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“The Society is a great op-
portunity to get involved,
meet some new people
and generally combine
your professional inter-
ests with a little fun.”

Message from the Chair

J. Cole Smith, PhD
Associate Provost for Academic Initiatives
Professor of Industrial Engineering
Clemson University, jcsmith@clemson.edu

My term as Chair could hardly have come at a more exciting
time for the INFORMS Computing Society (ICS). Concepts
regarding data and optimization that were formerly eso-
teric or niche are now discussed in common conversation.
Many laypeople now have a broad (if sometimes imprecise)
understanding of concepts like smart grid optimization, in-
telligent pricing, healthcare optimization, optimization in
manufacturing, and telecommunication and transportation
system design. ICS members have long been at the fore-
front of these areas. As complementary algorithmic schemes
and computational hardware and software systems evolve, ICS members will
have a terrific opportunity to impact the field of optimization, analysis, and
data-driven decision making.

Yet, our field must prepare for several challenges that confront our field. We
must diversify our society to become the inclusive group that we wish to be.
We need to demonstrate to the outside world what kind of impact our research
and education makes in modeling and solving real-world problems. Alongside
this message, we must emphasize the importance of the foundational and
theoretical advances that our community makes, which enable the next gen-
eration of algorithms. Finally, the ICS needs to continue to proactively seek
ways of supporting our researchers and students. I am looking forward to
seeing how we can enhance our community’s success in these areas in 2019.

I am grateful for the enthusiasm, experience, and leadership of those who
have been so active in the ICS. Enjoy the newsletter, and we look forward to
seeing you in the near future at INFORMS conferences!

Message from the Editor

Yongjia Song, PhD
Assistant Professor, Department of Industrial Engineering
Clemson University, yongjis@clemson.edu

It is the time to share the news for the society again and
it is my pleasure to put things together. In this newsletter,
please be aware of the updates of the society officers, board
of directors, a memorial article for Harvey J. Greenberg,
Founding Editor of the INFORMS Journal on Computing, as
well as research highlights and insights for the 2018 ICS
awarding papers. Special thanks to all who contribute to
this newsletter! This is the very first newsletter that I have
edited since I took over this role. I would like to express
my gratitude to former ICS newsletter editors, Dr. Yongpei
Guan and Dr. Jeff Linderoth for their help. I will also greatly appreciate any
comment or suggestion that you may have for the newsletter.
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2018 ICS Prize

The 2018 ICS Prize goes to James V. Burke (University of Wash-
ington), Frank E. Curtis (Lehigh University), Adrian S. Lewis (Cor-
nell University), and Michael L. Overton (New York University)
for their pioneering work on gradient
sampling methods for nonsmooth
optimization, as detailed in the papers:
(1) “Approximating Subdifferentials
by Random Sampling of Gradients.”
Mathematics of Operations Research,
27:567-584, 2002; (2) “A Robust Gradi-
ent Sampling Algorithm for Nonsmooth,
Nonconvex Optimization.” SIAM J.
Optimization, 15(3):751-779, 2005;
(3) “A Sequential Quadratic Programming Algorithm for Nonconvex,
Nonsmooth Constrained Optimization.” SIAM J. Optimization,
22(2):474-500, 2012; (4) “A BFGS-SQP method for Nonsmooth,
Nonconvex, Constrained Optimization and its Evaluation using
Relative Minimization Profiles.” Optimization Methods and Software,
32(1):148-181, 2017; (5) “Gradient Sampling Methods for Nonsmooth
Optimization.” arXiv:1804.11003.

Committee members: Andreas Wachter (Northwestern University,
Chair), Fatma Kilinc-Karzan (Carnegie Mellon University) and Jean-
Paul Watson (Sandia National Laboratory).

The 2018 ICS Best Student Paper Award

Winner:  Aleksandr M. Kazachkov, Carnegie Mellon Uni-
versity (now a postdoc at Polytechnique Montreal).
Award-winning  paper: “V-Polyhedral  Disjunctive  Cuts”
This paper develops a novel approach - based
on so-called V-Polyhedral Cuts (VPCs) - for gen-
erating valid inequalities when solving mixed-
integer linear programming (MILP) problems.
The cuts are motivated by several shortcomings
of existing cut generation techniques, such as is-
sues related to numerical instability and a “tail-
ing off” effect when they are used recursively.
The use of VPCs mitigates such effects by providing a practical method
for generating strong cuts without recursion. Theoretical properties of
such cuts are presented and computational tests of their performance
are conducted. The computational results indicate that the cuts gener-
ated are strong and that there appear to exist classes of MILP instances
for which VPCs work especially well.

Honorable mentions:

Colin P. Gillen, University of Pittsburgh,
“Fortification Against Cascade Propagation Un-
der Uncertainty”

Chris Lourenco, Texas A&M University,
“Asymptotically Optimal Exact Solution of
Sparse Linear Systems via Left-Looking
Roundoff-Error-Free LU Factorization”

Committee members: Sergiy Butenko (Texas
A&M University), Frank E. Curtis (Lehigh Uni-
versity) and Anna Nagurney (University of
Massachusetts Amherst, Chair).




A Tribute to Harvey J. Greenberg

by ALLEN HOLDER'

The INFORMS Computing So-
ciety lost one its most effec-
tual patrons, Harvey J. Green-
berg, on June 29, 2018. Har-
vey cofounded our society in the
pre-INFORMS era of the Opera-
tions Research Society of Amer-
ica (ORSA), at which time our society was called the Com-
puter Science Special Interest Group. He subsequently
served as our second chair and started the ORSA Journal
on Computing, now known as the INFORMS Journal on
Computing. He continued to promote and serve our soci-
ety throughout his career by organizing conferences and
symposia, by spearheading online education, and by en-
couraging us to adapt to, prepare for, and embrace novel
and emerging research. The ICS initiated the Harvey J.
Greenberg Award for Service in 2007 in recognition of his
lifelong efforts to advance and serve our society. Harvey
further impacted many of our lives through his research,
friendship, and encouragement.

Two memorials already note many of Harvey’s professional
accomplishments, and I encourage those who have not
already read these to do so.

e A Memorial to Harvey J. Greenberg, Founding
Editor of the INFORMS Journal on Computing,
by A. Holder, F. Murphy, and W. Pierskalla,
doi=10.1287/ijoc.2018.0843

e In Memoriam: Harvey J. Greenberg, 1940-2018, by
Peter Horner, ORMS Today, vol. 45, num. 3, June,
2018

I want to give a more personal perspective here, as Har-
vey’s relationship with our society was more intimate com-
pared with the broad intentions of these earlier homages.
That said, I have struggled to author a succinct review that
would adequately express what Harvey meant to me, and
I suspect to many of us. The idea of including my eulogy
came to mind as I contemplated yet another attack, and I
hope this will suffice. Below is a slightly edited version of
my spoken comments at Harvey’s Memorial last July.

Students don’t enter graduate school with any real hope of
fostering a family-like relationship with their advisors. No,
most simply long to survive and to satisfy their advisors’
standards. There are, of course, professional expectations if
all goes well, for instance reference letters for an initial job
search, but the affectionate and familial embrace of your
advisor as a colleague are most often wistful daydreams.
But sometimes daydreams come true. My relationship with
Harvey began cordially and professionally as would any
student-teacher interaction, but it grew into a warm and
amiable kinship, largely due to Harvey’s ability to see in me
what I could not. He nurtured my academic growth by giv-

ing me confidence when I needed it, by giving me resources
and space to pursue my interests, and by challenging me
with what sometimes seemed to be insurmountable tasks.
Our relationship was that of fast friends by graduation, so
much so that he didn’t flinch the day when he caught me
fixing his computer after breaking into his house. He was
curious about how I had gained entry, but the joy of a work-
ing computer far outweighed any concern. Our friendship
continued to advanced after graduation, and our closeness
matured into one of those rare and cherished lifelong bonds
between old friends. Academics are fond to relay the moniker
of Academic Father/Mother’s on their advisors, but in my
case, our relationship blossomed heavily on the fraternal
intent of this title. Harvey’s death weighs on me as though I
have lost a member of my inner family.

I have been advised to keep my comments brief, restricting all
that Harvey was to me to a mere few moments. I want to use
this short time to commemorate Harvey as the person that I
knew him to be. Indeed, Harvey’s professional accolades and
contributions were the natural byproducts of Harvey being,
well, Harvey, and by remembering him, maybe we can all
find ideals that can inspire us. Here are a few of the char-
acteristics that help portray Harvey as I knew and loved him.

Harvey was all in

Harvey’s commitment was absolute, an intimidating at-
tribute that often made me question my own dedications.
His pursuits were not lukewarm ambitions that could be
chased as time permitted, but rather, they were the passions
of life that deserved focus, care, and dedication. Harvey
knew no sense of hesitancy, and his quick decisiveness could
be jarring. I witnessed this characteristic professionally, e.g.
his near instantaneous flip to computational biology, and I
heard of it personally, e.g. his immediate love for Ellie. The
story of the latter as I recall was that Harvey and Ellie met
while hiking, and Harvey was so immediately taken by Ellie
that he called to negotiate for her hand within a few days of
his return home. I remember hearing this story for the first
time and thinking, wow, that is so “Harvey.”

Harvey was nonstop

I don’t know what Harvey would have called “idle.” He cer-
tainly knew that this word was in the common lexicon, but it
must have seemed foreign to him. Tasks simply couldn’t get
done fast enough, and all moments seemed to be packed with
the possibility of accomplishment. Working with Harvey
was a sort of cognitive athletics, and it seemed like he was
always pushing my intellectual fitness. His quick mind could
create, consider, and accept or reject thoughts much, much
faster than I, and I constantly felt like I needed to stop, catch
my breath, and contemplate. But Harvey would just move
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on, and on, and on, even as I tried to pause and register the
moment. I was most keenly aware of Harvey’s ceaselessness
twice during my studies, the first of which followed my Ph.D.
exams. I was simply exhausted from months of studying
(my days had often started at 4:00 or 5:00 in the morning,
which was probably about the time that Harvey had been
going to bed), but I passed. Harvey offered to treat me to
lunch immediately after my oral exam, and I thought great,
a bit of celebration and then a short rest. But Harvey had
had other plans, and his legal pad hit the table before our
food. He was happy that I had passed, but that had already
happened, and well, there were new problems to tackle. The
other moment was when I submitted my first draft of my
thesis, and though I knew Harvey well at that point, I had
somehow erroneously assumed that I would get a week or
two before he completed his review. I arrived at my office the
very next morning to find light peeking from under Harvey’s
door, and I cringed. He returned the draft a few moments
later in a sea of red marks, and with a wry smile he chuckled
and went home to catch some sleep.

Harvey had a youthful buoyancy

Harvey could certainly be focused,
but he could also be lighthearted.
He had a giggle about him, a
giggle that often followed a play
on words or a twist in meaning.
Such antics occurred with rapid-
ity as he taught, as he communi-
cated with friends and colleagues,
and as he sat and pondered with
himself. I once asked during a
class about the definition of “vex-
ing,” a term that he had used so
often that I thought it must have a specific mathematical
meaning. He smiled and giggled as he replied that it was just
a play on the mathematical term “convex,” and that he em-
ployed the pun to impugn the lack of this property. I mean
really, how was I supposed to know that an optimization
problem could be giddy with distress? It was as if a silliness
accompanied his thoughts, a silliness that was innocent
and jovial and that helped him progress. Harvey’s all-in

and nonstop manner could awkwardly blind him to his
surroundings and could lead to hilarious moments. There
are several such stories in the memoir we created at his
retirement, but my favorite occurred during our trip to the
Netherlands. We had traveled to Amsterdam, and Harvey
and I were engrossed in our mathematical conversation
when he looked up and proclaimed, ‘“Ah, the Dutch, they are
so festive." I almost couldn’t contain my laughter as I alerted
Harvey that we had wandered into the red light district - he
stopped, looked around and said “oh that explains it,” and
then it was right back to math.

Harvey was keenly insightful

Although Harvey was regularly
aloof to the things which he chose
not to pursue, he was perceptively
caring about the things that he
chose to pursue. Those who were
close to him could depend on his
assistance, even if they didn’t seek
orwant it. This could certainly be
a proverbial helping-hand with
a current problem, but what made Harvey special was his
ability to see ahead. He nurtured and willed many of our
professional stalwarts into existence because he foresaw their
benefits, and he would often nudge me toward opportunities
that he knew would help me. I think our profession will
miss most his vision, and I will certainly miss his guidance.

Harvey had an altruistic heart

Harvey had high ideals, and he was quick to voice them. He
had a deep conviction for the greater good, and he was will-
ing to risk for it. He really wanted his life’s work to count,
to make a difference, and to help others, and he felt spurned
when hollow rules of merit seemed to undervalue his efforts.
I want to end by saying that Harvey accomplished his big
goal, and that very many indeed have benefited from his
life’s work, of which I'm only a minor representative. I so
wish him comfort in this knowledge, and I thank him for
everyone he touched.

Research Highlight: The Gradient Sampling Methodology

by JAMES V. BURKE?, FRANK E. CURTIS®, ADRIAN S. LEWIS* AND MICHAEL L. OVERTON®

1 Introduction

The principal methodology for minimizing a smooth func-
tion is the steepest descent (gradient) method. One way

to extend this methodology to the minimization of a non-
smooth function involves approximating subdifferentials
through the random sampling of gradients. This approach,
known as gradient sampling (GS), gained a solid theo-
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3Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA. frank.e.curtis@gmail.com
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retical foundation about a decade ago [ R 1,
and has developed into a comprehensive methodology for
handling nonsmooth, potentially nonconvex functions in
the context of optimization algorithms. In this article, we
summarize the foundations of the GS methodology, pro-
vide an overview of the enhancements and extensions to
it that have developed over the past decade, and highlight
some interesting open questions related to GS.

2 Fundamental Idea

The central idea of gradient sampling can be explained as
follows. When a function f : R™ — R is differentiable at
a point z (at which Vf(z) # 0), the traditional steepest
descent direction for f at x in the 2-norm is found by
observing that

Vi)
Vi@l

in particular, this leads to calling the negative gradient,
namely, —V f(x), the direction of steepest descent for f at
x. However, when f is not differentiable near z, one finds
that following the negative gradient direction might offer
only a small amount of decrease in f; indeed, obtaining
decrease from z along —V f(x) may be possible only with
a very small stepsize. The GS methodology is based on
the idea of stabilizing this definition of steepest descent
by instead finding a direction to approximately solve

Vf(x)ld= €))

min

arg
lldll2<1

min  max g¢'d, (2)
ldll2<1 g€d. f(x)
where 0, f (z) is the e-subdifferential of f at x [ 1.

To understand the context of this idea, recall that the
(Clarke) subdifferential of a locally Lipschitz f at z, de-
noted Jf(x), is the convex hull of the limits of all se-
quences of gradients evaluated at sequences of points, at
which f is differentiable, that converge to x [ 1. The
e-subdifferential, in turn, is the convex hull of all subdiffer-
entials at points within an e-neighborhood of x. Although
the e-subdifferential of f at x is not readily computed, the
central idea of gradient sampling is to approximate the
solution of (2) by finding the smallest norm vector in the
convex hull of gradients computed at randomly generated
points in an e-neighborhood of z, then normalizing the
result to have unit norm. See [ ] for analysis on
approximating an e-subdifferential by sampling gradients
at randomly generated points.

A complete algorithm based on the GS methodology is
stated as Algorithm 1, taken from the recent survey pa-
per [ ]. To illustrate the efficacy of this algorithm
compared to more standard gradient and subgradient
methodologies, let us show its performance on a non-
smooth variant of the nonconvex Rosenbrock function
[ 1, namely,

f(z) =8lz] — za| + (1 — z1)% 3)

The contours of this function are shown in Figure 1; the
black asterisk indicates the initial iterate z° = (0.1,0.1)
and the red asterisk indicates the unique minimizer z* =
(1,1). The blue dots show the iterates generated by the
gradient sampling method (Algorithm 1) converging to z*,
roughly tracing out the parabola on which f is nonsmooth,
but never actually landing on it, even to finite precision.
In contrast, the magenta dots show the iterates of the
gradient method with the same line search enforcing (4)
from Algorithm 1, indicating that these iterates move di-
rectly toward the parabola on which f is nonsmooth and
stall without moving along it toward the minimizer z*.
The essential difficulty is that the direction of descent tan-
gential to the parabola is overwhelmed by the steepness
of the graph of the function near the parabola. The gradi-
ent sampling method, by choosing the direction of least
norm in the convex hull of sampled gradients, is able to
approximate the tangential directions of descent toward

T*.

Figure 1. Contours of the nonsmooth Rosenbrock function (3)
showing iterates generated by the gradient sampling method
(blue dots) and the ordinary gradient method with the same line
search (magenta dots). The black asterisk is the initial point and
the red asterisk shows the unique minimizer.

The poor behavior of the gradient method in this con-
text is well known, even in the convex case [ 1; see
[ ] for a discussion of the behavior of the gradient
method on a simple nonsmooth convex function. In these
experiments, for both algorithms, x? — x, was nonzero at
all iterates, even in finite precision, so gradients were al-
ways defined. Figure 2 shows the function values {f(z*)}
generated by the two methods. Both algorithms were
terminated as soon as the objective and/or gradient was
evaluated at 2000 points—including iterates, trial points
in the line searches, and randomly generated points at
which the gradient is evaluated for Algorithm 1. Algo-
rithm 1 is able to reach iterates with much better objective
values within the same budget.®

It is also instructive to consider a subgradient method
s ] that sets iterates by

o 2F — d”,

6We used the following parameters for Algorithm 1: ¢ = 19 = 0.1, m = 3, 8 = 1078, v = 0.5, €opt = Vopt = 0, and 6. = 6, = 0.1. The

gradient method used the same line search with 8 = 1078 and v = 0.5.

later iterations. The final sampling radius for Algorithm 1 was 10~5.

Both algorithms used most of their function and gradient evaluations in



where d* is any subgradient of f at z* (i.e., any element
of Of(x*)) and {t,} is set as a fixed stepsize or accord-
ing to a diminishing stepsize schedule. This is a popular
approach in the optimization literature, which has conver-
gence guarantees in various contexts without requiring
that the value of f decreases at each iteration. By not
requiring monotonic decrease, the method does not get
stuck near the parabola on which f is nonsmooth. How-
ever, progress is slow since the method has no mechanism
for identifying the tangential direction of descent along
the parabola. Instead, it is destined to oscillate back-and-
forth across the parabola as it creeps tangentially toward
the minimizer z*. In this experiment, 22 — x5 was nonzero
(even in finite precision) at all but a handful of the iterates,
and since the only subgradient of f at such a point is the
gradient, the method is, for all practical purposes, iden-
tical to a gradient method with the same stepsizes. The
iterates of this method with {¢;} = {0.1/k} are shown in
Figure 3, and the performance with different choices for
{tx} is shown in Figure 4. With the same function and
gradient evaluation budget as the methods above, this
approach—for all stepsize choices—is slow. One might be
able to obtain better results by tuning the stepsize choice
further. Note, however, that Algorithm 1 does not require
such parameter tuning.
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Figure 2. Function values by iteration number for the gradient
sampling method and the gradient method, both run with a
backtracking line search (LS).

Of course, there are other effective algorithms for non-
smooth optimization that we do not consider here, in
part because they are significantly more complicated to
describe; these include bundle methods [ s 1,
which have been used extensively for decades, and quasi-
Newton methods [ ]. For a collection of surveys of
recent developments in nonsmooth optimization methods,
see [ 1.

The function f in (3) is an example of an important class
of functions, namely those that are partly smooth with
respect to a manifold in the sense defined in [ 1.
In the convex case, this concept is related to that of the
U-Lagrangian [ 1.

3 Convergence Theory

Algorithm 1 is conceptually straightforward. At each iter-
ate, one need only compute gradients at randomly sam-
pled points, project the origin onto the convex hull of
these gradients (by solving a strongly convex quadratic
program (QP) for which specialized algorithms have been
designed [ 1), and perform a line search. The other
details relate to dynamically setting the sampling radii
{er} and ensuring that the objective f is differentiable at
each iterate.

On the other hand, the convergence theory for the algo-
rithm when minimizing a locally Lipschitz function in-
volves important, subtle details. Rademacher’s theorem
states that locally Lipschitz functions are differentiable
almost everywhere [ 1, ensuring that the gradients
sampled at the randomly generated points are well de-
fined with probability one. However, this is not sufficient
to ensure convergence. To obtain a satisfactory conver-
gence result it is required that the set of points at which f
is continuously differentiable has full measure in R™. For
further discussion of this issue, see [ 1.

The following theorem, whose precise statement is taken
from [ 1, but whose proof depends on the conver-
gence theorems in [ s 1, is the main conver-
gence result for Algorithm 1. Other results of interest that
can be proved relate to the behavior of the algorithm when
the tolerances v,p; and €,y are positive, so the algorithm
terminates finitely, or when one sets . = 1, so that the
sampling radius is fixed, in which case one can prove con-
vergence to e-stationarity; see [ ) s 1.
Theorem 1. Suppose that f is locally Lipschitz on R™ and
continuously differentiable on an open set with full measure
in R™. Suppose also that Algorithm 1 is run with vy > 0,
Vopt = €opt = 0, and strict reduction factors 8, < 1 and
6. < 1. Then, with probability one, Algorithm 1 is well
defined in the sense that the sampled gradients exist in every
iteration, the algorithm does not terminate, and either

e {fa")} \ —ocor
o {v} \¢ 0, {ex} ¢ 0, and each limit point T of
the sequence {z*} is Clarke stationary for f, that
is, 0 € Of (z).
It has been shown that the result of Theorem 1 can be
extended for some cases of non-locally Lipschitz f, in
particular, when it is directionally Lipschitz [ 1. Ex-
tending it to the general non-locally Lipschitz setting, on
the other hand, seems quite difficult. One can also prove
that, in the case of minimizing finite-max functions, Algo-
rithm 1 can achieve a linear rate of local convergence, at
least in a certain probabilistic sense [ 1. This should
not be too surprising given the connection between the
GS methodology and standard steepest descent.

4 Enhancements

Since the inception and analysis of the initial GS algo-
rithm in [ ], various enhancements and extensions



Algorithm 1 : Gradient Sampling with a Line Search

Require: initial point 2° at which f is differentiable, initial sampling radius ¢, € (0, cc), initial stationarity target
vy € [0,00), sample size m > n + 1, line search parameters (3,v) € (0,1) x (0,1), termination tolerances
(€opt» Vopt) € [0,00) x [0, 00), and reduction factors (6.,6,) € (0,1] x (0, 1]

1: for k € N do
2:  independently sample {z*! ... ¥} uniformly from B(z",€;) := {z € R" : ||z — 2F|]2 < e}
3:  compute g* as the solution of min,cgr 1||gl|3, where G* := conv{V f(a*), V f(z"1),..., V f(z"™)}
4: if [|g% |2 < vopt and €, < €opy then terminate
s ifllgtl < v
6: then set Vi1 < Ok, €11 < Oce€p, and t;, < 0
7: else set v 1 + v, €11 < €k, and
th ¢ max {t € {1,7,7%,... } 1 f(a* —tg") < f(z") — Btlg" |3} )
8: if f is differentiable at 2% — ¢;,¢*
9: then set 2**! <« zF — t;.¢*
10: else set 2**! randomly as any point where f is differentiable such that
F@*h) < f(z®) = Btillg*]3 and [|2* — tig® — 2o < min{ty, er}g" 2 ©)
11: end for

have appeared in the literature. First, a few fundamental
advances were published in [ 1; in particular, in this
work, Kiwiel showed how to simplify the analysis of a basic
GS algorithm and extend it for some interesting algorithm
variants, such as when invoking a trust region method-
ology. Other proposed enhancements include techniques
for avoiding the differentiability check in Steps 8-10 of
Algorithm 1) [ , 1, performing the gradient
sampling adaptively so that only O(1) gradients need to
be sampled in each iteration [ s 1, and for in-
corporating second-order derivatives or approximations,
say by borrowing quasi-Newton ideas from the smooth
optimization literature [ s 1. Added benefits of
adaptive sampling are that one can re-use gradients com-
puted in previous iterations and warm-start the solve of
each QP so that the computation of each search direction
becomes relatively inexpensive.

The GS methodology has also been extended for solving
constrained optimization problems. Specifically, a Rie-
mannian GS method has been proposed for optimization
on manifolds [ 1, and a so-called SQP-GS method,
which merges the GS methodology with that of a penalty
sequential quadratic programming (SQP) technique from
the smooth optimization literature, has been proposed
for solving inequality constrained optimization problems
in which the objective and constraint functions may be
nonsmooth and/or nonconvex [ 1. A feasible variant
of the SQP-GS method has also been proposed, which es-
tablishes a path for the design of two-phase approaches: a
first phase seeking feasibility and a second phase seeking
optimality [ 1.

Another interesting line of work has been on adaptions
of the GS methodology for designing derivative-free algo-
rithms for minimizing nonsmooth functions. In a couple of
these cases, authors have proposed to use the GS method-
ology in a relatively straightforward manner with gra-
dients replaced by gradient approximations constructed

using function evaluations [ X 1. There has also
been work on methods that do not borrow the gradient
sampling strategy per se, but are still motivated by the GS
methodology in terms of the types of subproblems that
are employed to compute search directions [ 1.

Figure 3. Contours of the nonsmooth Rosenbrock function (3)
showing iterates generated by the subgradient method with
{tx} = {0.1/k}. The black asterisk is the initial point and the
red asterisk shows the unique minimizer.

For more information on the enhancements and exten-
sions that have been made to the GS methodology over
the past decade, as well as information about available
software and success stories in practice, see [ 1.

5 Closing Remarks

Gradient sampling is a conceptually straightforward, yet
powerful approach for extending the steepest descent
methodology to the minimization of nonsmooth, noncon-
vex functions. The fundamental idea of GS is to stabilize
the notion of a steepest descent direction by finding the



minimum norm element of the convex hull of gradients
evaluated at points randomly sampled near the current
iterate. The methodology enjoys a solid theoretical foun-
dation and has been enhanced and extended in various
ways, such as for solving constrained optimization prob-
lems.

There remain various interesting avenues of research re-
lated to the GS methodology. For example, it remains
an open question how far one may be able to extend the
convergence theory for a GS method in terms of minimiz-
ing non-locally Lipschitz functions; e.g., can one extend
the GS theory for the class of semi-algebraic, but not lo-
cally Lipschitz or directionally Lipschitz functions? On
the other hand, one can imagine various opportunities
for exploring tailored GS approaches when one aims to
minimize a function for which one has knowledge about
the structure of the nonsmoothness of a function f. How
should sampling be performed when, at any given iter-
ate, one has knowledge about the directions in which f is
smooth and directions in which it is nonsmooth (at least
in a neighborhood of the current iterate)?

| |

10° R -
= =
ML AL MAAMAMAAAAAAAAAAAAAAAAAAAALAA |
1072
—— Subgradient w/t, =1e-4
—— Subgradient w/ t=1e-3
104 Subgradient w/t, =1e-2
—— Subgradient w/ tk=1e-3/k
Subgradient w/t, =1e-2/k
Subgradient w/ lk=1e-1/k
10

500 1000 1500 2000

Figure 4. Function values by iteration number for the subgradi-
ent method with different stepsize sequences, indicated by the
formula for ¢ in the legend.

One also has the sense that there remain numerous av-
enues to pursue in the context of constrained optimiza-
tion. Given the range of methodologies for solving smooth
constrained optimization problems, one could explore
techniques that combine these approaches with gradient
sampling so that convergence guarantees could poten-
tially be obtained when handling nonsmooth functions
as well. One might also re-evaluate the use of certain
methods, such as some exact penalty methods, which
have previously fallen out of favor due to the presence
of nonsmoothness. After all, the issues that inhibited the
effectiveness of such approaches might no longer be of
concern since GS might naturally overcome them.

Finally, there remain various open questions about the
possible connections between the GS methodology and
other randomized and/or stochastic optimization methods.
The basic GS method involves computing the minimum
norm element in the convex hull of gradients evaluated
at randomly generated points. Can the GS theory be ex-
tended when the subproblems for computing the search

directions are only solved approximately? If so, this might
represent a step toward tying the convergence theory
of GS with those of other randomized/stochastic gradi-
ent/subgradient approaches, which have attracted a lot of
recent attention; see, e.g., [ s 1.
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Research Highlight: Asymptotically Optimal Exact Solution of Sparse Linear
Systems via Left-Looking Roundoff-Error-Free LU Factorization
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This research focuses on exact linear programming (LP).
LP is widely considered a solved problem; however, there
exists a class of problems for which commercial LP solvers
are inadequate. Indeed, commercial optimization solvers
come with limited guarantees: they may classify subopti-
mal solutions as optimal or even feasible bases as infeasi-
ble and vice versa [3, 11]. While it is true that commercial
solvers produce excellent solutions for a majority of in-
stances, a number of applications—including feasibility
problems, compiler optimization, computational based
mathematical proofs, and numerically unstable instances
[9, 16, 10]—generate underlying LPs which require ex-
act solutions. Ill-conditioned instances are of particular
interest, as 72% of the real world LPs within the NETLIB
LP repository are ill-conditioned [14]; which leads to the
conjecture that ill-conditioned LPs are frequent in practice
[13]. However, solving LPs exactly is challenging due to
the roundoff errors intrinsic to floating point arithmetic.
While they are individually harmless, roundoff errors may
propagate, accumulate, and magnify, ultimately rendering
the output of linear solvers egregiously incorrect. It is
imperative, therefore, that efficient algorithms and robust
software exist which account for, and ultimately eliminate,
roundoff errors when solving LPs.

Currently, there are two approaches for solving LPs ex-
actly: certify and repair [3, 1] and LP iterative refinement
[8, 71. Each method employs a mixed precision approach
in which the majority of operations is performed in float-
ing point precision. Both guarantee exactness by solving—
via full precision rational arithmetic LU factorizations®*—
the sparse linear systems associated with promising basis
matrices. However, these full precision rational-arithmetic
LU factorizations often serve as the bottleneck of exact LP
solvers, as they may occupy up to 90% of the run time
of exact LP algorithms [7]. Despite their prevalent use,
very little research has been devoted to improving exact
LU factorizations.

To address the drawbacks of rational LU factorization, the
(dense) roundoff-error-free (REF) LU factorization was
developed. The REF LU factorization is based on integer-
preserving Gaussian elimination (IPGE) and exactly solves
a linear system using exclusively integer arithmetic with
the added property that the bit-length of each entry is
bounded polynomially [4]. This polynomial bound is a
key property of REF LU, as rational LU factorization ap-

proaches achieve these bounds only via computationally
costly greatest common divisor operations [15]. Asso-
ciated computational tests showed that REF LU outper-
formed dense rational LU factorization by one order of
magnitude in run time while requiring half the memory

[5].

This research expands REF LU to the sparse setting by
developing the theoretical and computational framework
for the Sparse Left-looking Integer-Preserving (SLIP LU)
factorization. SLIP LU, the first fully sparse integer-
preserving LU factorization, computes the sparse factoriza-
tion, A = LDU, one column at a time. At iteration k, SLIP
LU computes the kth column of L and U via a two step pro-
cess. First, symbolically, SLIP LU determines the nonzero
pattern of the kth column of L and U via a graph traversal
algorithm, where a sequence of depth first searches is per-
formed on the graph of the matrix L. Second, numerically,
we derive a new algorithm which combines left-looking
LU factorization [6], sparse extensions to IPGE [12], and
REF forward substitution [4] so that the L and U factors
are computed using only the necessary IPGE operations.
Note that, though the factorization is A = LDU, only
the integral L and U matrices are required to solve the
linear system Ax = b. In addition, due to the special
structure of the derived algorithm, we prove that the com-
putational complexity of SLIP LU is proportional to the
cost of the factorization’s arithmetic work, meaning that
SLIP LU is asymptotically optimal with respect to solving
sparse linear systems. In practice, this property is difficult
to achieve, as in floating point arithmetic, left-looking LU
factorization is the only algorithm to solve sparse linear
systems in time proportional to arithmetic work [6]. Like-
wise, to our knowledge, SLIP LU is the only exact method
to solve sparse linear systems with this property.

Computationally, we implemented the SLIP LU factor-
ization in C++ and compared it to a modern left-
looking rational-arithmetic LU factorization (denoted
QLU). We performed this computational comparison on
the BasisLIB repository, a test set of 276 real-world
LP basis matrices received as output from the QSopt LP
solver [2]. This repository serves as a good test case for ex-
act LP, as 51% of the matrices within it have an estimated
condition number exceeding 108, meaning that the un-
derlying linear systems are prone to numerical errors. In
terms of factorization construction time, SLIP LU is faster
than QLU for 59% of the instances while having an aver-
age and geometric mean 6.1 and 1.5 times smaller than
those of QLU, respectively. More strikingly, in terms of for-
ward and backward substitution, SLIP LU is faster for 75%
of the instances while having an average and geometric

7Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX. clouren@tamu . edu. This paper was submitted
to the SIAM Journal on Matrix Analysis and Applications (SIMAX) and is currently under revision.
8an LU factorization factors the matrix A into the product of a lower triangular, L, and upper triangular, U, matrix, A = LU



mean 3.4 and 4.0 times smaller than those of QLU. Graph-
ically, these results are illustrated via the performance
profiles in Figures 5 and 6. Altogether, these results offer
compelling evidence that SLIP LU dramatically outper-
forms rational left-looking LU factorization for solving
real world, unsymmetric sparse linear systems. Specifi-
cally, SLIP LU is shown to perform well on those real-world
linear systems encountered in exact LP. The code associ-
ated with the SLIP LU factorization is publicly available at
https://github.com/clouren/SLIP_LU.

Figure 5. SLIP LU Dominates QLU in Factorization Time
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V-Polyhedral Disjunctive Cuts
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by Anna Nagurney and including Sergiy Butenko
and Frank Curtis, for selecting our paper.

1 Introduction

Our paper presents a new framework for effi-
ciently and non-recursively generating a large
number of strong disjunctive cutting planes, or
cuts. We are motivated by a drawback of many
existing techniques, in their reliance on recur-
sion to reach strong cuts, i.e., on computing cuts
from previously-derived ones. This can result in
numerical issues (e.g., due to compounding in-
accuracies) and a “tailing off” of the strength of
the cuts in later rounds [5,(17]. Our goal is to cir-
cumvent recursion without sacrificing strength.

One way to accomplish this is by generating
cuts through stronger disjunctions (compared to
those that are commonly used), which partition
IR™ such that the integer-feasible region, denoted
Py, is contained in the union of the disjunctive
terms. Concretely, a disjunction takes the form
Vier{z € R" : D'z > D}. where T is a fi-
nite index set. With P := {z € R" : Az > b}
and Pr == {z € P :xz; € Zforallj € T},
Z C {1,...,n}, we denote disjunctive term
t € Tby Pt := {z € P: D'z > D} Let
Pp := cleconv(Uie7 Pt) be the disjunctive hull,
the closed convex hull of the points of P satisfy-
ing the disjunction. For validity, we assume the
disjunction satisfies Py C Pp and T ¢ Pp, where
T is an optimal solution to the linear program-
ming relaxation min,{c'z : € P}.

Although producing cuts from stronger dis-
junctions avoids recursion, the challenge be-

*Based on joint work with Egon Balas [4].

comes how to do so efficiently as |T| grows.
The prevailing method for generating disjunc-
tive cuts, which was introduced by Balas [2] and
has come to be known as lift-and-project [3],
quickly becomes too costly to use in practice due
to the higher-dimensional representation it em-
ploys. The innovation of our framework is a cut
generation scheme formulated in the original di-
mension (n) of the problem via an efficient use
of the V-polyhedral perspective, representing a
polyhedron through its extreme points and rays,
in contrast to the inequality description under-
lying lift-and-project.

2 Point-Ray Linear Program

Let P and R denote sets of points and rays in R".
Define the point-ray linear program (PRLP),
taking the point-ray collection (P, R) and an ob-
jective direction w € R™ as an input, as follows:

min o'w
a?/B
alp > forallpeP
P 5 b (PRLP)
a'r>0 for all r € R.

The feasible solutions (a, ) to (PRLP) corre-

spond to inequalities 'z > 8 that we call V-
polyhedral cuts (VPCs). Define the point-ray hull
as conv(P)+cone(R). Theorem|[l]shows that the
extreme ray solutions to (PRLP)) correspond to
facet-defining inequalities for the point-ray hull.

Theorem 1. The inequality o'z > 8 is valid
for conv(P) + cone(R) if and only if (c,3) is

a feasible solution to (PRLP). The inequality
defines a facet of the point-ray hull if and only if

the solution («, 8) is an extreme ray of (PRLP)).
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zo < Of\z2 > 1

(a) The disjunction is all
possible assignments of
z1 and zo.

(b) Branching on differ-
ent variables results in
two stronger disjunctive
terms.

Figure 1: Two four-term disjunctions (the leaf
nodes of the trees).

We now describe the steps that are needed to
generate cuts from in practice. This in-
volves (1) choosing a disjunction, (2) selecting
the point-ray collection, and (3) deciding the ob-
jective directions. There are many nontrivial op-
tions for each of these parts, so we support our
choices with theoretical results.

2.1 Choosing strong disjunctions

Most cutting plane research focuses on generat-
ing cuts from “shallow” disjunctions: those that
utilize relatively few (one or two) integer vari-
ables at a time, such as split or cross disjunc-
tions. Strong cuts are obtained by a combina-
tion of recursion and considering several shallow
disjunctions simultaneously in each round. We
follow a different paradigm, in which we expend
extra effort to find one strong “deep” disjunc-
tion, with the hope that this effort leads to bet-
ter cuts than those from multiple shallow dis-
junctions and many rounds.

Specifically, our disjunctions come from the
leaf nodes of a partial branch-and-bound tree.
The partial tree may be asymmetric and include
pruning by infeasibility, integrality, and bound.
We demonstrate this in Figure contrasting
a cross disjunction generated from two integer
variables 1 and xo to a four-term disjunction
that might be obtained using the branch-and-
bound process. Cuts from partial branch-and-
bound trees have been used in several contexts
in the past; we refer the interested reader to [12]
for coverage of related literature.

2.2 Normalization of the PRLP

The PRLP we use in our experiments differs from
(PRLP)) in two ways. First, to get extreme point

' solutions, we truncate the cone defining the fea-

sible region of . We choose to normalize
@‘ by fixing § = 1. Second, we formu-
late @D in the nonbasic space defined by the
cobasis at z. In this space and with 8 = 1, every
basic feasible solution a to corresponds
to an inequality a'x > 1 violated by Z.

2.3 Proper point-ray collections

One challenge with a V-polyhedral representa-
tion is that the number of constraints of
can grow exponentially large with respect to the
original formulation size of P, and these rows are
necessary in that dropping them may yield in-
valid cuts. For this reason, prior related work re-
sorts to row generation to guarantee validity |16,
18]. We instead show that the expensive row
generation can be avoided via a properly chosen
compact collection of points and rays, which will
suffice to produce valid cuts, albeit a subset of
the entire pool of possible disjunctive cuts.

To guarantee validity of the cuts, we adapt
the definition of a proper point-ray collection
from [13].

Definition 2. The point-ray collection (P, R)
is called proper if o'z > B is valid for P when-

ever (a, ) is feasible to (PRLP).

As a direct corollary to Theorem [1, we obtain
a necessary and sufficient condition for a point-
ray collection to be proper.

Corollary 3. A point-ray collection (P,R) is
proper if and only if Pr C conv(P) 4 cone(R).

Of course, we do not work with the integer
hull directly. The intermediary is the disjunc-
tive hull. The next corollary is a key result for
the development of a practical procedure work-
ing with points and rays. It states that as long as
the point-ray hull forms a V-polyhedral relaxation
of Pp, then the point-ray collection is proper.

Corollary 4. A point-ray collection (P,R) is
proper if P C conv(P) + cone(R) for allt € T,
or, equivalently, if Pp C conv(P) + cone(R).
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2.4 Simple cone relaxations

Instead of pursuing all facet-defining inequalities
for the disjunctive hull, we use a relaxation of Pp
with a compact V-polyhedral description. One
convenient relaxation for each disjunctive term
is the basis cone C' at an optimal solution p
to ming{c'z : # € P'}, formed from p' and a
cobasis N'(pt) associated with p!. This cone is
defined as the intersection of the n inequalities
corresponding to the nonbasic variables indexed
by N'(p'), and it has a compact V-polyhedral de-
scription, with only one extreme point (p') and
n extreme rays. We refer to the union of these
points and rays across all terms as the simple
point-ray collection (P°, RY), and we will use the
shorthand PP := conv(P) + cone(R?) to denote
the corresponding point-ray hull. Define PRLPY
as with (P,R) = (P°,R"). The cuts
from PRLPY will be called simple VPCs. We
state their validity as Theorem

Theorem 5. The simple point-ray collection
(P°,RY) is proper.

The feasible region of PRLPY has the same
number of constraints as the linear program for
generating lift-and-project cuts, but it only has n
variables (whereas for lift-and-project, the num-
ber of variables increases with |7|).

2.5 VPCs corresponding to facets of
the disjunctive hull

Though Pg is a drastic relaxation of Pp, in that
it is defined by a small fraction of the inequalities
defining Pp, we show that PB can be a very mild
relaxation in the region of Pp of interest to us.
It is clear that not all facets of Pp are captured
by Pg; see, for example, facet F; in Figure
The figure also illustrates another phenomenon,
which is the existence of what we call stray rays.
Although a ray is added to the point-ray collec-
tion from some particular point (when building
the point-ray collection), it is ultimately added
to all points in P° to calculate Pg. This can
create facets of P,% that are significantly weaker
than facets of Pp. A ray is stray when it is tight
for a facet of Pg, but when the point that the ray

Figure 2: Stray rays can create unexpected facets
of Pg.

originated from is not tight for the facet. Thus,
ray r in Figure [2|is stray.

From this, we can also define two types of
facets of Pg. We say a facet of PLO) is standard if
there is a corresponding basis of PRLPY with no
stray rays. Otherwise, the facet is nonstandard.
We apply this in Theorem [6] to state a sufficient
condition for a facet of the point-ray hull to be
a facet of the disjunctive hull.

Theorem 6. Suppose the basis defining p' is
unique for each t € T. If a facet of P} is stan-
dard, then it is a facet of Pp that cuts x.

In the paper, we give special attention to the
case of a split disjunction (given its importance
in prior work), and show that all simple VPCs
define facets of Pp when there is no degeneracy.

2.6 Choosing appropriate objectives

Having set up the constraints of the PRLP, we
need to decide which objective directions w to
pursue. Choosing these carefully is critical to
the success of any VPC algorithm, as the objec-
tives directly determine the nature of the VPCs
obtained. Moreover, it is imperative to make the
cut-generating process efficient, to prevent “fail-
ures” that could occur: PRLP? can be (1) infea-
sible, (2) feasible but unbounded, or (3) feasible,
bounded, but the cut for a particular w is a du-
plicate of a previously generated cut. Failure (1),
for instance, occurs if  belongs to Pj%.

Our paper contains the details of how we are
able to avoid failures of types (1) and (2) (and
drastically reduce the third type of failures). We
merely mention here a key difference in our im-
plementation from the typical viewpoint when
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generating cuts. Namely, the usual approach is
to find cuts with high violation with respect to z,
or another point not in Pp. However, this classic
paradigm may overemphasize cutting irrelevant
parts of the relaxation (see, e.g., the discussion
in [8]). The alternative we pursue is to find cuts
that minimize the slack on points that do be-
long to Pp, through which we can also utilize
more structural information about the disjunc-
tive hull, readily available for us due to our use
of a V-polyhedral representation.

3 Computational Results

In this section, we briefly summarize our com-
putational experience with VPCs. The goals of
the experiments are to assess (1) the strength
of VPCs by the percent root gap closed by one
round of the cuts, and (2) the effectiveness of
VPCs when added at the root and used as part
of branch-and-bound.

We test 6 different disjunctions, defined by
¢ € {2,4,8,16,32,64} leaf nodes of a partial
branch-and-bound tree generated by default Cbc
settings. We use one round of rank one cuts.
The cut limit is set to |{j € T : z; ¢ Z}|.
All algorithms are implemented in C++ in the
COIN-OR framework [15] using Clp 1.16 and
Cbc 2.9. We test the effectiveness of VPCs
within branch-and-bound by adding them as
user cuts within Gurobi 7.5 [11]. The instances
we select are among those with at most 5,000
rows and columns from the MIPLIB [1, 6,7, [14],
CORAL [9], and NEOS test sets. Every instance

is preprocessed by Gurobi’s presolve.

Percent integrality gap closed. We mea-
sure percent integrality gap closed on the 184
instances for which the disjunctive lower bound
is strictly greater than c'z. The results (in Ta-
ble [1) indicate the strength of VPCs, compared
to the baseline of Gomory mixed-integer cuts
(GMICs) [10] and the default cuts in Gurobi.
Namely, using VPCs and GMICs together leads
the average percent gap closed at the root to in-
crease from 17% to 27%, with more gap closed
on 156 of the 184 instances. Within Gurobi, the

Set  # inst G V V+G GwF V4+GuF GurL V+4GurL
e e TR w0 e
>10% &7 \?\71%1 S':% 14.4 2%6 3;.15 20.0 3%.56 38.8 5850
Table 1: Percent gap closed by VPCs. “All” is

the set of instances with ¢"p* > ¢'Z. The set
“>10%” contains all instances for which VPCs
close at least 10% of the gap. “G”, “V”, “GurF”,
and “GurL” refer to the GMICs, VPCs, and the

first and last round of cuts at Gurobi’s root node.

cuts continue to be very strong. For the first
round of cuts at the root, the percent gap closed
goes from 25% (without VPCs) to 33% (with
them), with strictly better outcomes for 143 of
the 184 instances. For the last round of cuts at
the root, the percent gap closed increases from
46.5% to 52% by using VPCs.

An important conclusion we can draw is that
our procedure can help avoid the “tailing-off” ef-
fect from recursive applications of cuts: with-
out requiring recursion, by simply using a (suf-
ficiently) stronger disjunction, we make steady
progress (on average) toward the optimal value
of (IP). However, this is only in terms of percent
gap closed; as we discuss next, the story when
using the cuts within branch-and-bound is com-
pletely different, in which seemingly weaker cuts
may lead to better performance.

Branch-and-bound effect. We now turn to
the second metric, of the effect of our cuts on
branch-and-bound in terms of time and num-
ber of nodes when VPCs are added as user cuts
to Gurobi, where (in the paper) we report the
fastest solution time by Gurobi across the six
different partial trees tested per instance, but
also including the time from Gurobi run without
VPCs as one of the possible minima, indicating
the option of not using VPCs for an instance.
The results reported in the paper show un-
equivocally that using VPCs in this way vastly
dominates Gurobi run with one random seed,
yielding a drastic reduction in the average num-
ber of seconds and nodes to solve each instance.
Of course, in this comparison, by definition, the
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time reported for VPCs weakly dominates that
of Gurobi. The purpose of such a comparison
is showing the theoretical benefit of the VPC
approach: with an ideal way to select a par-
tial tree per instance (including knowing when
not to use VPCs at all), these are the results
one would see. Unfortunately, in practice, we do
not have access to such an oracle, but the re-
sults suggest the need for crafting a good rule
to take the place of this ideal oracle. The most
obvious rule, of fixing ¢ leaf nodes for just one
of the options ¢ € {2,4,8,16,32,64}, does not
work. Addressing this open question is one area
of research in our ongoing work on VPCs. This
touches on an important topic in integer pro-
gramming, of developing a better understanding
of cut selection, especially considering the inter-
action between cutting and branching. The VPC
framework provides an accessible way to explore
this fertile area.

4 Conclusion

Our computational and theoretical results show
that VPCs present a step forward in disjunctive
cut generation. The cuts are strong relative to
existing cuts, and they have the potential to sig-
nificantly reduce branch-and-bound time. How-
ever, the question of how to realize that poten-
tial hinges on effectively selecting the disjunc-
tion size. It is promising that our results indi-
cate that it may suffice to learn to select among
only seven sizes. Moreover, the results are likely
to improve with work on strengthening VPCs.
Thus, we hope our encouraging early computa-
tional results lay a path forward to VPCs having
practical impact in the near future.
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