Competition-Based Dynamic Pricing In Online Retailing

Research Collaboration with Yihaodian

Eligible for Shop Your Way Points

List Price: \$199.95

amazon.com

\$ PRICE MATCH GUARANTEE
Add to Cart
\$199.99
FREE SHIPPING
on orders $\$ 35$ and up

Respond?
 To Whom?
 By How Much?

Sunbeam SGS90701B-B 0.7Cubic Foot Microwave Oven,
569.00 \$70.99 VPrime
\#2 Best Seler
in Countertop Microwave Ovens

Oster OGB5902 0.9-Cubic Feet Microwave Oven, Black
\$76.98 $570.09 \sqrt{ }$ Aprime

Panasonic NN-SN651B Genius 1.2 cuft 1200 Watt Sensor. \$125.99 $\$ 449$ Morime See Color Options

Nostalgia Electrics RMO770BLK Retro Series Countertop.
$\$ 59.00$ S99.09 $\sqrt{\text { M }}$ Prime
See Color Options

Oster OGH6901 0.9 Cubic Feet Digital Microwave Oven,
\$74.97 \$400.09 / /prime

Panasonic NN-SD372S 0.8 Cubic Feet 950-Watt Inverter.

Oster OGB8902-B 0.9-Cubic Foot Microwave Oven, Black
$\$ 59.84$ se0.09 NPrime
\% 3 Best Seler in Countertop Microwave Ovens

Panasonic Genius NN-SN773S 1.6 cuft 1250 Watt Microwave. \$211.25 $\$ 229.09$ Jprime $\$ 211.25$ S229.09
See Size Options

$\$ 59.00 \$ 70.99$ VPrime

Danby 0.7 cu.ft. Countertop Microwave, White
$\$ 59.99$ \$70.99 NPrime

Competition-Based Dynamic Pricing

How elastic is demand?
 Who do I really compete with?
 Do customers shop prices across retailers?

Our Partner

The Store

Founded in 2008
Sales reach \$3 billion in 2014
Walmart's online arm in China
Top 10 fastest growing tech company in Asia

Challenges

Endogenous Price

Challenge I - Endogenous Price

Challenges

Endogenous Price Limited Price Variation

Challenge II: Limited Price Variation

Choice of Category

303 SKUs
Top 29 SKUs
Sales >1 per day
80.1\% total revenue
Price range $¥ 13 \sim \nsim 165$

Randomized Price Experiment

PRODUCT	DAY_1	DAY_2	DAY_3	DAY_4	DAY_5	DAY_6	DAY_7	DAY_8	DAY_9	DAY_28	DAY_29	DAY_30
1	HH	HH	HH	B	B	B	L	L	L	HH	HH	HH
2	B	B	B	L	L	L	H	H	H	HH	HH	HH
3	L	L	L	H	H	H	LL	LL	LL	B	B	B
4	H	H	H	LL	LL	LL	L	L	L	L	L	L
5	LL	LL	LL	L	L	L	B	B	B	H	H	H
6	H	H	H	HH	HH	HH	L	L	L	H	H	H
7	HH	HH	HH	L	L	L	B	B	B	H	H	H
8	L	L	L	B	B	B	LL	LL	LL	HH	HH	HH
9	B	B	B	LL	LL	LL	LL	LL	LL	L	L	L
10	LL	LL	LL	LL	LL	LL	B	B	B	B	B	B
11	LL	LL	LL	B	B	B	L	L	L	LL	LL	LL
12	HH	HH	HH	LL	LL	LL	L	L	L	L	L	L
13	LL	LL	LL	L	L	L	B	B	B	HH	HH	HH
14	L	L	L	B	B	B	H	H	H	LL	LL	LL
15	B	B	B	H	H	H	LL	LL	LL	L	L	L
16	H	H	H	LL	LL	LL	HH	HH	HH	B	B	B

When Randomization Isn't Good Enough

Consumer Choice Set

Model

Model

Challenges

Endogenous Price Limited Price Variation Lack of Competitor Sales Data

Challenge III: Lack of Competitor Sales Data

Stock-out as a Source of Identification

A Sketch of Identification

Suppose there are two products 1 and 2, and two retailers, Yihaodian and Competitor.

$$
\begin{gathered}
u_{i 1 Y}=\alpha_{1}+\beta_{1} \text { Price }_{1 Y}+\varepsilon_{i 1 Y} \\
u_{i 2 Y}=\alpha_{2}+\beta_{2} \text { Price }_{2 Y}+\varepsilon_{i 2 Y} \\
u_{i 1 C}=\alpha_{1}+\beta_{1} \text { Price }_{1 C}+\alpha_{c}+\varepsilon_{i 1 C} \\
u_{i 2 C}=\alpha_{2}+\beta_{2} \text { Price }_{2 C}+\alpha_{c}+\varepsilon_{i 2 C} \\
u_{i 0}=\varepsilon_{i 0}
\end{gathered}
$$

We observe market share $s_{1 Y}, s_{2 Y}$. Conditional on purchasing from Yihaodian,
Moment condition 1

$$
\log \left(\frac{s_{1 Y}}{s_{2 Y}}\right)=\alpha_{1}-\alpha_{2}+\beta_{1} \text { Price }_{1 Y}-\beta_{2} \text { Price }_{2 Y}
$$

Moment condition 2

$$
\frac{s_{1 Y}}{1-s_{1 Y}-s_{2 Y}}=\frac{\exp \left(\alpha_{1}+\beta_{1} \text { Price }_{1 Y}\right)}{1+\exp \left(\alpha_{1}+\beta_{1} \text { Price }_{1 C}+\alpha_{C}\right)+\exp \left(\alpha_{2}+\beta_{2} \text { Price }_{2 C}+\alpha_{C}\right)}
$$

Moment condition 3
Bottle 1 stocks out at competitor

$$
\frac{s_{1 Y}^{\prime}}{1-s_{1 Y}^{\prime}-s_{2 Y}^{\prime}}=\frac{\exp \left(\alpha_{1}+\beta_{1} \text { Price }_{1 Y}\right)}{1+\exp \left(\alpha_{2}+\beta_{2} \text { Price }_{2 C}+\alpha_{C}\right)}
$$

How Does It Work?

How Does It Work?

Estimation Results

Goodness of Fit

Goodness of Fit

Fast Moving SKU 26.1\%

Own and Cross Price Elasticity

PRODUCT	Own	Competitor 1	Competitor 2	Competitor 3	Competitor 4
1	-5.5378	-1.2071	-2.8775	-0.0055	-0.0001
2	-1.7681	-0.7598	-0.6386	-0.0012	0.0000
3	-5.4942	-0.0018	-0.0095	-0.0120	-0.0001
4	-0.0046	-0.0093	-0.0069	0.0000	0.0000
5	-1.5826	-0.4744	-0.7552	-0.0013	0.0000
6	-2.5504	-0.7253	-1.2292	-0.0020	-0.0001
7	-0.9213	-0.4088	-0.3209	-0.0006	0.0000
8	-3.6766	-1.8118	-1.0456	-0.0068	0.0000
9	-3.4141	-0.8532	-1.7617	-0.0023	-0.0001
10	-1.8954	-0.0883	-0.0164	-0.0069	0.0000
11	-2.4377	-0.9699	-0.9174	-0.0023	-0.0001
12	-8.2826	-1.5770	-4.9116	-0.0064	0.0000
13	-23.6245	-0.0152	-14.2382	-0.0138	-0.0022
14	-3.3974	-1.6779	-0.9875	-0.0051	-0.0001
15	-4.1404	-1.3791	-1.6345	-0.0094	-0.0001

Algorithm for Best Response Pricing

Margin constraints
Manufacturer Price Restrictions

Pilot Test with Controlled Experiment

Treatment

Pilot Test with Controlled Experiment

0-6 months

Group 2 (baby age: 7 months and above)

	Group 1 (baby age: $0-6$ months)	Group 2 (baby age: 7 months and above)
Week 0	Control	Control
Week 1	Treatment	Control
Week 2	Control	Treatment
Week 3	Treatment	Treatment
Week 4	Control	Control

Control: current pricing practice. Treatment: implement best response pricing algorithm.

Performance Evaluation

Before
After
Region B

Triple Difference Estimator

Revenue Up by 11\%+, while Margin Unchanged

Sales up by 11\% Margin unchanged

Sales up by 19\% Margin unchanged

INFORMS Revenue Management
\& Pricing Section Conference
Columbia Business School

Competition-Based Dynamic Pricing in Online Retailing

 Marshall Fisher (The Wharton School)Santiago Gallino (Tuck School of Business) Jun Li (Ross School of Business)

Jerry Liu (Head of Pricing and Category Management, Yihaodian) Gang Yu (Co-Founder and Chairman, Yihaodian)

Executive Summary

Intellectual Merit

- Design and estimate a choice model that accounts for choices among substitutable products from multiple retailers.
- Introduce price variation through a randomized price experiment, while addressing endogeneity concerns.
- Deploy a novel identification strategy through stock-outs in the absence of competitor sales data.

Practical Impacts

- Accurate competitive response driven by deep understanding of competitors and consumers.
- Documented 11\%+ revenue increase.
- Integrated with Yihaodian's IT system, and being rolled out to other categories.
- Further collaboration: EDLP and Lo/Hi pricing for FMCG products.

Fisher, M., Gallino, S. and Li, J. 2015. Competition-Based Dynamic Pricing in Online Retailing: A Methodology Validated with Field Experiments. Revise and resubmit at Management Science. Available at SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2547793

