Competition-Based Dynamic Pricing In Online Retailing

Research Collaboration with Yihaodian

Marshall Fisher • The Wharton School
Santiago Gallino • Tuck School of Business
Jun Li • Ross School of Business
Jerry Liu • Yihaodian, Head of Pricing
Gang Yu • Yihaodian, Co-Founder and Chairman
Dynamic Pricing

Retailers are adjusting prices on everyday items several times a day. Here is a look at prices for a GE microwave on Aug. 12 at three Web retailers:

Note: All times are in Pacific Daylight Time

Source: Decide.com
Graphic by Alberto Cervantes/The Wall Street Journal
Respond?
To Whom?
By How Much?
– $ – ％
Competition-Based Dynamic Pricing

How elastic is demand?
Who do I really compete with?
Do customers shop prices across retailers?
Our Partner

Founded in 2008
Sales reach $3 billion in 2014
Walmart's online arm in China
Top 10 fastest growing tech company in Asia
Challenges

Endogenous Price
Challenge I – Endogenous Price

- retail price
- sales unit

Price (¥)

Units

Challenges

Endogenous Price
Limited Price Variation
Challenge II: Limited Price Variation

<table>
<thead>
<tr>
<th>Date</th>
<th>Price (¥)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-Jun-13</td>
<td>91</td>
</tr>
<tr>
<td>22-Jun-13</td>
<td>93</td>
</tr>
<tr>
<td>29-Jun-13</td>
<td>94</td>
</tr>
<tr>
<td>6-Jul-13</td>
<td>94</td>
</tr>
<tr>
<td>13-Jul-13</td>
<td>93</td>
</tr>
<tr>
<td>20-Jul-13</td>
<td>93</td>
</tr>
<tr>
<td>27-Jul-13</td>
<td>92</td>
</tr>
</tbody>
</table>

- Retail price
- Lowest competitor price

Stock out
Choice of Category

303 SKUs
Top 29 SKUs
Sales > 1 per day
80.1% total revenue
Price range ¥13 ~ ¥165
Randomized Price Experiment

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>DAY_1</th>
<th>DAY_2</th>
<th>DAY_3</th>
<th>DAY_4</th>
<th>DAY_5</th>
<th>DAY_6</th>
<th>DAY_7</th>
<th>DAY_8</th>
<th>DAY_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>7</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
</tr>
<tr>
<td>10</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>14</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
</tr>
<tr>
<td>16</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>LL</td>
<td>LL</td>
<td>LL</td>
<td>HH</td>
<td>HH</td>
<td>HH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAY_28</th>
<th>DAY_29</th>
<th>DAY_30</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>HH</td>
<td>HH</td>
</tr>
<tr>
<td>HH</td>
<td>HH</td>
<td>HH</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

6 June 2015
When Randomization Isn’t Good Enough
Consumer Choice Set
Model

Demand for SKU j on day t

$$D_{jt} = \frac{z_{jt} \exp \left(\frac{\alpha_j + \beta_j \log p_{jt}}{1 - \lambda} \right) \left(\sum_r z_{jrt} \exp \left(\frac{\alpha_j + \alpha_r + \beta_j \log p_{jrt}}{1 - \lambda} \right) \right)^{-\lambda} \exp(X_{ot}Y) + \sum_r \sum_k z_{krt} \exp \left(\frac{\alpha_j + \alpha_r + \beta_j \log p_{krt}}{1 - \lambda} \right) \left(\sum_r z_{krt} \exp \left(\frac{\alpha_k + \alpha_r + \beta_j \log p_{krt}}{1 - \lambda} \right) \right)^{-\lambda} M_j}{\sum_{all SKUs over all major retailers} \sum_{all SKUs over all major retailers}}$$

SKU specific price elasticity

Price of SKU j on day t

Degree of price shopping (0~1)

Market size

No purchase (day of week effects included)

Competitor in-stock indicator

Competitor price

Consumer preference of SKU k

Consumer preference of retailer r
Model

\[D_{jt} = \frac{z_{jt} \exp\left(\frac{\alpha_j + \beta_j \log p_{jt}}{1 - \lambda}\right) \left(\sum_r z_{jrt} \exp\left(\frac{\alpha_j + \alpha_r + \beta_j \log p_{jrt}}{1 - \lambda}\right)\right)^{-\lambda} M_j}{\exp(X_0^t \gamma) + \sum_r \sum_k z_{krt} \exp\left(\frac{\alpha_j + \alpha_r + \beta_j \log p_{krt}}{1 - \lambda}\right) \left(\sum_r z_{krt} \exp\left(\frac{\alpha_k + \alpha_r + \beta_j \log p_{krt}}{1 - \lambda}\right)\right)^{-\lambda}} \]

Demand for SKU \(j \) on day \(t \)

SKU specific price elasticity

Price of SKU \(j \) on day \(t \)

Degree of price shopping (0~1)

Market size

No purchase (day of week effects included)

Competitor in-stock indicator

Competitor price

Consumer preference of SKU \(k \)

Consumer preference of retailer \(r \)

Sum over all SKUs over all major retailers
Challenges

Endogenous Price
Limited Price Variation
Lack of Competitor Sales Data
Challenge III: Lack of Competitor Sales Data

Sales? Sales? Sales?

Sales? Sales? Sales?

Sales? Sales? Sales?
Stock-out as a Source of Identification
A Sketch of Identification

Suppose there are two products 1 and 2, and two retailers, Yihao and competitor.

\[
\begin{align*}
 u_{11} &= \alpha_1 + \beta_1 Price_{1Y} + \varepsilon_{11}
 \\
 u_{12} &= \alpha_2 + \beta_2 Price_{2Y} + \varepsilon_{12}
 \\
 u_{1C} &= \alpha_1 + \beta_1 Price_{1C} + \alpha_c + \varepsilon_{1C}
 \\
 u_{2C} &= \alpha_2 + \beta_2 Price_{2C} + \alpha_c + \varepsilon_{2C}
 \\
 u_{i0} &= \varepsilon_{i0}
\end{align*}
\]

Product specific intercepts
Retailer preference

We observe market share \(s_{1Y}, s_{2Y}\). Conditional on purchasing from Yihao,

Moment condition 1

\[
\log \left(\frac{s_{1Y}}{s_{2Y}} \right) = \alpha_1 - \alpha_2 + \beta_1 Price_{1Y} - \beta_2 Price_{2Y}
\]

Moment condition 2

\[
\frac{s_{1Y}}{1 - s_{1Y} - s_{2Y}} = \frac{\exp(\alpha_1 + \beta_1 Price_{1C} + \alpha_c)}{1 + \exp(\alpha_1 + \beta_1 Price_{1C} + \alpha_c) + \exp(\alpha_2 + \beta_2 Price_{2C} + \alpha_c)}
\]

Moment condition 3

Bottle 1 stocks out at competitor

\[
\frac{s'_{1Y}}{1 - s'_{1Y} - s'_{2Y}} = \frac{\exp(\alpha_1 + \beta_1 Price_{1Y})}{1 + \exp(\alpha_2 + \beta_2 Price_{2C} + \alpha_c)}
\]
How Does It Work?
How Does It Work?
Estimation Results

\[D_{jt} = \frac{\exp(X_{0t}\gamma)}{\exp(X_{0t}\gamma)} \left(\frac{\alpha_j + \beta_j \log p_{jt}}{1 - \lambda} \right) \left(\sum_r z_{jrt} \exp \left(\frac{\alpha_j + \alpha_r + \beta_j \log p_{jrt}}{1 - \lambda} \right) \right)^{-\lambda} M_j \]

SKU specific price elasticity

-1.6747***
-0.3667***
-6.7734***
-0.0036
-0.9532
-1.0537***
-0.5404***
-1.1644***
-1.1176***
-4.1492***
-0.5038***
-2.1872***
-11.281***
-0.9216***
-1.1421***

Degree of price shopping (0~1)

0.7911***

Consumer preference of retailer r

Yihaodian Reference
Competitor 1 0.2172
Competitor 2 0.0169
Competitor 3 -1.8363***
Competitor 4 -2.4642**
Goodness of Fit

Average MAD 37.7%
Goodness of Fit

Fast Moving SKU 26.1%
Own and Cross Price Elasticity

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>Own</th>
<th>Competitor 1</th>
<th>Competitor 2</th>
<th>Competitor 3</th>
<th>Competitor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5.5378</td>
<td>-1.2071</td>
<td>-2.8775</td>
<td>-0.0055</td>
<td>-0.0001</td>
</tr>
<tr>
<td>2</td>
<td>-1.7681</td>
<td>-0.7598</td>
<td>-0.6386</td>
<td>-0.0012</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>-5.4942</td>
<td>-0.0018</td>
<td>-0.0095</td>
<td>-0.0120</td>
<td>-0.0001</td>
</tr>
<tr>
<td>4</td>
<td>-0.0046</td>
<td>-0.0093</td>
<td>-0.0069</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>-1.5826</td>
<td>-0.4744</td>
<td>-0.7552</td>
<td>-0.0013</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>-2.5504</td>
<td>-0.7253</td>
<td>-1.2292</td>
<td>-0.0020</td>
<td>-0.0001</td>
</tr>
<tr>
<td>7</td>
<td>-0.9213</td>
<td>-0.4088</td>
<td>-0.3209</td>
<td>-0.0006</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>-3.6766</td>
<td>-1.8118</td>
<td>-1.0456</td>
<td>-0.0068</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>-3.4141</td>
<td>-0.8532</td>
<td>-1.7617</td>
<td>-0.0023</td>
<td>-0.0001</td>
</tr>
<tr>
<td>10</td>
<td>-1.8954</td>
<td>-0.0883</td>
<td>-0.0164</td>
<td>-0.0069</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>-2.4377</td>
<td>-0.9699</td>
<td>-0.9174</td>
<td>-0.0023</td>
<td>-0.0001</td>
</tr>
<tr>
<td>12</td>
<td>-8.2826</td>
<td>-1.5770</td>
<td>-4.9116</td>
<td>-0.0064</td>
<td>0.0000</td>
</tr>
<tr>
<td>13</td>
<td>-23.6245</td>
<td>-0.0152</td>
<td>-14.2382</td>
<td>-0.0138</td>
<td>-0.0022</td>
</tr>
<tr>
<td>14</td>
<td>-3.3974</td>
<td>-1.6779</td>
<td>-0.9875</td>
<td>-0.0051</td>
<td>-0.0001</td>
</tr>
<tr>
<td>15</td>
<td>-4.1404</td>
<td>-1.3791</td>
<td>-1.6345</td>
<td>-0.0094</td>
<td>-0.0001</td>
</tr>
</tbody>
</table>
Algorithm for Best Response Pricing

\[
\max_{\{p_1, p_2, \ldots, p_J\}} \sum_{j=1}^{J} p_j s_j (p_j; z_j; p_{-j}, z_{-j}; \alpha, \beta, \gamma, \lambda)
\]

\[
s.t. \quad \frac{(p_j - c_j)s_j}{p_j s_j} \leq \text{margin target}
\]

\[
LB \leq \frac{(p_j - c_j)}{p_j} \leq UB, \forall j
\]

\[
LB_M \leq p_j \leq UB_M, \forall j \in J_M
\]

Competitor Prices and Product Availability

Consumer Choice Parameters

Margin constraints
Manufacturer Price Restrictions
Pilot Test with Controlled Experiment

![Comparison of Treatment and Control Groups](image)

- **Treatment**
 - $\$\$

- **Control**
 - $\$$\$$
Pilot Test with Controlled Experiment

0-6 months

<table>
<thead>
<tr>
<th>Week 0</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Treatment</td>
<td>Control</td>
<td>Treatment</td>
<td>Control</td>
</tr>
</tbody>
</table>

Above 7 months

<table>
<thead>
<tr>
<th>Week 0</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Control</td>
<td>Treatment</td>
<td>Treatment</td>
<td>Control</td>
</tr>
</tbody>
</table>

Performance Evaluation

Difference in Differences

Before	After
Treatment | Control

Before	After
Region A

Before	After
Region B

Triple Difference Estimator
Revenue Up by 11%+, while Margin Unchanged

Sales up by 11%
Margin unchanged

Sales up by 19%
Margin unchanged
Executive Summary

Intellectual Merit
- Design and estimate a choice model that accounts for choices among substitutable products from multiple retailers.
- Introduce price variation through a randomized price experiment, while addressing endogeneity concerns.
- Deploy a novel identification strategy through stock-outs in the absence of competitor sales data.

Practical Impacts
- Accurate competitive response driven by deep understanding of competitors and consumers.
- Documented 11%+ revenue increase.
- Integrated with Yihaodian’s IT system, and being rolled out to other categories.
- Further collaboration: EDLP and Lo/Hi pricing for FMCG products.