mz/

∑
mz d̄

k
mz (i.e., δ̂kmz weighted normalized demands), where d̄kmz are the

calibrated demands at observed prices. A choice of small Γ, shrinks the uncertainty set, with the

deterministic problem being the extreme solution, while a choice of ∆ that is close to zero retains

the same level of nominal demand at chain level, yet permitting local demand fluctuations.

Using a robust framework, we assume that after the retailer decides on prices p= (p1, . . . , pT ), an

“adversary” chooses demand realizations w ∈W (Γ,∆) which result in the worst-case profit. If p is

the chosen price vector, then the worst-case profit is ΠΓ,∆(p,xt) = minw∈W (Γ,∆) Π(w,p;xt), where

Π(w,p;xt) is the profit realization given by:

Π(w,p;xt) = maximize
s,Y,θ

T∑
k=t

∑
z∈Z

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z∈Z

cezYez −
∑
z∈Z

∑
z′∈Z

czz′Yzz′ + q

(
θe +

∑
z∈Z

θbz

)
subject to skez ≤ dtez(pte, ptbz)(1 + δ̂tezw

t
ez), k= t, . . . , T, ∀z ∈Z,

skbz ≤ dtbz(pte, ptbz)(1 + δ̂tbzw
t
bz), k= t, . . . , T, ∀z ∈Z,

Constraints (D-OCPX.3), (D-OCPX.4), (D-OCPX.5), (D-OCPX.6)
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Because the cross-channel fulfillment and sales variables are optimally chosen by the retailer once

the uncertain demand is realized, Π(w,p;xt) is itself an optimization problem. Faced with an adver-

sary, the retailer’s best strategy is to choose the price vector p that maximizes ΠΓ,∆(p;xt). Thus,

the complexity of the robust approach depends on finding the solution to ΠΓ,∆(p;xt) efficiently.

Note that since w and p are given, Π(w,p;xt) is the optimal value of a linear program. Hence,

by LP strong duality, we have that Π(w,p;xt) is equivalent to its dual (a minimization LP), and

consequently ΠΓ,∆(p;xt) is the optimal value of a minimization problem with decision variables

w and the dual variables of Π(w,p;xt). However, this minimization problem is bilinear, which

in general is NP-hard to solve. However, if the feasible prices have finite upper bounds, we can

formulate a linear program whose optimal value Π̃Γ,∆(p;xt) is a lower bound on ΠΓ,∆(p;xt):

Π̃Γ,∆(p;xt) = maximize
s,Y,θ,χ,λ,ψ,ϑ,f

T∑
k=t

∑
z∈Z

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z

(
cezYez +

∑
z′

cz′zYz′z

)
+ q

(
θe +

∑
z∈Z

θbz

)
−
∑
k

(
Γkfk + ∆k|ϑk|

)
−
∑
k

∑
z

∑
m=e,b

(
Akmz|λkmz|+ |χkmz|

)
subject to skmz ≤ dkmz(p) + |λkmz| − |ψkmz|, ∀m,k, z, (3.20)

λkmz +ψkmz = δ̂kmzd
k
mz(p), ∀m,k, z, (3.21)∣∣Akmzλkmz −χkmz − akmzϑk∣∣≤ fk ∀m,k, z, (3.22)

Constraints (D-OCPX.3), (D-OCPX.4), (D-OCPX.5), (D-OCPX.6)

where {Akmz}kmz are constants that can be computed from upper bounds on prices, fulfillment

costs, and the salvage value. Particularly, if P k
e is an upper bound on the online price during period

k, then set Akez = P k
e − q−min(cez,minz′ cz′z). If P k

bz is an upper bound on the store price during

period k at zone z, then set Akbz = P k
bz − q. The proof that Π̃Γ,∆(p;xt)≤ΠΓ,∆(p;xt) can be found

in the e-companion (Section EC.5). This framework can be extended for other types of polyhedral

uncertainty sets, although the lower bound formulation will differ. For instance, we can consider

correlated stochastic factors by setting ξkmz = 1 + (wkmz + σk)δkmz, where wkmz is an independent

uncertainty factor and σk is a systemic factor.

Note that the original worst-case profit ΠΓ,∆ is a min-max problem, with sales and inventory

partition variables optimized by the innermost maximization problem. On the other hand, the lower

bound Π̃Γ,∆ is a maximization problem with these same variables, plus some auxiliary decision

variables. From constraint (3.21), it is easy to deduce that |λkmz| − |ψkmz| takes values between

the possible demand deviation values in [−δ̂kmzdkmz(p), δ̂kmzdkmz(p)]. Therefore, Π̃Γ,∆ allows sales,

partition variables, and demand realizations to be determined jointly, but a penalty is incurred

based on the demand realization.
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Hence, we propose the following robust counterpart of the omnichannel pricing problem:

V̂ t
R(xt) = max

p=(p1,...,pT )
Π̃Γ,∆(p;xt), (R-OCPX)

which we refer to as R-OCPX. We refer to as Robust OCPX the Algorithm 1 pricing policy when

setting V̂ t+1 = V̂ t+1
R to define Û t in (3.1). If the feasible price set satisfies Assumption 1, then it is

possible to linearize V̂ t
R(xt) for general demand functions, similar to Theorem 1, after the absolute

terms in constraints (3.20) and (3.22) are linearized. This can further be reduced for attraction

demand with significantly fewer binary variables, similar to Theorem EC.1 in the e-companion.

4. Simulation experiments

In this section, we simulate a stochastic setting under which we compare the performance of our

proposed omnichannel pricing policies to alternative pricing policies. In particular, we test the

policies on 100 model instances, where each model instance has randomly chosen parameters for

the attraction demand functions, the demand variability, and the fulfillment costs. On each model

instance, we compare the policies by the resulting expected revenue, expected channel sales, and

expected channel prices, which are calculated by applying the policies on the same 100 sample

paths of demand uncertainty factors.

4.1. Data

In each of the 100 model instances, we set T = 8 weeks. Since the inventory in the e-fulfillment

center of our partner retailer is usually depleted at the start of the clearance period, we assume that

xe = 0 in our experiments. For the simulations to finish in a reasonable amount of time while still

introducing regional heterogeneity, we assume that there are Z = 20 pricing zones (compare with

the commercial pilot, when Z = 50). Each zone has one retail store with xbz = 60 units of inventory

at the beginning of the 8 weeks. Within a zone, the expected online demand and the expected store

demand follows a multinomial demand model (MNL). Zones are heterogenous in their demand

parameters. We discuss how we generate the remaining parameters for a model instance and the

sample paths in the e-companion (Section EC.6).

4.2. Methodology

For each of the 100 model instances in the simulation experiments, we test different pricing policies

on the 100 sample paths of the random demand factors. We next describe the simulation experiment

for a specific sample path n of a model instance. For each week t starting from week 1, the pricing

policies (described later) output channel prices pte, (p
t
bz)z∈Z based on the current inventory levels.

Based on these prices and on the demand factors (ξtnez , ξ
tn
bz )z∈Z of the sample path n, the actual

demand (Dt
ez,D

t
bz)z∈Z is realized. The sales and fulfillment are then determined from a fulfillment
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engine, which returns the inventory levels for week t+ 1. The simulation then proceeds to the next

week. Any unsold units leftover after week 8 is sold at the salvage value.

We next describe the details of the fulfillment engine used in the simulations. The engine takes in

as input the week t realized zone-level demand, the week t prices, the week t store inventory levels,

and the ship-from-store fulfillment cost matrix. Our aim is to design the fulfillment engine as an

approximation for how fulfilment is done at the partner retailer: store customers arrive throughout

the day, and fulfillment of online orders is determined periodically (e.g. after one day). Therefore,

if week t is divided into K periods (e.g., 7 days), we assume that the realized week t zone-level

demand is uniformly distributed over the K periods. At the end of the kth period, starting from

period 1, the kth period zone-level store demands are met to the maximum extent possible using

the same-zone store inventory. The remaining inventories in the Z stores are then used to fulfill

the kth period online demands through an optimization model which determines online sales and

fulfillment with the objective of maximizing the myopic revenue minus fulfillment costs.

4.2.1. Pricing policies. We next describe the pricing policies that we have tested in the

simulation experiments. Aside from the pricing policies proposed in this paper, we also test policies

based on an adjustment to the legacy pricing model. The adjustment is meant to mimic the manual

changes applied by pricing managers to outputs of the legacy model. Namely, set the store price

as is (i.e., the output from optimizing store prices assuming that store inventory is only used for

store demand), and set the online price using some manual adjustment to the model (i.e., inject

artificial EFC inventory). The legacy demand model also assumes that that zone z online demand

does not depend on the zone z store price, and that zone z store demand does not depend on the

online price. The legacy demand model for zone z is the following logit demand model:

dtez(p
t
e) =N t

z ×
exp (αez −βezpte)

Cez + exp(αez −βezpte)
,

dtbz(p
t
bz) =N t

z ×
exp (αbz −βbzptbz)

Cbz + exp(αbz −βbzptbz)
,

where we set parameters Cez = 1 + exp(αbz −βbzpnom) and Cbz = 1 + exp(αez −βezpnom) for some

parameter pnom. In practice, even if cross-channel price is used as an independent variable for chan-

nel demand prediction, since the legacy model optimizes prices separately by channel, a nominal or

target cross-channel price pnom will need to be used to predict demand. We set pnom = $245 (a 30%

discount from the full price). In practice, the parameters of the demand model may be recalibrated

as more data is observed. However, in our simulations, because we want to compare the optimized

results without the effect of demand learning, we assume that the demand parameters are static.
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– Legacy unadjusted. Sets the week t store z prices independently by zone. It determines the

price ptbz by solving a single-store multiperiod deterministic optimization model with the objective

of maximizing revenue over the remaining T − t weeks, and which assumes that current store z

inventory xtbz is only used for store z sales. Sets the online price to be the full price of $350.

– Legacy with artificial EFC inventory. This policy sets store prices in the same way as the

“Legacy - Unadjusted” policy. To determine the week t online price, the policy injects artificial

inventory into the online channel (a ‘virtual’ inventory pool) by setting xte =
∑

z∈Z 0.3xtbz (i.e.,

30% of the total inventory).

– OCPX Deterministic. This policy sets week t prices based on solving optimization model

D-OCPX for each period t, given the current store inventory levels {xtbz}z∈Z .

– OCPX Robust. Sets week t prices based on solving the robust optimization model R-OCPX,

given current store inventory levels store inventory levels {xtbz}z∈Z . We chose uncertainty set

parameters Γk

2Z
= 0.05, atmz = δtmz, and ∆t = 0. Note that this uncertainty set includes all sample

paths where the mean absolute percentage error of zone-level demand is less than 5%, and

the total deviation of chain-wide demand from its mean is zero (motivated by Central Limit

Theorem). We set parameters A in model R-OCPX according to Akbz = pt−1
bz − q and Akbz =

pt−1
e − q−min(cez,minz′∈Z cz′z), for all k= t, . . . , T (assume p0 = $350).

– Legacy with OCPX store inventory partitions. This policy determines prices by adjusting

both the store inventory and online inventory using the store inventory partitions from opti-

mal variables {Yzz′}z,z′ of model D-OCPX. It determines price ptbz by solving the multiperiod

deterministic optimization model which maximizes revenue over the remaining T − t weeks,

assuming that the portion of store inventory used for store z sales is xtbz −
∑

z′ Yzz′ . It then

determines the week t online price by injecting artificial inventory into the online channel by

setting xte =
∑

z,z′ Yzz′ .

4.3. Results

For each of the pricing policies, Fig. 3 summarizes the distribution of price or sales statistics over

100 model instances (each model instance provides one data point for the box plots). Fig. 3a shows

box plots representing the distribution (over 100 model instances) of the the average channel price,

where the average is taken over the 100 sample paths, the 8 weeks, and the 20 zones. Fig. 3b shows

the distribution (over 100 model instances) of standard deviation of store prices in a given week,

averaged over the 8 weeks and 100 sample paths. Fig. 3c summarizes the distribution of average

channel sales over the 100 model instances. The average sales of a model instance is taken over the

100 sample paths.

We are also interested in determining the lost revenue from using the policies to set prices. We can

find a bound for this by finding the “perfect foresight” prices for each sample paths. The “perfect
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Figure 3 (a) Average channel price, as percentage of regular price, (b) standard deviation in weekly store mark-

downs, and (c) average channel sales, as percentage of initial inventory. The box plots show median

values (solid horizontal line), 25-75th percentile values (boundary of boxes), and 5-95th percentile

values (whiskers).

foresight” policy sets prices using model D-OCPX where the demands are equal to the actual

demand realizations of the sample path. Averaging the optimal perfect foresight profit over the

sample paths is an upper bound to the expected profit of the optimal pricing policy. This is because

D-OCPX with the actual demand realizations (i) sets the optimal prices for the sample path, and

(ii) sets fulfillment flows for each period after all demand is known, resulting in fulfillment decisions

that are also forward-looking. We use this upper bound to compute the expected revenue loss of

a nonanticipatory policy, shown in Fig. 4, which is the difference between the perfect hindsight

revenue and the policy revenue, averaged over 100 sample paths.
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Figure 4 Expected revenue loss relative to perfect foresight. Box plots show median value (solid horizontal line),

25-75th percentile values (boundary of boxes), and 5-95th percentile values (labeled whiskers).

We first analyze the results of the legacy policies which optimize prices separately by channel-

zone, and models channel demand as independent from cross-channel price. From Fig. 3a,“Legacy

unadjusted” sets zero discount on the online price since there is no EFC inventory, and for majority

of the instances sets store prices at deep discount (25%–55% off) to clear store inventory with

in-store demand. Due to the significant difference between store and online price, this results in

negligible online sales (Fig. 3c) since the true demand process is generated from a MNL model.

Since almost all sales have small profit margin since they occur through the deeply discounted store

channel, the average revenue loss of the unadjusted legacy policy is significant (Fig. 4); in half of

the instances, it is between 11% to 16%.

The “Legacy with artificial EFC inventory” policy sets a nonzero online discount by injecting

artificial inventory into the legacy optimization model to determine online price. From Fig. 3a, this

results in an average online discount of around 20%. Since online prices are now closer to store

prices, a small proportion of store sales (around 10%, based on Fig. 3c) are converted into online

sales. Consequently, the average revenue loss is smaller (Fig. 4) because of the increase in online

sales with higher profit margin.

An interesting observation from Fig. 3b is that the legacy model introduces significant variation

across store prices in a given week, even if all zones start the simulation with the same store

inventory levels. This is a result of the heterogeneity in demand characteristics across regions.

Stores with more demand require less store price discounts than stores with less demand.

Compared to both legacy policies discussed above, OCPX Determinisitc sets store prices with

smaller discounts (10%–20% discount in most instances, based on Fig. 3a). This is due to the OCPX

model “reducing” store inventory available for store walk-in customers through the optimized

inventory partitions. These inventory partitions are also used by the model to determine the online

price, resulting in online markdowns of 15%–30% for most instances. From Fig. 3b, observe the
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significantly smaller variation in store prices by OCPX Deterministic. This is due to two reasons:

(i) OCPX models demand substitution between channels, and prevents channel cannibalization by

setting store prices close to the online price, and (ii) the store inventory partitions “re-balance”

inventory according to the zone-level demand rate. Compared to the two legacy policies, the average

online price is lower and the average store price is higher, resulting in higher online sales (Fig. 3c).

Also, since the store profit margin of OCPX Deterministic is higher, the result is a significantly

smaller revenue loss of 2.5%–6%.

From Fig. 3a, we observe that the online price set by OCPX Deterministic is lower than the

average store price. This was initially surprising since we expected the online price to be higher to

account for the fulfillment cost. We can understand this result by comparing the perfect foresight

prices against the OCPX Deterministic prices for a specific sample path (Fig. EC.1 in e-companion).

If there was no demand uncertainty, then the optimal online price is higher than the average store

price. OCPX Deterministic starts the clearance period by setting a higher online price. However,

since the actual demand is different from the expected demand, the inaccurate sales and inventory

partitions predicted by OCPX Deterministic introduce inventory imbalances across the zones which

accumulate week-to-week. As the last clearance week approaches, there is less opportunity to clear

excess store inventory using store demand due to the decreasing market size; online demand then

becomes a better option since it can be fulfilled with store inventory from a zone with excess store

inventory regardless of the customer’s location. Hence, OCPX Deterministic increases online sales

through deep online discounts towards the end of the horizon.

Unlike OCPX Deterministic, OCPX Robust explicitly accounts for demand uncertainty (through

the uncertainty set) in computing inventory partitions and prices. OCPX Robust has a higher

average revenue loss compared with OCPX Deterministic (Fig. 4). This is because OCPX Robust

is conservative by design, since the prices should result in acceptable profit values for a variety

of sample paths, which degrades its expected profit. One of the ways it accomplishes this is by

setting online prices higher than store prices (Fig. 3a). Intuitively, this is because a lower online

price would result in sample paths with low profit (i.e., paths where online demand is higher than

expected, resulting in low profit margins due to the low price and the cost to fulfill online sales).

A final test that we wanted to conduct in these simulations is whether the optimal OCPX

Deterministic inventory partitions can be used to improve the performance of the legacy markdown

optimization model (Legacy with OCPX partitions). Since the OCPX Deterministic partitions

are used to reduce the store inventory fed into the legacy store markdown model, we observe

in Fig. 3a that the average store prices are higher than the other legacy policy variants. However,

since the demand model is inaccurate, the margins from this policy are lower compared to OCPX

Deterministic, resulting in a higher revenue loss under the legacy model with OCPX Deterministic
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partitions. This implies that the accuracy of the legacy demand model is critical when utilizing

OCPX partitions for pricing. Nevertheless, amongst the legacy markdown optimization models,

the variant with OCPX partitions results in the lowest expected profit loss.

5. Partnership with a large U.S. retailer

In this section, we describe the project with the partner retailer. The retailer has annual sales of

more than $40 billion and operates more than 1,000 brick-and-mortar stores and one e-fulfillment

warehouse. The objective of the project was to rollout an omnichannel pricing analytics as a part of

the IBM Commerce markdown optimization solution, which the retailer can then use for clearance

pricing. The project proceeded in three phases: (i) a business value assessment on historical data,

(ii) an independent test by the production team, and (iii) a commercial release and pilot of the

new omnichannel pricing analytics.

5.1. Phase 1: Business value assessment

We engaged with the retailer for 6 months to conduct the business value assessment (BVA) to

understand the impact of the OCPX pricing system on representative product categories based

on historical data. The first few weeks were spent on working with all stakeholders to define the

business problem, select the categories to be analyzed, and collect and process the historical data.

Thereafter, we performed the demand model calibration and the value assessment.

The retailer provided transaction log data and inventory data for three product categories (Note-

books, Tablets, and Tablet Accessories) between January 1, 2014 to December 31, 2014 (see Table 1

for the data summary). In the dataset, only 195 of the SKUs sold in both channels were on clear-

ance. These SKUs contribute to a total of 7.5 million annual clearance sales units, and total annual

clearance revenues of $107 million. On average, about 89% of lifecycle sales made in these categories

is through store purchase, and about 11% is through the online channel. Almost 94% of online

lifecycle sales are fulfilled using inventory shipped from a store. During clearance alone, the online

sales share steeply increases to about 24% and the ship-from-store (SFS) fraction is close to 100%.

We were additionally provided with price information for 18 online competitors. This competitor

Table 1 Data summary of SKUs used in the business value assessment.

Categories # SKUs Clearance Sales Clearance Revenue % Sales From % E-commerce

(million units) ($ millions) E-commerce Ship From Store

Notebooks 100 4.1 84 13.4% 94.6%

Tablets 45 1.4 17 14.4% 93.7%

Tablet Accessories 50 2 6 5.4% 90.4%

Total 195 7.5 107 11.4% 93.8%
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Table 2 Impact of OCPX on average channel prices and category-wide sales in business value assessment.

Store price Online price % Change in Sales Change in

Category Actual OCPX Actual OCPX Online Store Total Clearance Revenue

Notebooks 81% 93% 90% 85% +16% −1% +3% +10% (+$9.0 million)

Tablets 81% 90% 79% 77% +15% +10% +11% +12% (+$2.3 million)

Accessories 81% 93% 90% 85% +11% +5% +6% +6% (+$1.2 million)

price data overlapped with 59 SKUs in our study and among those that had an overlap, on aver-

age, there were 6 competitors per SKU. We use this data to calibrate the SKU-zone level demand

models using a procedure we describe in Section EC.7 of the e-companion. The value assessment

presented in this section are predictions based on this calibrated demand model.

For each of the 195 clearance SKUs, using the estimated zone-level demand models, we opti-

mize the 10–12 week clearance prices through the MIP formulation of model D-OCPX (without

reoptimization, since we do not know the “actual” demand values for the chosen prices). The

retailer’s fulfillment strategy was to fulfill the item from the warehouse, if it had any inventory,

and if not, the nearest in-stock store was chosen. Fulfillment cost data was not available, hence

we set distance-based shipping costs, with additional cost for SFS fulfillment to adhere to priority

ordering. For each SKU, the retailer provided the salvage values and the pricing business rules,

which typically included a minimum time between markdowns, minimum and maximum markdown

price percentages, and price bounds. We included the constraints in OCPX to simulate the revenue

that OCPX would achieve when implemented with business rules applied by the retailer.

The OCPX model was developed as a Java API which was evaluated on an OS X computer with

an Intel Core i7 processor. CPLEX 12.6.2 with its out-of-box parameter settings was used to solve

the MIPs to optimality. The optimization model was solved at the start of the clearance period

and used up to 20 price discretizations based on the initial price. Problem instances had up to

10K binary variables, 50K flow variables and 100K constraints. In comparison, a legacy approach

solves a single store problems, which are significantly smaller in size. Fig. EC.2 in the e-companion

provides the distribution of the computational run times of the MIPs, the percentage gap of the

MIP optimal solution to the LP root node, and the total number of branch-and-bound nodes in

solving the MIP problem. We note that 80% of the instances solved in less than 40 seconds, with

a gap of at most 1% with the root node LP with little or no branching required. Our MIP-based

approach allows us solve the large scale integrated pricing problem within the required business

cycle.

Table 2 shows the projected effect of the OCPX model on average channel prices (normalized by

regular price), on category-wide sales, and on category-wide clearance revenues. The actual store



Harsha, Subramanian and Uichanco: Dynamic pricing of omnichannel inventories

25

prices are based on the outputs of the legacy markdown system using the initial store inventory

level. The actual online prices are from manual adjustments by pricing managers, typically from

an injection of artificial EFC inventory, on the legacy markdown system. We make the following

general observations. (1) The retailer is currently setting lower store prices than OCPX store prices,

agreeing with our observations on the legacy model from the simulation experiments. (2) The

OCPX online prices are lower than the actual online prices, resulting in an increase in online sales

activity. (3) The OCPX prices result in higher total sales (7% on average across categories with

more than 23% reduction in the unsold clearance inventory). While the cause for the increase in

online sales activity is obvious, the increase in store sales for two of the categories is less obvious

since OCPX store prices are higher. The root cause of this increase is the conversion of lost

store sales into actual sales through: directing online sales away from stores that are likely to sell

out in the future (and to stores with stagnant inventories) and better demand management with

omnichannel prices. In fact, the omnichannel demand model predicts more than 21% reduction in

lost store sales opportunities at the recommended prices across categories. The combined effect of

the optimal prices and fulfillment inventories yields an increase in the clearance revenue ranging

between 6% and 12%. This translates to a combined annual increase of $12.5 million in the total

revenue from the clearance pricing of the 195 SKUs alone.

5.2. Phase 2: Independent test of the incumbent system using OCPX partitions

The BVA was presented to the retailer and reviewed by their team of pricing analysts and senior

executives who were well-versed with the incumbent MDO system. The pricing analysts have long

recognized that the incumbent system fails for SKUs with significant SFS fulfillment due to its

inability to determine how to partition inventory between store demand and online fulfillment.

Their feedback was overwhelmingly positive along with an immediate request for productizing

OCPX.

A proprietary version of the analytics described in the paper was approved for commercial

deployment at IBM. To productize the new OCPX solution (omnichannel demand forecasting and

OCPX optimization with a multitude of business rules), we collaborated with the IBM Commerce

team who developed the necessary IT infrastructure, data processing, analytics integration, and

user interface. The team decided that as an intermediate step before fully transitioning to the

OCPX system, the incumbent system should be modified using store partitions identified by the

OCPX solution, so as to gauge benefits by SKU (i.e., with and without OCPX). To have an unbiased

assessment of the effect from this adjustment, it was determined that the projected KPIs should

be estimated from the incumbent demand forecasting engine. This is because the retailer had years

of experience with the incumbent forecasting engine and its accuracy for various categories.
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Figure 5 Gain in markdown revenue plotted against store inventory partitions for SFS fulfillment. Each point

represents a product category.

There were 43 clearance SKUs (across 10 consumer electronics categories) selected to be priced

with the modified incumbent system during 2015 Q4 through 2016 Q1. To mitigate the operational

risk of using the modified system, the selected categories had a low use of ship-from-store fulfillment

or a low online share. The projected revenue and other KPIs were estimated using the legacy

forecast engine at the beginning of the clearance season under two settings: without partitions

(OFF) and with OCPX partitions (ON). Since the exact inventory injections (if any) that pricing

managers applied on the unadjusted legacy solution was unavailable, we cannot project the revenue

of the incumbent with artificial EFC injections.

Fig. 5 presents the projected percentage improvement in category-level markdown revenue plot-

ted against the percentage store inventory partitions for SFS fulfillment. The horizontal axis rep-

resents the degree of channel interdependency based on inventory, where 0% implies that no store

inventory is used for online sale fulfillment. The figure plots the results from this independent test,

and compares it with results from the business value assessment. We observe that, consistent across

the tests, the revenue gain varies by category and is positively correlated with the online SFS

activity. We also tracked impact on other KPIs (e.g., markdown depth, sales dollars, sell-through),

which were consistent with the impact observed from the the business value assessment. All the

KPI values are normalized (weighted average) by the store inventory partition units due to its

dependency and the achieved benefits are reported.

The independent test showed that the modification led to a 6% increase on the average mark-

down revenue in the categories analyzed. The sales dollars improved by 8% while the sell-through

increased by 5 percentage points. Utilizing the OCPX partitions also led to an average 2 per-

centage point reduction in brick-and-mortar markdown by avoiding steep and early markdowns.
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We include an additional observation about the optimized prices in the 10 test categories. The

price dispersion across the brick stores, empirically measured using the coefficient of variation of

the highest markdown, tended to decrease due to OCPX partitions by up to 6.45%, suggesting a

higher degree of price parity through the retail network. This agrees with our observations from

the simulations in Section 4.

5.3. Phase 3: Commercial release and pilot

The successful results from the independent test convinced both IBM Commerce and the partner

retailer of the benefits achievable by the OCPX system and led to the full-scale commercialization

of the proprietary version of the solution, with the partner retailer as its pilot client. The limited

commercial release of the OCPX system went live in March 2016, followed with its general avail-

ability in May 2016. The capabilities of the solution were announced at the IBM Amplify 2016

conference.

Subsequent to the commercial release in Q2 2016, the retailer has gradually transitioned SKUs

marked for clearance to OCPX. For the transitioned SKUs, the parameters of the omnichannel

demand model are periodically recalibrated and the OCPX models are re-optimized every period.

The SKUs were monitored in real-time by IBM Commerce as part of continued performance test-

ing. For these SKUs, the quality of the recommended prices depend on how accurately the OCPX

inventory partitions predict its realized values (actual store inventory used for SFS fulfillment).

Hence, an inventory partition accuracy metric is additionally reported to the retailer. This accu-

racy metric compares the OCPX’s Week 1 optimal inventory partition solution against the actual

fulfillments during the same weeks. Unlike typical forecast metrics that measure the prediction

accuracy of a statistical forecast, this metric measures the prediction accuracy of an optimized

decision variable. For 22 SKUs across 5 consumer electronics categories (where ON prices were

executed in the independent testing phase above), the mean absolute percentage error at the chain-

level was about 20%. Closing this gap requires the modeling of the market-basket fulfillment and

complex operational factors and is a topic for future research.

5.3.1. Causal model analysis. A controlled experiment to assess the benefits of OCPX could

not be executed for several reasons. Firstly, OCPX optimizes across the complete retail network

and uses as input the inventory levels across the 1000+ stores. Hence, it is difficult to estimate

the treatment effect through finding close substitutes (similar to Caro and Gallien 2012) since not

only should the identified substitutes have similar demand characteristics, but the distribution of

inventory at the start of clearance should also be identical. Secondly, a SKU is only in clearance for

one season before being retired. Hence, we cannot apply pre-treatment (legacy) and post-treatment

(OCPX) on the same SKU in different clearance seasons, precluding a Difference-in-Differences
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test similar to Fisher et al. (2016). Instead, we evaluated the benefits of OCPX from the pilot data

through causal model analysis via statistical adjustment using appropriate pre-treatment predictors

and confounding variables (Gelman and Hill 2006, Chapter 9). We obtained a one year sample

of historical data from the IBM Commerce production system for a sample of SKUs across 34

categories, where each SKU either had the OCPX treatment or not. All SKUs had online presence,

and had a markdown end date (i.e., last date of the clearance season) in Q1 of 2017. We selected

SKUs where we observed the full clearance season. For the average treatment SKU, the online

sales share is 12.6% during the regular season and this nearly doubles to 24.1% during clearance

season. In addition, nearly 98% of online sales during clearance season is fulfilled using SFS with

approximately 20% of store inventory.

We use the following regression model to estimate the average causal effect of OCPX, where

each SKU is an observation:

ln(Avg-Weekly-MD-Revi)∼ α0 +α1 ln(Avg-Weekly-Reg-Revi) +α2 Avg-Weekly-MD-Inventoryi

+α3 Treatmenti ∗Reg-Online-Sharei +α4 Controli ∗Reg-Online-Sharei

+α5 Avg-Online-MD-Depthi +α6Avg-Store-MD-Depthi ∀i∈ Items. (5.1)

The terms Avg, MD, Reg and Rev correspond to average, markdown, regular and revenue

respectively. Here, Treatmenti = 1 if the SKU i used OCPX and 0 otherwise, while Controli =

1−Treatmenti. The average weekly markdown and regular season revenues are obtained by dividing

the total revenue in each season by their respective durations, and the average weekly markdown

inventory is the initial clearance inventory divided by markdown duration. This normalization was

done since the durations can vary by season for the same item and across items.

The dependent variable in the regression model is the log markdown revenue rate. Motivated

by the observation in Fig. 5 that the gain in OCPX markdown revenue is proportional to use of

SFS fulfillment, we interact the regular season online share with the treatment effect (For this

retailer, the regular season online share is highly correlated with the SFS fulfillment during clear-

ance). Moreover, for both treatment and control SKUs, we expect that higher the online presence,

the retailer can clear the inventory better using SFS fulfillment. However, due to collinearity of

variable Reg-Online-Sharei with Treatmenti ∗Reg-Online-Sharei, we instead use variable Controli ∗
Reg-Online-Sharei. We also control for pre-treatment predictors, which are the log regular season

revenue rate and the normalized initial clearance inventory.

The coefficients of interest are α3 and α4. The difference, α3−α4, can be interpreted as the per-

centage markdown revenue change (per percentage online share) due to OCPX. Table 3 shows the

estimation results. We conduct analyses on two regression models, with and without the channel-

specific markdown depth, and obtain consistent estimates of the treatment effect for both. We
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Table 3 Revenue Impact of OCPX based on causal model estimated from pilot data.

ln(Avg-Weekly-MD-Rev) w/o markdown depth with markdown depth

Constant 1.820∗∗∗ 1.486∗∗∗

(0.178) (0.230)

ln(Avg-Weekly-Reg-Rev) 0.597∗∗∗ 0.596∗∗∗

(0.021) (0.021)

Avg-Weekly-MD-Inventory 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001)

Treatment ∗Reg-Online-Share 1.481∗∗ 1.483∗∗∗

(0.469) (0.436)

Control ∗Reg-Online-Share 0.565∗∗ 0.394‡

(0.263) (0.248)

Avg-Online-MD-Depth -0.865∗∗∗

(0.220)

Avg-Store-MD-Depth 2.070∗∗∗

(0.318)

# obs 275 275

# treatment 57 57

R-sq 0.832 0.855

Improvement due to OCPX 12.3% 14.8%

∗ ∗ ∗p < .001, ∗∗p < .05, ∗p < .1, ‡p= .11. SKUs with very small durations and rate of sales were eliminated.

use the treatment group’s average regular season online share (∼12.6%) to compute the average

improvement due to OCPX reported in the last row of Table 3. Depending on the control variables

included in the model, the markdown season revenue increase due to OCPX ranges between 12.3%

to 14.8%.

6. Conclusion

The integration of a retailer’s online channel and network of retail stores have introduced new

demand-side and supply-side cross-channel interactions that are often ignored in legacy pricing

systems. A challenge in capturing supply-side interactions in price optimization systems is that

cross-channel fulfillment is determined exogenously by a standalone order management system

(OMS). In this paper, we proposed two pricing policies (Deterministic OCPX and Robust OCPX)

that estimate the future use of omnichannel inventory through inventory partition variables. Both

policies determine the current prices by solving a mixed integer program (MIP). Commercial off-

the-shelf optimization solvers such as CPLEX can effectively solve many practical large-scaled

MIPs, making the OCPX solution ideal for implementation in a production environment. A propri-

etary version of the OCPX system has been implemented as part of the IBM Commerce Markdown

Price Solution and has been piloted by a major U.S. retailer. Causal analysis on the data from the

pilot test conducted by the retailer in rolling out the new system revealed 12% improvement in
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clearance period revenue. The key benefits of the OCPX policies are two-fold: Inventory rebalanc-

ing through pricing by directing online sales away stores that are likely to sell-out towards stores

that have slow moving inventories, and better management of channel demands using omni-channel

prices. The proposed methods can be used, more generally, to price resources in shared inventory

systems.

6.1. Possible extensions to the OCPX policies

The model discussed in the paper can be modified to account for different network setups. For

instance, multiple fulfillment centers can be introduced by adding more EFC inventory nodes. Mul-

tiple stores in one zone can be modeled by multiple store inventory nodes per zone and multiple

store demand functions per zone. Warehouse-to-store allocations, which allow mid-season replen-

ishment of store inventory, can be modeled by introducing new flow variables between warehouse

and stores. Practically motivated business constraints, besides those on prices, such as those on

ship-from-store capacities can also be easily modeled in OCPX.

Finally, some aspects not considered in the model (but which are frequently associated with

omnichannel retail) are buy-online-pickup-in-store (BOPS) fulfillment, shipping cost charged to the

customer, and product returns. To model BOPS, we can introduce a zone-specific proportion βz of

online customers in zone z that will choose to pick-up from the store in the same zone. The last two

constraints specifying feasible sales and fulfillment variables in (2.6) should be modified accordingly

as stbz + βzs
t
ez +

∑
z′∈Z y

t
z′z ≤ xtbz and (1− βz)stez = ytez +

∑
z′∈Z y

t
z′z. Shipping cost charged to the

customer can be modeled as an additional decision variable (adding to the retailer’s profit) that

also affects omnichannel demand, potentially having a different elasticity compared to the prices.

Product returns can also be modeled as a parameter rz of online customers in zone z who will

return to store z, with appropriate adjustments to the inventory flows in (2.6).
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Figure EC.1 For a specific model instance and sample path, the potential market size (secondary axis) and the

weekly channel prices (primary axis) of (a) perfect foresight model and (b) OCPX - Deterministic

policy.
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Figure EC.2 Distribution of the computational runtimes, the percentage gap of the MIP optimal solution with

respect to its LP root node, and number of branch and bound nodes.

EC.2. Proof of Theorem 1

Proof. Since the feasible price set is discrete, then D-OCPX is equivalent to the optimization

model with (3.13) as an objective, and with constraints (3.11)–(3.12), (D-OCPX.3)–(D-OCPX.6),
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and (3.4)–(3.10). Let us denote by (ŝ, Ŷ , θ̂, λ̂, µ̂) the optimal solution to this model, which has an

objective value of V̂ t
D(xt). Defining

Ŵ k
ezi = µ̂kei ŝ

k
ez, k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie,

Ŵ k
bzj = µ̂kzj ŝ

k
bz, k= t, . . . , T, ∀z ∈Z, ∀j ∈ Ibz,

we can easily check that (ŝ, Ŷ , θ̂, λ̂, µ̂, Ŵ ) is a feasible solution to the mixed integer program (MIP)

given in Theorem 1 and achieves the objective value V̂ t
D(xt). Hence, V̂ t

D(xt)≤ V̄ ∗.

We next show that V̂ t
D(xt)≥ V̄ ∗. Let us denote the maximizer of the MIP as (s̄, Ȳ , θ̄, λ̄, µ̄, W̄ ),

which achieves the optimal value V̄ ∗. From the binary constraints of the MIP, and from con-

straints (3.7)–(3.8), it follows that for time k, there exist price indices (ike, jkz1 , . . . , jkzn) such that:

µ̄keike = 1, µ̄kei = 0, ∀i 6= ike, (B.1)

µ̄kzjkz = 1, ∀z ∈Z, µ̄kzj = 0, ∀j 6= jkz, ∀z ∈Z. (B.2)

These then imply from constraints (3.9)–(3.10) that λ̄kzij = 0 for all i, j where i 6= ike or j 6= jkz, for

all z ∈Z. Therefore, from constraint (3.16), it follows that W̄ k
ezi = 0 for all i 6= ike, z ∈Z. Similarly,

from constraint (3.17), it follows that W̄ k
bzj = 0 for all j 6= jkz, z ∈ Z. Thus, this implies from

constraints (3.14)–(3.15) that W̄ k
ezike

= s̄kez for all z ∈ Z, and that W̄ k
bzjkz

= s̄kbz for all z ∈ Z. Thus,

it is easy to check based on the definitions (B.1)–(B.2) that we have the following relationships:

W̄ k
ezi = µ̄kei s̄

k
ez, k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie,

W̄ k
bzj = µ̄kzj s̄

k
bz, k= t, . . . , T, ∀z ∈Z, ∀j ∈ Ibz,

Therefore (s̄, Ȳ , θ̄, λ̄, µ̄) is a feasible solution to D-OCPX with an objective value V̄ ∗. Hence, V̄ ∗ ≤

V̂ t
D(xt), which proves the theorem. �

EC.3. Discrete choice attraction demand models

Common demand functions used for substitutes are attraction demand models, for which the

multinomial logit (MNL) model is a special case. For the class of attraction demand models:

dtez (pte, p
t
bz) =N t

z ×
f tez (ptez)

1 + f tbz (ptbz) + f tez (ptez)
, (C.1)

dtbz (pte, p
t
bz) =N t

z ×
f tbz (ptbz)

1 + f tbz (ptbz) + f tez (ptez)
, (C.2)

where N t
z is the market size at time t in zone z. We refer to f tez(·), f tbz(·) as attraction func-

tions, which are positive and strictly decreasing functions. Note that these attraction functions

are indexed by t and z, since the attractiveness of a channel may differ by zone or even by time
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(due to holiday effects or seasonality effects). For the MNL model, the attraction functions are

exponentially decreasing in price, i.e., f tmz(p) = exp(αtmz −βmzp) where m = e, b. The attraction

model has been used successfully in estimating demand in econometric studies, in marketing, and

in operations. Aside from MNL, other special cases of the attraction model are the Multiplicative

Competitive Interaction (MCI) model, and the linear attraction model.

EC.4. Linear reformulation of D-OCPX under discrete prices and
attraction demand models

Theorem 1 provides a linear reformulation for model D-OCPX for general demand models and

discrete prices. Here, we provide a different linear reformulation with significantly fewer variables

(Theorem EC.1) if the demand follows an attraction model. The reformulation uses a variable

transformation similar to that in Subramanian and Sherali (2010).

Suppose that the feasible price set Ω is discrete and satisfies Assumption 1. Suppose that the

demand follows the attraction model (C.1)–(C.2). Let us introduce the following constants:

φkezi = fkez(ωi), k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie, (D.1)

φkbzj = fkbz(ωj), k= t, . . . , T, ∀z ∈Z, ∀i∈ Ibz. (D.2)

Therefore, after introducing the binary decision variables (3.4)–(3.6), we can reformulate optimiza-

tion model D-OCPX as:

maximize
s,Y,θ,µ

T∑
k=t

∑
z∈Z

(∑
i∈Ie

ωiµ
ke
i s

k
ez +

∑
j∈Ibz

ωjµ
kz
j s

k
bz

)
−
∑
z∈Z

cezYez −
∑
z∈Z

∑
z′∈Z

czz′Yzz′ + q

(
θe +

∑
z∈Z

θbz

)

subject to skez ≤
N t
z

∑
i∈Ie φ

k
eziµ

ke
i

1 +
∑

i∈Ie φ
k
eziµ

ke
i +

∑
j∈Ibz

φkbzjµ
kz
j

, k= t, . . . , T, ∀z ∈Z, (D.3)

skbz ≤
N t
z

∑
j∈Ibz

φkbzjµ
kz
j

1 +
∑

i∈Ie φ
k
eziµ

ke
i +

∑
j∈Ibz

φkbzjµ
kz
j

, k= t, . . . , T, ∀z ∈Z, (D.4)

Constraints (D-OCPX.3), (D-OCPX.4), (D-OCPX.5), (D-OCPX.6)

Constraints (3.4), (3.5), (3.7), (3.8)

(D.5)

As before, we denote V̂ t
D(xt) as its optimal value.
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Theorem EC.1. Suppose Ω satisfies Assumption 1. Let V̄ ∗2 be the optimal value of the following

mixed integer program:

maximize
s,Y,θ,µ,W,R,G

T∑
k=t

∑
z∈Z

(∑
i∈Ie

ωiW
k
ezi +

∑
j∈Ibz

ωjW
k
bzj

)
−
∑
z∈Z

cezYez −
∑
z∈Z

∑
z′∈Z

czz′Yzz′ + q

(
θe +

∑
z∈Z

θbz

)
subject to skez ≤N t

z

∑
i∈Ie

φkeziR
k
ezi, k= t, . . . , T, ∀z ∈Z, (P2.1)

skbz ≤N t
z

∑
j∈Ibz

φkbzjR
k
bzj, k= t, . . . , T, ∀z ∈Z, (P2.2)

Constraints (D-OCPX.3), (D-OCPX.4), (D-OCPX.5), (D-OCPX.6)

Constraints (3.4), (3.5), (3.7), (3.8)∑
i∈Ie

W k
ezi = skez, k= t, . . . , T, ∀z ∈Z, (P2.3)∑

j∈Ibz

W k
bzj = skbz, k= t, . . . , T, ∀z ∈Z, (P2.4)

W k
ezi ≤Nk

z φ
k
eziR

k
ezi, k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie, (P2.5)

W k
bzj ≤Nk

z φ
k
bzjR

k
bzj, k= t, . . . , T, ∀z ∈Z, ∀i∈ Ibz, (P2.6)∑

i∈Ie

Rk
ezi =Gk

z , k= t, . . . , T, ∀z ∈Z, (P2.7)∑
j∈Ibz

Rk
bzj =Gk

z , k= t, . . . , T, ∀z ∈Z, (P2.8)

Rk
ezi ≤ µkei , k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie (P2.9)

Rk
bzj ≤ µkzj , k= t, . . . , T, ∀z ∈Z, ∀j ∈ Ibz (P2.10)

Gk
z +
∑
i∈Ie

φkeziR
k
ezi +

∑
j∈Ibz

φkbzjR
k
bzj = 1, k= t, . . . , T, ∀z ∈Z, (P2.11)

W ≥ 0, R≥ 0, G≥ 0. (P2.12)

Then, V̂ t
D(xt) = V̄ ∗2 .

Proof. Let us denote by (ŝ, Ŷ , θ̂, µ̂) as the optimal solution to D-OCPX under an attraction

demand model, which has an objective value of V̂ t
D(xt). Defining

Ŵ k
ezi = µ̂kei ŝ

k
ez, k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie,

Ŵ k
bzj = µ̂kzj ŝ

k
bz, k= t, . . . , T, ∀z ∈Z, ∀j ∈ Ibz,

Ĝk
z =

1

1 +
∑

i∈Ie φ
k
eziµ̂

ke
i +

∑
j∈Ibz

φkbzjµ̂
kz
j

, k= t, . . . , T, ∀z ∈Z,

R̂k
ezi = µ̂kei Ĝ

k
z , k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie,

R̂k
bzj = µ̂kzj Ĝ

k
z , k= t, . . . , T, ∀z ∈Z, ∀j ∈ Ibz,

we can easily check that (ŝ, Ŷ , θ̂, µ̂, Ŵ , R̂, Ĝ) is a feasible solution to the mixed integer program P2

and achieves the objective value V̂ t(xt). Hence, V̂ t
D(xt)≤ V̄ ∗2 .
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We next show that V̂ t
D(xt)≥ V̄ ∗2 . Let us denote the maximizer of model P2 as (s̄, Ȳ , θ̄, µ̄, W̄ , R̄, Ḡ),

which achieves the optimal value V̄ ∗2 . From the binary constraints of P2, and from constraints (3.7)–

(3.8), it follows that for time k, there exist price indices (ike, jkz1 , . . . , jkzn) such that:

µ̄keike = 1, µ̄kei = 0, ∀i 6= ike, (D.6)

µ̄kzjkz = 1, ∀z ∈Z, µ̄kzj = 0, ∀j 6= jkz, ∀z ∈Z. (D.7)

From constraints (D.6) and (P2.5), it follows that W̄ k
ezi = 0 for all i 6= ike, z ∈Z. Similarly, from

constraints (D.7) and (P2.6), it follows that W̄ k
bzj = 0 for all j 6= jkz, z ∈Z. Thus, these imply from

constraints (P2.3)–(P2.4) that W̄ k
ezike

= s̄kez for all z ∈Z, and that W̄ k
bzjkz

= s̄kbz for all z ∈Z. Thus,

it is easy to check based on the definitions (D.6)–(D.7) that we have the following relationships:

W̄ k
ezi = µ̄kei s̄

k
ez, k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie, (D.8)

W̄ k
bzj = µ̄kzj s̄

k
bz, k= t, . . . , T, ∀z ∈Z, ∀j ∈ Ibz, (D.9)

From constraints (D.6) and (P2.9), it follows that R̄k
ezi = 0 for all i 6= ike, z ∈Z. Similarly, from

constraints (D.7) and (P2.10), it follows that R̄k
bzj = 0 for all j 6= jkz, z ∈Z. Thus, these imply from

constraints (P2.7)–(P2.8) that R̄k
ezike

= Ḡk
z for all z ∈ Z, and that R̄k

bzjkz
= Ḡk

z for all z ∈ Z. Thus,

it is easy to check based on the definitions (D.6)–(D.7) that we have the following relationships:

R̄k
ezi = µ̄kei Ḡ

k
z , k= t, . . . , T, ∀z ∈Z, ∀i∈ Ie, (D.10)

R̄k
bzj = µ̄kzj Ḡ

k
z , k= t, . . . , T, ∀z ∈Z, ∀j ∈ Ibz, (D.11)

From (D.10)–(D.11), and from (P2.11), it follows that 1 = Ḡk
z +φkezikeḠ

k
z +φkbzjkzḠ

k
z . Thus,

Ḡk
z =

1

1 +φkezike +φkbzjkz
=

1

1 +
∑

i∈Ie φ
k
eziµ̄

ke
i +

∑
j∈Ibz

φkbzjµ̄
kz
j

. (D.12)

Substituting (D.10)–(D.11) into (P2.1)–(P2.2), and using the relationship (D.12), we have

s̄tez ≤Nk
z φ

k
ezike

Ḡk
z =

Nk
z

∑
i∈Ie φ

k
eziµ̄

ke
i

1 +
∑

i∈Ie φ
k
eziµ̄

ke
i +

∑
j∈Ibz

φkbzjµ̄
kz
j

, (D.13)

s̄tbz ≤Nk
z φ

k
bzjkz

Ḡk
z =

Nk
z

∑
j∈Ibz

φkbzjµ̄
kz
j

1 +
∑

i∈Ie φ
k
eziµ̄

ke
i +

∑
j∈Ibz

φkbzjµ̄
kz
j

. (D.14)

Thus, (D.13)–(D.14) proves that (s̄, Ȳ , θ̄, µ̄) is feasible for model D-OCPX. Moreover, since we

have (D.8)–(D.9), then this solution achieves the objective value V̄ ∗2 . Thus, V̄ ∗2 ≤ V̂ t
D(xt), which

proves the theorem. �
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EC.5. Robust reformulation

Note that if w and p are fixed, then Π(w,p;xt) is the optimal value of a linear program. Hence, by

strong duality of LP, Π(w,p;xt) is equivalent to a minimization LP. Thus, the worst-case retailer

profit is equivalent to:

ΠΓ,∆(p;xt) = minimize
α,β,w

T∑
k=t

∑
z∈Z

[
dkez(p)

(
1 + δ̂kezw

k
ez

)
αkez + dkbz(p)

(
1 + δ̂kbzw

k
bz

)
αkbz

]
+βex

t
e +
∑
z∈Z

βbzx
t
bz

subject to αkbz +βbz ≥ pkbz, ∀k∀z,

αkez +βe ≥ pke − cez, ∀k∀z,

αkez +βbz′ ≥ pke − cz′z, ∀k,∀z,∀z′,

βe ≥ q, βbz ≥ q,

α≥ 0,

w ∈W (Γ,∆),

where α,β are the variables in the dual of Π(w,p;xt). Note that the above optimization problem

is bilinear. Since w is bounded, then if we can find finite bounds for α, then we can use a “lifting”

technique to find a LP lower bound for ΠΓ,∆(p;xt).

Lemma EC.1. Let (ᾱ, β̄, w̄) be the optimal solution for ΠΓ,∆(p;xt). Then, ᾱkbz ≤ pkbz − q and

ᾱkez ≤ pke − cz − q for all z ∈Z, where cz = min(cez,minz′ cz′z)

Proof. Since the demands are nonnegative for all realizations, then given β̄,

ᾱ must take its smallest feasible value. Thus, ᾱkbz = max
(
0, pkbz − β̄bz

)
, and ᾱkez =

max
(
0, pke − cez − β̄e,maxz′∈Z

(
pke − cz′z − β̄bz′

))
. Therefore, since the β̄ variables are bounded

below by q, then in fact we have the following upper bounds for the ᾱ variables: ᾱkbz ≤ pkbz − q and

ᾱkez ≤ pke − cz − q for all z ∈Z. �

The upper bounds for ᾱ in the lemma are nonnegative if we impose regularity conditions on Ω:

Assumption EC.1. Consider any feasible price vector p̄ ∈ Ω. For all z ∈ Z, p̄bz ≥ q, and p̄e −

min{cez,minz′∈Z cz′z} ≥ q.

If the first condition of Assumption EC.1 is not met by p̄, then it is more profitable to hold store

inventory than to sell it to a store customer. If the second condition is not met by p̄, then the firm

will not sell to an online customer from a zone z, since regardless of the fulfillment location, it is

more profitable to hold on to the inventory and sell it at salvage.

Note that α variables are the shadow prices for the demand constraints of Π(w,p;xt), while the

β variables are the shadow prices for its inventory constraints. Thus the upper bounds make sense

because αkbz is the marginal increase in value with an additional unit of store demand, which cannot
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exceed the marginal value of a store sale. Similarly, αkez is the marginal increase in value with an

additional unit of online demand, which cannot exceed the maximum marginal value of an online

sale (i.e., using the cheapest fulfillment).

From the lemma, we can add constraints αkmz ≤Akmz (for some finite Akmz) that do not change

the optimal value of ΠΓ(p;xt). Since the w and α variables are bounded, we can use a “lifting”

technique to find a linear program whose optimal value Π̃Γ,∆(p;xt) is a lower bound to ΠΓ,∆(p;xt):

Π̃Γ,∆(p;xt) = minimize
α,β,w,ν,η

T∑
k=t

∑
z∈Z

[
dkez(p)

(
αkez + δ̂kezη

k
ez

)
+ dkbz(p)

(
αkbz + δ̂kbzη

k
bz

)]
+βex

t
e +
∑
z∈Z

βbzx
t
bz

subject to αkbz +βbz ≥ pkbz, ∀k∀z, (D1.1)

αkez +βe ≥ pke − cez, ∀k∀z, (D1.2)

αkez +βbz′ ≥ pke − cz′z, ∀k,∀z,∀z′, (D1.3)

βe ≥ q, βbz ≥ q, (D1.4)

α≥ 0, (D1.5)

w ∈W (Γ,∆), (D1.6)

ηkmz +αkmz ≥ 0, (D1.7)

− ηkmz +αkmz ≥ 0, (D1.8)

Akmz −Akmzwkmz −αkmz + ηkmz ≥ 0, (D1.9)

Akmz +Akmzw
k
mz −αkmz − ηkmz ≥ 0. (D1.10)

We “lifted” the nonlinear problem to a higher dimensional space by introducing variables ηkmz =

αkmzw
k
mz, which linearizes the objective. The new constraints (D1.7)–(D1.10) are valid inequalities

that are satisfied by any feasible solution to the linearized problem. Note that due to strong duality,

the linear program D1 achieves an optimal value equal to the optimal value of its dual:

Π̃Γ,∆(p;xt) = maximize
s,y,θ,r,R,g,G,
h,H,u,U,l,L,f

T∑
k=t

∑
z∈Z

(
pkbzs

k
bz +

(
pke − cez

)
ykez +

∑
z′

(
pke − cz′z

)
ykz′z

)
+ q

(
θe +

∑
z∈Z

θbz

)
−
∑
k

Γkfk−
∑
k

∑
z

∑
m=e,b

(
ukmz +Uk

mz

)
−
∑
k

∑
z

∑
m=e,b

Akmz
(
gkmz +Gk

mz

)
−
∑
k

∆k
(
lk +Lk

)
subject to skbz + rkbz +Rk

bz − gkbz −Gk
bz ≤ dkbz(p),

ykez +
∑
z′

ykz′z + rkez +Rk
ez − gkez −Gk

ez ≤ dkez(p),∑
k

∑
z

ykez + θe = xte,
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∑
k

skbz +
∑
k

∑
z′

ykzz′ + θbz = xtbz,

ukmz −Uk
mz +hkmz −Hk

mz −Akmz
(
gkmz −Gk

mz

)
+ atmz

(
lk−Lk

)
= 0,

− fk +hkmz +Hk
mz = 0,

rkmz −Rk
mz + gkmz −Gk

mz = δ̂kmzd
k
mz(p),

s, y, θ, r,R, g,G,h,H,u,U, l,L≥ 0.

Define the following variables: skez = ykez +
∑

z′ y
k
z′z, Yez =

∑T

k=t y
k
ez, and Yz′z =

∑T

k=t y
k
z′z. Thus, the

dual program is equivalent to the following:

Π̃Γ,∆(p;xt) = maximize
s,Y,θ,r,R,g,G,
h,H,u,U,l,L,f

T∑
k=t

∑
z∈Z

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z

(
cezYez +

∑
z′

cz′zYz′z

)
+ q

(
θe +

∑
z∈Z

θbz

)
−
∑
k

Γkfk−
∑
k

∑
z

∑
m=e,b

(
ukmz +Uk

mz

)
−
∑
k

∑
z

∑
m=e,b

Akmz
(
gkmz +Gk

mz

)
−
∑
k

∆k
(
lk +Lk

)
subject to skmz + rkmz +Rk

mz − gkmz −Gk
mz ≤ dkmz(p), m= e, b (D2.1)

Constraints (D-OCPX.3), (D-OCPX.4), (D-OCPX.5)

ukmz −Uk
mz +hkmz −Hk

mz −Akmz
(
gkmz −Gk

mz

)
+ atmz

(
lk−Lk

)
= 0, (D2.2)

− fk +hkmz +Hk
mz = 0, (D2.3)

rkmz −Rk
mz + gkmz −Gk

mz = δ̂kmzd
k
mz(p), (D2.4)

s,Y, θ, r,R, g,G,h,H,u,U, l,L, f ≥ 0. (D2.5)

Note that the form of Π̃Γ(p;xt) in model D2 is already a linear program. However, we wish to

simplify it further in order to interpret the model.

EC.5.1. Variable transformations

Let us introduce the following variable transformations:

χkmz = ukmz −Uk
mz, Xk

mz = ukmz +Uk
mz,

λkmz = gkmz −Gk
mz, Λk

mz = gkmz +Gk
mz,

ψkmz = rkmz −Rk
mz, Ψk

mz = rkmz +Rk
mz,

υkmz = hkmz −Hk
mz, Υk

mz = hkmz +Hk
mz,

ϑk = lk−Lk, Θk = lk +Lk.
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Therefore, by replacing these new variables into model D2, we have its equivalent formulation:

Π̃Γ,∆(p;xt) = maximize
s,Y,θ,χ,X,λ,Λ,
ψ,Ψ,υ,Υ,ϑ,Θ,f

T∑
k=t

∑
z∈Z

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z

(
cezYez +

∑
z′

cz′zYz′z

)
+ q

(
θe +

∑
z∈Z

θbz

)
−
∑
k

(
Γkfk + ∆kΘk

)
−
∑
k

∑
z

∑
m=e,b

(
Xk
mz +AkmzΛ

k
mz

)
subject to skmz ≤ dkmz(p) + Λk

mz −Ψk
mz, m= e, b (D3.1)

Constraints (D-OCPX.3), (D-OCPX.4), (D-OCPX.5), (D-OCPX.6)

χkmz + υkmz −Akmzλkmz + atmzϑ
k = 0, (D3.2)

Υk
mz = fk, (D3.3)

λkmz +ψkmz = δ̂kmzd
k
mz(p), (D3.4)

Xk
mz ≥ |χkmz|, (D3.5)

Λk
mz ≥ |λkmz|, (D3.6)

Ψk
mz ≥ |ψkmz|, (D3.7)

Υk
mz ≥ |υkmz|, (D3.8)

Θk ≥ |ϑk|. (D3.9)

Note that since Υk
mz = fk, then we can eliminate the Υk

mz variables by replacing the con-

straint (D3.8) by fk ≥ |υkmz|. By equation (D3.2), we know υkmz = Akmzλ
k
mz − χkmz − atmzϑk. Due

to the maximizing objective, in the optimal solution, we have Xk
mz = |χkmz| and Θk = |ϑk|. Next,

because the coefficient of skmz in the objective is positive and Ψk
mz reduces the upper bound for skmz

without impacting the objective, an alternative optimal solution is obtained when Ψk
mz is reduced

and set equal to |ψkmz|. Lastly, note that the coefficient of Λk
mz is negative, and it increases the

bound on skmz through equation (D3.1). However, since Akmz is an upper bound on the marginal

profit for every unit of sale in channel m and zone z, it is optimal to decrease Λk
mz to the smallest

feasible value and incur the least penalty Akmz. Hence, in the optimal solution Λk
mz = |λkmz|. Hence,

we have that model D1 is equivalent to

Π̃Γ,∆(p;xt) = maximize
s,Y,θ,χ,λ,ψ,ϑ,f

T∑
k=t

∑
z∈Z

(
pkes

k
ez + pkbzs

k
bz

)
−
∑
z

(
cezYez +

∑
z′

cz′zYz′z

)
+ q

(
θe +

∑
z∈Z

θbz

)
−
∑
k

(
Γkfk + ∆k|ϑk|

)
−
∑
k

∑
z

∑
m=e,b

(
Akmz|λkmz|+ |χkmz|

)
subject to skmz ≤ dkmz(p) + |λkmz| − |ψkmz|, m= e, b (D4.1)

λkmz +ψkmz = δ̂kmzd
k
mz(p), (D4.2)∣∣Akmzλkmz −χkmz − akmzϑk∣∣≤ fk (D4.3)

Constraints (D-OCPX.3), (D-OCPX.4), (D-OCPX.5), (D-OCPX.6).
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EC.6. Generating parameters for simulations in Section 4

Below, we describe how we generate parameters and sample paths for a model instance.

EC.6.1. Generating a model instance.

The average week t online and store demand in zone z follows a multinomial logit (MNL) demand

model:

dtez(p
t
e, p

t
bz) =N t

z ×
exp (αez −βezpte)

1 + exp(αez −βezpte) + exp(αbz −βbzptbz)
,

dtbz(p
t
e, p

t
bz) =N t

z ×
exp (αbz −βbzptbz)

1 + exp(αez −βezpte) + exp(αbz −βbzptbz)
.

While the starting inventory is the same across zones, the zones are heterogeneous in the MNL

demand parameters, including the market size. The time series of zone z weekly average market

size parameters, (N 1
z ,N

2
z , . . . ,N

8
Z), is a scaled beta distribution with shape parameters a, b that

are randomly chosen such that 1≤ a≤ b≤ 5. After generating the market size parameters for all

100 instances and all zones, we observe that the resulting average 8-week market size in a zone

is in the range [67,90]. Thus, in all model instances, there is inventory scarcity since the store

inventory of 60 units is less than the zone-level market size. To model stochasticity of demand, we

assume that the random demand scaling factor ξtmz is uniformly distributed in [1− δtmz,1+ δtmz] for

m= e, b. We let δtbz (the store demand factors) to be randomly chosen values between 0 to 0.25,

while we randomly chose δtez to be between 0 and 1, since we observed from the retailer’s data that

e-commerce sales are more variable.

While the market size in each zone is nonstationary, we assume that the parameters

(αez, αbz, βez, βbz) are stationary. In particular, parameters αez and αbz are randomly chosen values

between 9 and 15. The online price sensitivity parameter βez is randomly chosen in [0.0375,0.0625],

and the store price sensitivity parameter βbz is randomly chosen in [0.03,0.05]. The range of param-

eters were chosen to represent typical price elasticities that we have observed from the data of the

retailer in electronics categories. We let the full price be $350, and the set of feasible prices for

both online and in stores is Ωe = Ωb = [$87.5,$100, . . .$350], where the feasible prices are in $12.50

increments. Note that the smallest feasible price represents a 75% markdown from the full price.

We assume that the salvage value is q= $35, which represents a 90% write-off.

To determine the fulfillment costs for the model instance, we generate a 20×20 random distance

matrix, where distances are randomly drawn from a uniform distribution over [0,2500] miles. To

ensure that the randomly generated distance matrix satisfies properties such as triangle inequality,

we use the Python package skbio.stats. We then calculate the ship-from-store fulfillment cost

cij from zone i to zone j using the single-item shipping cost function cij = 9.182 + 0.000541 ∗ dij
where dij is the distance (in miles) between i and j. This function is from Section EC.3 of Jasin
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and Sinha (2015) which uses UPS shipping cost data to estimate shipping cost functions through

linear regression. The resulting fulfillment cost values are between $9.18 to $10.53.

EC.6.2. Generating the sample paths.

For each model instance, we randomly generate 100 sample paths, {(ξ1n
mz, ξ

2n
mz, . . . , ξ

8n
mz)}100

n=1, of the

random demand factors for all channels m= e, b and all zones z ∈ [Z]. Factors {ξtnmz}100
n=1 are drawn

from the uniform distribution over [1− δtmz,1 + δtmz], with parameter δtmz different for each model

instance. Given the prices, the demand factor determines the realizations of demand according to

the function Dt
mz(p

t
e, p

t
bz, ξ

t
mz) = ξtmz × dtmz(pte, ptbz).

EC.7. Demand estimation for Business Value Assessment

We geo-spatially clustered the retailer’s stores into 50 zones using a k-means (k=50) algorithm

on the store coordinates. Fig. EC.3 shows the 50 zones used for the experiments. We geo-tag

all transaction data using zones based on the origin of the demand and the fulfillment location.

We ignored the buy-online-pickup-in-store option since we observed few such transactions in the

data for the items analyzed. Fig. EC.3 also shows the zonal distribution of sales (the volume is

proportional to the pie size) for one of the product category in our data for the retailer. The pie

in each zone illustrates the relative frequency of brick-and-mortar sales and e-commerce sales in

the zone. Note the heterogeneity of the e-commerce channel share across zones (e.g., 4% to 11%),

which can result in certain zones having relatively more ship-from-store activity. Aside from the

ability to model geographic-based heterogeneity, another advantage of zone tagging is the ability

to tractably capture cross-channel effect (Harsha et al. 2015). We use the zone-tagged data to

estimate SKU-zone level demand models described in this section.

We use discrete choice attraction demand function described in Eqs. (C.1–C.2), specifically the

MNL function, to model the aggregate consumer behavior across channels. The time series sales

data exhibit a distinct product lifecycle (PLC) representing the baseline popularity of a product

over its selling season that begins at time tstart and has a pre-planned exit date of tend. We estimate

the PLC curve by fitting a beta distribution which encompasses a variety of curve shapes, as well

as other prediction coefficients using the procedure described later in this section. Model selection

and cross-validation on a variety of training instances yielded the following market-size model that

predicts the customer arrival rate for any week t in the selling season:

log(Market Sizet) =γ0 + γ1 log (1 + t− tstart) + γ2 log (1 + tend− t) (G.1)

+
∑
k

γ3,kHOLIDAY-VARIABLESk,t,
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Figure EC.3 Distribution of sales over 50 zones for a product category. Sales volume is proportional to the pie

size. The pie in each zone shows the relative frequency of brick-and-mortar sales and e-commerce

sales.

and the following market-share model to predict the channel shares in week t:

log(Channel Attractiont) =β0 +β1PRICEt +
∑
k

β2,kPROMOTION-VARIABLESk,t (G.2)

+
∑
j

β3,jCOMPETITOR-PRICE-VARIABLES (optional)j,t.

Holiday spikes, if any, are addressed using holiday indicator variables. It was also beneficial to

add channel-specific temporal lag effects prior to the holiday weeks in order to model the spike

in online gift orders placed earlier due to the lead time of delivery. Promotional indicators, which

include whether the product was advertised that week, were also useful. Competitor prices are

introduced as channel-specific attributes, whenever they are available. Future competitor price data

are generally not available, but we can use time series methods to forecast competitor prices based

on historical trends.

Since the clearance period occurs during the final 10-12 weeks of the product lifecycle, the end-of-

life sales decay (measured by decay coefficient γ2) is a key prediction component for clearance period

demand. This decay can occur due to factors such as the waning popularity of the product towards

the end of life. Due to the broken assortment effect, this decay may be amplified by inventory

depletion, since the item is less visible to store customers. To gauge the incremental impact of low

inventory levels on store sales during the markdown period, we experimented with several threshold-

based inventory-effect models (Smith and Achabal 1998, Caro and Gallien 2012). However, we did

not observe any significant improvement in prediction quality after incorporating such inventory

effects, and a PLC-based market-size prediction model was adequate for our application. A review

of the in-store display procedures followed by sales associates indicated that the categories we
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analyzed were unlikely to be influenced by the broken assortment effect and the ‘store-presentation’

effects. Nevertheless, incorporating inventory effects in an omnichannel environment can be useful

for relevant product categories such as fashion apparel.

EC.7.1. Estimation procedure.

The γ and β coefficients in Eqs. (G.1–G.2) are estimated using real historical sales and price data.

The goal is to predict future end-of-life sales by channel and location using partial (early and

mid-season) TLOG data from the current selling season. There are two challenges.

First, the standard methods to estimate discrete choice models require historical information

about every choice, which in our setting, includes censored lost sales. We employ an integrated

mixed-integer programming (MIP) approach that jointly estimates market size and the market

share parameters in the presence of censored lost sales data proposed by Subramanian and Harsha

(2017). Their method performs imputations endogenously in the MIP by estimating optimal values

for the probabilities of the unobserved censored choice. Under mild assumptions, they show the

method is asymptotically consistent. Besides being a computationally fast single step method,

this estimation approach is capable of calibrating market-size covariates (e.g., γ1, γ2, γ3), a critical

feature with real data. We incorporated model enhancements such as regularization using lasso and

ridge penalties and sign constraints on price coefficients to enable an automated demand estimation

environment.

The second challenge is in estimating the decay coefficient, γ2, for the PLC curve without the full

sales history of an item (e.g., future end-of-life sales trajectory can be convex, concave or affine). To

overcome this problem, we employed the following two-phase procedure to estimate the parameters

of the demand model. In the first phase, the average end-of-life sales decay coefficient γ2 for a

representative SKU from the category was estimated using a learning procedure, and employed as

a ‘prior’ desired value in the second phase of estimation that is done at a SKU-zone level for all

SKUs. Such priors can also be estimated using historical values of like-SKUs in the same category.

The training sales data was used to estimate parameters of the channel attraction models and

the market size model. As we move closer toward the end of the season, and more end-of-life sales

data becomes available, the prediction model is recalibrated on a weekly basis using the most recent

data, updating all coefficients including the decay coefficient γ2 with its previous estimate used as

a prior, to produce improved sales forecasts for the remaining weeks.

EC.7.2. Prediction accuracy.

We next discuss the achieved model fit and prediction quality using the retailer’s actual sales

data and prices. The prediction results presented here is the 12-week look-ahead forecast for the

entire clearance period as opposed to rolling horizon weekly sales predictions. We present the
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Figure EC.4 Predicted and actual e-commerce sales, and brick-and-mortar sales for a specific SKU-zone.

look-ahead forecast because the OCPX model at the start of the clearance period requires an

estimate of demand for all future periods until the planned end date. As time progresses, the

demand predictions for the remaining weeks will need to be revised each period. The forecast

quality was measured in terms of the volume weighted mean absolute percentage error (WMAPE).

We observed this to be largely dependent on the sales rates and hence, the level of disaggregation

at which the model calibration was performed, which is consistent with the observations in Caro

and Gallien (2012). The achieved out-of-sample WMAPE at the category-chain level was about

22%. This WMAPE value is in close proximity to that observed by Caro and Gallien (2012) who

report a 23.8% WMAPE at the category-chain level. At the lowest level of aggregation (SKU-zone

level), the average sales rate across the SKUs analyzed during the clearance period (10 per week

for brick and 2 for online) was more than 10 times lower than the mid-season sales rate, resulting

in the predicted weekly sales deviating from actual sales by ±5 units for stores and ±1.2 units for

online. Fig. EC.4 is a sample graphical plot of the model fit (for training data) and the look-ahead

predictions (for test, the final 12 weeks of sales).

To measure the impact of cross-channel causals to prediction accuracy, we compared the esti-

mated model to a baseline which uses the data to estimate channel demand models without cross-

channel causals. We observed the omnichannel demand model reduces SKU-zone level WMAPEs

by 1.5 percentage points for the brick channel, and 5 percentage points for the digital channel

over the baseline. The incremental gain in prediction accuracy was higher when compared to the

partner retailers incumbent single-channel demand forecasting system. Although the benefit of

incorporating of cross-channel effects varies by product category, channel price differential, and

selling season, for the categories we tested, we observed that the online sales prediction (in general,

across categories and across multiple retailers) tends to improve after incorporating cross-channel

price and promotion effects. Overall, our demand model and estimated parameters result in predic-

tion qualities consistent with the goals set by the retailer, and was embedded within our proposed

optimization framework to calculate optimal prices and inventory partitions.
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Table EC.1 Average same-channel and cross-channel price elasticities for Tablets Category.

Channel Sales Elasticity to Elasticity to

brick-and-mortar price e-commerce price

Brick-and-mortar sales −1.3 0.7

E-commerce sales 2.8 −3.9

EC.7.3. Estimated price elasticities.

We present the average price same-channel and cross-channel elasticity values evaluated at the

average channel price for the Tablets category in Table EC.1. These relatively high elasticity values

are typical of markdown settings. Note that the cross-elasticities are asymmetric in that the impact

of brick prices on the online sales is different from (and tends to be higher than) the impact of the

online prices on brick sales. It is indicative of the heterogeneity of the customers shopping in the

different channels as well as the volume share of these channels (the absolute change in volume of

brick sales is much higher than that for the online channel).
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