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ABSTRACT

cORe is a new cyber-infrastructure which will facilitate computational Operations Research exchange.
OR models arise in many engineering domains, such as design, manufacturing, and services (e.g., bank-
ing/finance, health systems), as well as specific infrastructure-centric applications such as logistics/supply
chains, power system operations, telecommunications, traffic/ transportation, and many more. In addition,
modern OR tools have also been adopted in many foundational disciplines, such as computer science, ma-
chine learning, and others. Given the broad footprint of OR, the development of a robust cyber-infrastructure
has the potential to not only promote greater exchange of data, models, software, and experiments but also
enhance reproducibility and re-usability, both within OR, and across multiple disciplines mentioned above.
cORe also has the potential to drastically reduce the computational burden on research communities which
study resource allocation using analytics. This paper presents an overview of the functionality, design, and
computations using cORe.

1 MOTIVATION AND REQUIREMENTS

This paper introduces a new Cyber-Infrastructure (CI) for the Operations Research (OR) community. The
goals of this project are:

• Promote reproducibility of computational results, and enhance validation and comparison of OR
models and algorithms

• Provide a pedagogical tool for training students.
• Promote reusability by sharing of data, code, methods, and evaluations across the OR community

A common thread that binds these goals together is that they are enabled only if all of the data associated
with an OR solution (code, input data, intermediate products) are discoverable and broadly accessible in
a form that could be understood and reused, with enough descriptive information to understand what the
data represents, and how the Analytics process can be reproduced. Here the data includes the mathematical
model (which in case of optimization is provided via special-purpose codes such a AMPL, ARENA etc.), the
parameters specified for instantiating mathematical objects, and the workflow associated with the process.
The outputs associated with such an experiment leads to insights, and ultimately decisions. We refer to the
entire workflow as the Analytics process, and usually involves multiple paradigms, including data science,
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decision science, simulation, visualization etc. cORe is intended to provide a platform for sharing OR
solutions as specified above.

It has become broadly accepted in the scientific data sharing community that by ensuring certain
principles, reproducibility can be enhanced. These are the so-called FAIR principles (Madduri et al. 2018)
— that it is Findable, Accessible, Interoperable, and Reusable. Specifically in the context of OR solutions,
we require that the “input” is findable when it is identified by a unique identifier and characterized by rich
metadata that describe the details of the data and Analytics workflow; accessible via standard protocol with
access control and its metadata accessible even when the data is not; interoperable by using standardized
terms to describe it; and reusable by providing accurate and relevant attributes. The cORe CI is a first
step in this direction.

Sen (2006) notes that “researchers in the basic sciences (physics, chemistry, biology, etc.), and even many
social scientists, not only propound new theories, but also verify how well these theories predict observations
in the real world.” The cORe CI will allow OR researchers to reduce the burden of experimentation with
OR models and algorithms, thus allowing OR solutions to be verified/validated with greater care.

The widespread availability of data and software have now made it possible to build a CI which will
allow the OR community to share OR solutions, and to enable the field to become more engaged with
the scientific approach of experimentation and validation. In addition to research advances, such a CI is
likely to support new applications, especially those which face a similar terrain of data and decisions.
For example, many cities have begun to implement advanced OR tools for bike sharing, transportation
planning, crime abatement etc. These applications may be viewed under the broad umbrella of Analytics
for Smart Local Communities (ASLC). OR support of ASLC calls for a multi-faceted infrastructure which
promotes an exchange of ideas through modeling and algorithmic services which integrate data resources,
with appropriate models and algorithms. For example, notions such as modeling demand-response in power
grids, traffic-responsive automobile routing, safety-conscious bicycle routing, and many others require an
integrated system of data management, predictive and prescriptive analytics, as well as validation and
visualization tools. The cORe cyber-infrastructure is designed to support such end-to-end ASLC. From a
societal viewpoint, communities have a lot to gain by sharing their Analytics resources, especially since
they often face similar circumstances, and often have access to similar data.

To be sure, there have been several previous forays into facilitating computational OR. Current soft-
ware efforts within the OR community include COIN-OR (COmputational INfrastructure for Operations
Research) for developing mathematical optimization software (Ralphs et al. (2018)), MIPLIB-2010
(http://miplib.zib.de/), a library of deterministic test-instances for mixed-integer programming,
SIPLIB (Ahmed et al. (2004)) and more recently, a simulation-optimization portal known assimopt.org
(see Pasupathy and Henderson (2006), Pasupathy and Henderson (2011)). These resources are important,
but they do not serve the role of a CI. To the best of our knowledge, the most widely used CI within the
OR community has been the NEOS project, which was launched almost twenty five years ago (as a joint
effort between Argonne National Labs, and Northwestern University). That project, which continues now
with support from several universities (e.g., Wisconsin, ASU, and others), has been the mainstay of CI for
optimization. While the services NEOS provides continues to be valuable for the optimization community,
it is time to create a new CI which will incorporate many lessons of the past two decades.

The high-level goals mentioned at the outset included reproducibility and reusability. In addition, we
impose the following requirements which are specific to the set of services we wish to provide. Unlike
previous efforts, the focus on ASLC transcends any one genre of modeling tools, algorithms and software.
Since an Analytics project typically requires coalescing data and decision sciences, the resulting workflow
typically involves statistical analysis, as well as optimization algorithms. With these requirements in mind,
we have designed the cORe platform to achieve the following functionality:

• Support complex multi-model learning, optimization, simulation, and other tools which have become
routine in Analytics projects. Such workflow involves heterogeneous data, models, algorithms and
OR resources. To be effective, cORe must serve as a repository for OR resources.
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• Enable rapid implementation so that the work required for computational results can be reduced
by leveraging previously reported experiments. The cORe repository of computational experiments
will create an atmosphere in which alternative experimental setups will not be too onerous.

• Expedite the development of prototypes, each with its particular choice of steps in the workflow.
Since an Analytics project may involve multiple prototypes, the overall task may be quite daunting.
However, as users begin to share tools, ASLC projects will become less daunting. We refer to this
approach to Analytics as a “crowd-sourced” CI solution, which is an extension of the spirit of the
package “R” for statistics.

• By creating a search-able ecosystem of OR resources, we hope to reduce the time/effort required to
carry out computational experiments. This ecosystem will also support citations via digital object
identifiers (doi). This approach allows users to be very specific about the instance(s) being used
in their test and moreover, it avoids proliferation of instances associated with the same name. For
instance, the SSN (Sonet Switched Network) instance in the stochastic programming (SP) literature
has at least two versions with the same name; one of them has O(1070) scenarios, whereas a sampled
version with 5000 scenarios is also named SSN. While the solution of the second may be a good
approximation of the first, the two instances are different, and their doi should be different.

2 SYSTEM DESIGN

We view any Analytics application as a project network (also known as Critical Path Method (CPM) (Winston
2003)). Such networks are said to be activity-on-arc networks where each step of the (Analytics) application
represents a computational service provided by a specific software. In most cases, each step/activity will
represent the execution of one type of software (e.g. say a regression using “R”). Because each step requires
input data, these must be specified as well. Finally as in CPM, each task can only start after all predecessor
tasks have been completed. Unlike CPM however, we will not require activity durations in the current
network representation, although in the future this aspect may be included when we support time-sensitive
applications. The class of applications supported by the conceptual design of cORe is one that can be
represented by a directed acyclic graph. This structure is relatively easily implemented as a sequence of
steps in which all precedence must be obeyed.

Continuing the analogy with CPM, the project input description will require three specific details
for any particular step (activity): Name of the Specific Step (representing the Activity), Input File
Name(s)/Location(s) (representing the predecessor step), and the Output Name(s)/Location(s) (representing
the successor step).

Before proceeding to the details of our platform design, we should also clarify a few additional
aspirational features:

• Allow users to annotate and specify workflow (or pipelines)
• Allow users to upload papers associated with experiments, so long as no copyrights are in place
• Provide the capability to search the system for similar efforts which might have been carried out

in the past. Thus a list of keywords are associated with each contribution.

For users who plan to contribute to the cORe platform, Algorithm 1 is recommended to provide a
workflow for any instance. Detailed instantiation can be found in the LEO-Wyndor example in Section 4.

3 SPECIFIC DESIGN CHOICES AND RELATED WORK

The CI for cORe will leverage a system known as DERIVA (Discovery Environment for Relational
Information and Versioned Assets) (Schuler et al. (2016)) which is currently used to support both small
and large scientific special interest groups in the Biosciences community. The DERIVA system is a
model-driven web-based interface for data discovery. Because of its roots in the experimental sciences,
DERIVA is designed to support collaboration through the full life-cycle of scientific data, which is intended
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Algorithm 1 recipe for workflow
1: Suppose the whole process contains N steps, then
2: for steps i = 1, ...,N do
3: Assemble data files for step i, named as Step Input File in the platform . if some files required

for a step are missing, write out a warning and break
4: Process data files according to methods provided in the program files for step i . these program

files can be in Jupyter Notebook format or any files stored in github repositories
5: If this step was successfully completed, then output those files which may form inputs to future

steps
6: if all N steps were successfully completed then stop
7: else identify which steps were not completed, and why

to streamline the storage and management of digital assets such as pictures, including experimental data
from instruments (e.g. microscopes, sequencers and flow cytometers).

Because of the its focus on mathematical modeling, and algorithm development, the workflow for OR
solutions may seem to be significantly different from the needs of life sciences research. However, the
steps followed during a Biosciences experiment may involve a variety of instruments, all of which must
be available for anyone else to replicate those experiments. In the case of OR, each step in the experiment
requires its own “instruments” which happen to be software/algorithms which operate on certain operating
systems. So long as the workflow of the OR experiment specifies these “instruments” in a specific manner,
others conducting the same experiment are responsible for assembling the entire protocol for the OR
experiment as well. In this sense, the experimental process is similar.

Figure 1: CORE: Computational Operations Research Exchange Platform Design

The difference between the needs of the OR community, and those of the Biosciences community is
that experiments of the latter produce data which are platform-independent. Nevertheless, the protocols
they follow must be specific, and anyone trying to replicate those experiments must have access to specific
instruments specified by the protocol. Similarly, OR researchers will be able to download the open-source
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code and data, and reproduce the experiment provided they have all applicable licences installed on their
platform.

In order to see how the two sets of steps require the same kind of support from DERIVA, we
present a somewhat realistic example of running, the Electricity Dispatch Model for the state of Illinois
(Gangammanavar et al. 2016). This experiment requires multiple steps in the workflow to represent a
simulation model of wind energy production, as well as a sequential implementation of the electricity
dispatch in ten minute intervals. Thus the simulated dispatch reflects plan for the next six ten-minute
intervals to estimate the simulated hourly cost. Once the model, and algorithm have been developed,
one begins the integration process of introducing these procedures into the larger experiment which needs
to be instantiated with data for the experiment. This is accomplished through the services of DERIVA
which include: a) a loosely coupled web services architecture with well defined public interfaces for every
component, b) use of Entity Relationship (ER) Models that leverage standardized vocabularies, with adaptive
components which can automatically respond to evolving ER models, c) model-driven user interfaces to
enable navigation and discovery as the data model evolves, and d) data-oriented protocols where distributed
components coordinate complex activities via data state changes. DERIVA uses the ER data model to catalog
and organize assets which will be digital objects (i.e. files). Assets are characterized by contextualizing
metadata which places an asset into the model by relating it to a specific entity. Additional descriptive
metadata are used to describe additional attributes and relationships between assets. The components of
the cORe ecosystem are shown in Figure 1. The cORe platform includes the acquisition, management,
analysis and sharing of data, models and decisions, which provides the following capabilities.

• Characterization and acquisition of datasets, including input data for statistical learning and analysis,
outputs from learning/optimization models, and results from validation analysis.

• Organization of data-driven decisions. The cORe system provides users with interactive ways
of connecting and importing data-analysis packages/functions (such as R packages), optimization
solvers and validation/visualization tools.

• The data assets will be stored in distributed in cloud based data storage systems.
• Sharing and exchange of model and data collections. The platform involves management of IP

associate with data assets, which is intend to protect proprietary data and software.

Figure 2: Homepage of the cORe platform
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4 CORE AT WORK

One of the major conveniences today is the widespread availability of local data, ranging from weather
and traffic, to crime, hospitals, health-care and more. Many of these data resources are available freely on
the web, while others need some level of authentication, and still others call for subscription to a service.

In the cORe platform, each experiment is classified by its scientific thrust (see Figure 2): Data Science,
Decision Science and Data-2-Decision. This classification corresponds to the class of activities undertaken
in an experiment. For the first category, the experiment focuses on the data science aspect, while in the
second, the focus is on decision/optimization, and the third refers to the fusion of data and decision sciences.

The cORe repository classifies datasets into three categories by the level of realism: pedagogical,
advanced and challenge. As the names indicate, the first category is used for educational purposes, and the
other two reflect the degree of realism associated with the experiment, with advanced being less demanding
than challenge instances.

To illustrate “cORe at work”, we return to the three main goals summarized at the outset, namely,
Reproducibility, Pedagogy, and Reusability.

• Reproducibility of computational results, and comparisons among algorithms: we provide an
example from simopt.org, and compare results from three alternative stochastic optimization
algorithms for a multi-dimensional newsvendor..

• Pedagogy. Many universities, including USC, offer a course which integrates data and decision
sciences (or prescriptive and predictive Analytics). cORe supports this mission by providing a
repository of examples. The one included here is simple combination of data science (matrix
completion) and decision science (mixed integer programming) for meal planing, referred to as the
MnM problem.

• Reusability: As mentioned earlier, publications often require editors to be able to reuse OR
solutions reported in a paper. We present such an example which allows other users to run the same
workflow, as described in a paper (and provided via cORe). This example, known as LEO-Wyndor,
is a more advanced combination of data science (linear regression), decision science (stochastic
linear programming), together with data science for model validation.

4.1 Reproducibility of Computational comparisons of algorithms: Multi-Dimensional Newsvendor

In this section we borrow a simulation optimization instance from simopt.org, the Multi-Dimensional
Newsvendor (MDNV) Problem (Xu et al. 2018b). This instance appeared in Kim, Pasupathy, and Henderson
(2015), although Harrison and Van Mieghem (1999) discussed a parametric version earlier. In this instance, a
firm manufactures q products with p different resources. The resource vector x∈Rq

+ needs to be determined
before the demand vector ξ ∈Rp

+ is observed. After the demand is realized, a production vector y ∈Rp
+ is

selected to maximize the profit of the firm. For given resource i and product j, let ci be the unit investment
cost for resource i, v j be the unit profit margin for product j, ai j be the amount of resource i required to
produce one unit of product j. While the original instance was stated as a maximization problem, we state
it below as a minimization problem:

min f (x) = cT x+E[g(x,ξ )]
s.t. 0≤ x≤ u

(1)

where
g(x,ξ ) = min −vT y

s.t. Ay ≤ x (capacity constraints)

0≤ y ≤ ξ (demand constraints)

(2)
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The demand vector ξ has p i.i.d. components (assumed to be non-negative), with each component having
a Burr Type XII distribution, which has the cumulative distribution function:

F(ξ j) = 1−
(
1+ξ

α
j
)−β

, j ∈ {1, . . . , p}

with parameter α = 2, β = 20. By applying duality theory to equation 2, we have: g(x,ξ ) ≥ g(xk,ξ )+
λ (xk,ξ )

T (x− xk), where xk is the k-th iterate. Therefore, for a given vector ξ , dual variable λ (·,ξ ) is a
subgradient of g(·,ξ ).

Several stochastic subgradient-based algorithms have been proposed for this instance by Kim et al.
(2015). In the cORe platform, we compare the performance of Stochastic Approximation (SA), Robust
Stochastic Approximation (RobustSA) (Nemirovski et al. 2009), and Stochastic Decomposition (SD) (Sen

and Liu 2016). The data for (1), (2) are as follows: u = 5,cT = (5 5), vT = (9 8 7) and A =

(
1 0 0
0 1 2

)
.

All algorithms were coded in the C language, and the experiments were conducted on a MacBook Pro
with 2.7GHz Intel Core i7 processor. We run 10 replications for SA and RobustSA, with initialization
point (0.1 0.1). For SA, a diminishing step size is selected, a/k, where a is 0.1 and k is iteration number.
The stopping rule is either the maximum number of iteration (10000) or the following equation is satisfied:

a
k

1
N2
|

N2

∑
i=1

λ (xk,ξi)|< 0.0001

where N2 is selected as 10. For RobustSA, the settings are follows: the total number of iteration is 10000,
N2 = 10, the step size is a constant equal to 0.0001. For the SD algorithm, we run 10 replications and at
the end of those runs, SD produces an compromise decision based on all the replications (Sen and Liu
2016). Thus, there is only one solution and confidence interval for SD. The time reported for SD reflects
all 10 replications as well as the time to obtain the compromise decision.

The results are reported in Table 4.1. For the notation in the table: Rep. is the number of replication,
Sol. is the optimal solution, CI is the 95% confidence interval for the objective function and Time is the
CPU time in seconds.

Table 4.1 SA vs. RobustSA vs. SD on the MDNV problem

Rep SA RobustSA SD (10 Rep)
Sol. CI Time Sol. CI Time Sol CI Time

1 [0.1735,0.2293] [-0.8479,-0.8395] 8.83 [0.1746,0.2270] [-0.8479,-0.8395] 19.25

[0.1698,0.2279] [-0.8479,-0.8394] 12.86

2 [0.1717,0.2286] [-0.8481,-0.8396] 8.87 [0.1735,0.2290] [-0.8479,-0.8394] 19.17
3 [0.1742,0.2293] [-0.8479,-0.8395] 8.41 [0.1727,0.2273] [-0.8480,-0.8396] 19.34
4 [0.1733,0.2289] [-0.8480,-0.8395] 7.43 [0.1734,0.2296] [-0.8479,-0.8394] 19.29
5 [0.1723,0.2276] [-0.8481,-0.8396] 9.38 [0.1714,0.2290] [-0.8482,-0.8397] 18.99
6 [0.1730,0.2283] [-0.8479,-0.8395] 8.64 [0.1730,0.2289] [-0.8480,-0.8395] 19.37
7 [0.1725,0.2284] [-0.8481,-0.8396] 6.48 [0.1715,0.2285] [-0.8482,-0.8398] 20.19
8 [0.1742,0.2284] [-0.8479,-0.8394] 8.77 [0.1752,0.2304] [-0.8475,-0.8391] 19.31
9 [0.1726,0.2290] [-0.8479,-0.8394] 8.36 [0.1705,0.2275] [-0.8481,-0.8396] 20.04
10 [0.1730,0.2302] [-0.8479,-0.8394] 7.99 [0.1734,0.2283] [-0.8480,-0.8395] 19.64

4.2 Pedagogical example: Meal Planning for the New Millennium

We refer to this pedagogical example as the Meal Planning for the New Millennium (MnM2) Problem
(Xu et al. 2018a). This problem is inspired by the famous Diet Problem (Garille and Gass 2001). Unlike
the traditional diet problem, the meal planning problem requires the choice of recipes, and therefore leads
to a model with binary decisions on whether a recipes is chosen or not for a given week. In addition,
the meal planning problem is not based on minimizing the cost of diet; instead, this new problem gives
the users a choice to include their taste as an objective. The preference rating is based on the feedback
for recipes available online. In this particular instance, we first use web scraping techniques to gather
the rating data and nutrition data from a recipe website. Later, a collaborative filtering method (matrix
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Figure 3: MnM2 problem on cORe platform

completion) is applied to predict the recipe preferences for an individual. As for the optimization side, the
goal is to choose the most highly rated meal plan under nutrition, budgetary and scheduling constraints.
In our setting, two roommates are considered to cook, share, and pay for meals over five days each week.
Thus, the solution should satisfy not only the nutrition requirements but also schedule constraints. In the
cORe platform, this MnM2 problem is classified as a pedagogical example.

Figure 3 shows the main page of the MnM2 problem in our cORe platform. The MnM2 instance
consists of three phases: Data collection (web scraping), Statistical Learning (matrix completion), and
Mixed Integer Programming (optimal meal plan). On the left hand side, the user can click the buttons to
view or edit each phase. We encourage the reader to examine the Jupyter Notebook file to get an idea of
the details necessary to undertake these steps.

Figure 4: Workflow of LEO-Wyndor in cORe Platform

https://notebooks.azure.com/jiajunxu/projects/MnMinstance/html/MnM_MIP.ipynb
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4.3 Reusability of a research example: LEO-Wyndor

Finally, we present an example where new research known as Learning Enabled Optimization (LEO) is
introduced via a pedagogical problem known as Wyndor, borrowed from Hillier and Lieberman (1995).
Our example, LEO-Wyndor Problem (Deng et al. 2018), extends the original Wyndor model to one in
which the production plan is to be made while bearing in mind that the allocation of the advertising effort
(time slots on TV or radio) affects sales of different types of products, while the original Wyndor model
was intended to use product demand as input, and the production plan was intended to maximize profit
under production constraints, under the assumption that the company could sell any quantity of products
produced. In other words, production capacities were the main constraints. For this example, a statistical
model, Multivariate Linear Regression (MLR) model, is used to predict future sales (W ), considering the
advertising slots (Z) on TV and radio. In this example, the advertising decisions constitute a bet on the
first stage (advertising) decisions x, and the second stage decisions are the production planning choices,
given firm orders (sales).

The whole process for this model includes three phases: Statistical Learning, Stochastic Programming
and Validation, which are listed in the page of LEO-Wyndor instance of the cORe platform. The workflow
for this instance is included in Figure 4. Multiple models have been implemented for comparison, including
deterministic forecasts (DF), normally distributed and un/correlated (NDU/NDC) demands and empirical
additive errors (EAE) models. A specific numerical instance of this model can be found on the cORe
platform (https://core.isrd.isi.edu).

5 CONCLUSIONS

This paper has presented a new cyber-infrastructure for the OR community, and is intended to help researchers
share OR solutions which includes data, models, codes, and experiments which can be reproduced without
as much programming as is necessary today. We are hopeful that the OR community will adopt this
framework for their research.
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