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“Where there’s a will there’s a
way!”

uting Society Newsletter

Message from the Chair: Sharing
Your Cool Toys

Ted Ralphs

Industrial and Systems Engineering

Lehigh University

ted@lehigh.edu

Greetings from “The Big Cheese!” I want to start by thanking all of you for the
opportunity to serve as chair of ICS and also by thanking Bill Cook for his excellent
guidance of the society over the previous two years. Since I took office, the beer mug
on my desk has served as a makeshift “royal sceptre” and reminds me daily of my duty
to the society that has been my home and sanctuary within INFORMS for many years
now. Obviously, the mug also reminds me daily that a beer would taste mighty good
right now!

As chair, I've been thinking about what the mission of ICS really is and what kinds
of initiatives would have the greatest impact on that mission. Feel free to drop me a
line and let me know what you’re hoping to accomplish and what initiatives within ICS
would help support that! On some level, the purpose of any academic society is to give
everyone the chance to share their cool toys with others in one big communal sandbox.
My goal is to make that sandbox as open to all who are interested in playing with us as
possible. To that end, I want to make you aware of a couple of the things going on in
ICS right now that I hope you will be as enthusiastic about as I am.

e Starting in 2015, student memberships will be free! The board decided that
since the society is on a good financial footing, this is something we can afford
to do and that it is good for the long-term health of the society. Please let your
students know that admission to the sandbox is now free!

e We have an excellent conference planned for January 11-13, 2015 in Richmond,
Virginia. The organizing and program committees, lead by General Chair Paul
Brooks and Program Chair Brian Borchers, have been doing a fantastic job
organizing so far! The pre-conference workshop will be focused on open
source tools, featuring the COIN-OR Optimization Suite and other related open
source tools.

e As anew feature at the 2015 ICS Conference, the proceedings will be published
open access! The proceedings papers will be available on-line for free and a print
volume will also be available on demand. The 2011 proceedings will be available
open access as well.

The desire to show off our coolest toys and to see what cool toys everyone else has is
something we never outgrow. I recently gave a talk entitled “Accessible Analytics” in
which I discussed the general theme of “openness” in operations research. It occurred to
me that ICS really does a lot enhance the accessibility of the technologies our members
develop and that is one of the many things I value about this group. For those who are
new, welcome to our sandbox! Play nicely and I look forward to raising a glass with
you in San Francisco.

Cheers,

Ted
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The 14th INFORMS Computing
Society Conference

J. Paul Brooks
Virginia Commonwealth University
Richmond, VA 23284

The INFORMS Computing Society (ICS) is soliciting papers and presentations for its
fourteenth conference. ICS is focused on contributions at the interface of computer
science, artificial intelligence, operations research, and management science. The
conference organizers invite submissions discussing novel theoretical and applied
research consistent with the ICS focus. We especially encourage submissions targeting
this year’s conference theme: Operations Research and Computing: Algorithms and
Software for Analytics.

Location: Omni Richmond Hotel in Richmond, Virginia, USA
Dates: January 11-13, 2015

Topics of Interest Include: Computational Optimization and Solvers, Constraint
Programming and Hybrid Optimization, Computational Probability and Analysis, Data
Mining, Simulation, Modeling Systems and Languages, Heuristic Search, Open Source
Software, Computational Stochastic Optimization, Integer Programming, Network
Applications, and Mixed Integer Nonlinear Programming.

Organizing Committee:

Brian Borchers, New Mexico Tech, Program Chair

Paul Brooks, Virginia Commonwealth University, General Chair

Xi Chen, Virginia Commonwealth University, Student Poster Session Chair
Jose Dula, Virginia Commonwealth University

Craig Larson, Virginia Commonwealth University, Plenary Chair

Laura McLay, University of Wisconsin-Madison

Yongjia Song, Virginia Commonwealth University

Presentation and Student Poster Session Abstract Submissions

An abstract of no more than 200 words should be submitted through the submission
page at https://www.easychair.org/conferences/?conf=ics2015

Names and affiliations of all authors should be provided, with the presenting author
listed first. The deadline for submission of presentation and poster abstracts is October
20, 2014.

NSF Student Poster Session Travel Awards

Thanks to the support of the National Science Foundation, support for registration and
hotel is available for students who present posters at the conference. Students who
wishto apply for travel support must submit an abstract to the ICS 2015 Student Poster
Session Abstracts track on EasyChair by October 20, 2014, and indicate they wish
to be considered for funding. Students from underrepresented groups are especially
encouraged to apply. Space for posters may be limited, and the abstract will be used to
decide which posters are accepted, so it is important that the abstract provide a good
description of the research to be presented.

For additional information, contact the Conference General Chair Dr. J. Paul
Brooks (jpbrooks @vcu.edu).
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Message from the Editor

Yongpei Guan
Industrial and Systems Engineering
University of Florida

guan@ise.ufl.edu
It is the time to share the news for the society again and it is my
pleasure to put things together. In this letter, please be aware of
the updates of the board of directors, ICS 2015 call for papers,
the instructions for making a video for IJOC, and the highlights
and insights for the 2013 ICS awarding papers (special thanks
to all contributors).

Report from the
Editor of the
INFORMS Journal on
Computing

David Woodruff

University of California,
Davis
joc@mail.informs.org

If you have a paper published at [JOC, you should make a video.

Consider making two videos. I was skeptical at first, too, but
the value is now pretty clear.

The journal is encouraging authors to create a five minute
video intended for a technical audience and/or a two minute
video intended for the general public. We have an example of
each type in the online version of the journal. If you go to the
page for these papers, you will find a link to the videos just
below the abstract (there are also links in the supplements tab).

An example of the five minute technical video is provided
by “Complexity and Approximation Results for the Balance
Optimization Subset Selection Model for Causal Inference in
Observational Studies” and the link is shown as follows:
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.2013.0583.

A two minute video is available for “Scalable Heuristics for
a Class of Chance-Constrained Stochastic Programs” and the
link is shown as follows:
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1090.0372.

The five minute video provides an overview with enough
detail to help a reader determine if the paper is relevant for their
work and, perhaps more important, it is like seeing the movie
before reading the book. Although it ruins the suspense, it is
a lot easier to follow what is going on. The two minute video
is intended to help provosts, deans, students, and even family
members have some idea what is being done and why it has
some importance. Both types of videos have the potential to be
used by funding agencies as well as for fund-raising.

I have to admit that I was, and am, self-conscious about my
somewhat overproduced video. Also, in my effort to make it
understandable by the general public, I can now see that I was
technically imprecise in some places. On the other hand, my
Associate Dean thought it was great. I have found it useful for a
number of purposes, and I think you would as well if you made
one. Your video does not need to be professionally produced.
Almost all universities and companies offer some support for
simple, short videos. So, make a video (or make two) and we
will attach it to the online version of your paper at IJOC.

2013 ICS Prize
Goes to John
Gunnar Carlsson
from University
of Minnesota

The 2013 INFORMS ICS Prize was awarded to John Gunnar
Carlsson for his papers

e John Gunnar Carlsson, “Dividing a territory among sev-
eral vehicles", INFORMS Journal on Computing, Vol.
24, No. 4, Fall 2012, pp. 565U577.

e John Gunnar Carlsson and Erick Delage, “Robust parti-
tioning for stochastic multivehicle routing", Operations
Research (published online May 24, 2013);

e John Gunnar Carlsson and Raghuveer Devulapalli, “Di-
viding a territory among several facilities", INFORMS
Journal on Computing (published online December 20,
2012).

The awarded set of papers comprise an elegant analysis
of service problems in the plane, in the asymptotic limit of
large numbers of customers whose location is stochastically
distributed under fairly broad assumptions. The goal in one
version is to identify a partition of the space such that the
stochastic workload in each partition is asymptotically equal.
In another version the partitioning will be into regions to be
served by facilities, so as to minimize the maximum workload
of a facility. In the third version, a robust partitioning problem
is considered, where the customer distribution is not completely
determined (an ambiguous distribution setting).

To solve these problems the research incorporates novel and
elegant analytical and algorithmic tools in order to simultane-
ously reason about the shape of the partitions and the stochastic
work-load allocation objectives. The papers combine rigorous
mathematical analysis, detailed empirical/algorithmic work,
and an exceptionally clear exposition. In blending fundamental,
modern methodology as well as practical considerations, the
work should stimulate continued interest in the problems and
methodologies investigated.
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Readers are referred to the article “Highlights: Segmenting
a Geographic Region Optimally” in this newsletter for further
highlights and description.

2013 ICS Prize Committee: Chris Beck (University of

Hochbaum, Chair (University of California, Berkeley)

2013 ICS Best
Student Paper
Award Goes to
Jing Xie at
Cornell
University

The 2013 Student Paper Award Winner is Jing Xie, Cornell Uni-
versity (advisor Peter Frazier), for the paper, “Sequential Bayes-
Optimal Policies for Multiple Comparisons with a Known Stan-
dard.”

This paper considers the statistical ranking & selection prob-
lem of multiple comparisons with a standard in the stochastic
simulation setting. Specifically, given a set of alternatives with
unknown mean performances, the goal is to find the optimal
sequential allocation of simulation replications for determining
which of the alternatives’ mean performances exceeds a given
performance threshold. Under a Bayesian dynamic program-
ming formulation and using techniques from optimal stopping
and multi-armed bandit problems, this paper is able to explicitly
and efficiently compute the sequential Bayes-optimal for a very
general class of sampling distributions: the well-known expo-
nential family, which includes the most common continuous
and discrete distributions such as normal, gamma, Poisson, ge-
ometric, and binomial. Computational experiments comparing
the policy with other sampling policies in the literature demon-
strate the effectiveness of the implemented sequential algorithm.
Overall, the paper is well written and makes important contribu-
tions to both the theory and practice of simulation optimization
by using a rigorous modeling framework that leads to useful
implementable algorithms.

Readers are referred to the article “Highlights: Sequen-
tial Bayes-Optimal Policies for Multiple Comparisons with a
Known Standard” in this newsletter for further highlights and
description.

2013 ICS Best
Student Paper
Runner-up Goes
to Rodrigo
Carrasco at
Columbia
University

The 2012 ICS Best Student Paper Runner-up is Rodrigo
Carrasco from Columbia University, for the paper “Resource
Cost Aware Scheduling.” His advisors are Garud Iyengar and
CIiff Stein.

Readers are referred to the article “Highlights: Resource
Cost Aware Scheduling” in this newsletter for further highlights
and description.

2013 ICS Student Paper Award Committee: Laurent
Michel (University of Connecticut), Cindy Phillips (San-
dia), and Michael Fu, Chair (University of Maryland).

ICS Members in the News

Andrew Mason(a.mason@auckland.ac.nz), Ph.D., Associate
Professor, Dept of Engineering Science, University of Auck-
land. Open Solver Updates: Many of you will have heard of,
or used, OpenSolver, the Open Source optimizer for Excel.
OpenSolver has, until now, supported solving linear and integer
programmes using the COIN-OR CBC solver. We are pleased
to announce that the latest version of OpenSolver now works
with Gurobi, and also has non-linear capabilities thanks to the
newly-added NOMAD engine. This experimental release can
also translate a spreadsheet model into AMPL and solve it us-
ing one of the linear or non-linear COIN-OR solvers on NEOS.
We’d welcome beta testers willing to try these new features. For
more details and downloads, please see http://opensolver.org.

Erick Moreno-Centeno (¢.moreno@tamu.edu), Ph.D., Assis-
tant Professor at Texas A&M University, was awarded the 2014
Annual Award for Excellence in the Teaching of Operations
Research (http://www.iienet2.org/details.aspx?id=882). This
award is given by the Operations Research Division of IIE.

Manfred Wilhelm Padberg (born 10 October 1941 in Bottrop,
Germany) died on May 12, 2014 after a long battle with cancer.
His research centered on the study of linear and combinato-
rial optimization, with an emphasis on developing polyhedral
theory that could aid in the solution of large, real-world opti-
mization problems.

Manfred Padberg grew up in Zagreb, Croatia and West-
phalia, Germany. He began his studies in 1961 at the West-
phalian Wilhelms University in Miinster, where he received his
Diplom in mathematics in 1967. He then spent a year as an
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Assistant Professor at the University of Mannheim. In 1968, he
moved to the US under a Ford Foundation Fellowship to study
operations research and industrial engineering at Carnegie Mel-
lon University, where he received both his masters’ degree and
doctorate (1971) under the direction of Egon Balas. From 1971
to 1974, he was a research fellow at the International Institute of
Management, Berlin, Germany. In 1974, he returned to the US
as Associate Professor in operations research at Stern School of
Business, New York University, becoming a Full Professor in
1978. He remained at NYU until becoming Professor Emeritus
and moving to Paris in 2002. During his career in operations
research, he was a guest scientist and/or visiting professor at
the University of Bonn, at the IBM Thomas J. Watson Research
Center in Yorktown Heights, INRIA in Rocquencourt, at the
Ecole Polytechnique in Paris, the National Institute of Stan-
dards (NIST) in Maryland, the European Institute of Advanced
Studies in Management (EIASM) in Brussels, the Center for
Operations and Economics (CORE) in Louvain la Neuve, the
Institute for Systems Analysis and Informatics (IASI) in Rome,
and the State University of New York at Stony Brook. His
fluency in Italian, French, English and German allowed him to
lecture throughout the world. He spent his retirement in Paris
and Marseille.

Over his lifetime, Manfred received all of the most signifi-
cant prizes in the field of operations research, including:

e 1983: The Lanchester Prize of the Operation Research
Society of America (ORSA).

e 1985: The George B. Dantzig Prize of the Mathematical
Programming Society and the Society of Industrial and
Applied Mathematicians (SIAM).

e 1989: The Alexander von Humboldt Senior US Scientist
Research Award (Germany).

e 2000: The John von Neumann Theory Prize (INFORMS).
e 2002: INFORMS Fellow.

Manfred is best known for his work on applying polyhedral
cuts to difficult optimization problems, often called “branch-
and-cut” (a term he coined). He was most interested in graph-
related problems and the algorithmic design of solution method-
ologies for such problems. He was always motivated by real-
world applications and worked to solve previously unsolvable
problems. During the latter part of his research, he worked on
ideal matrices and almost-perfect graphs.

To best summarize his work, we quote the citation associ-
ated with his receiving the John von Neumann Theory Prize:
Since receiving his Ph.D. from Carnegie Mellon University in 1971,
Manfred Padberg has made fundamental contributions to both the
theoretical and computational side of integer programming and com-
binatorial optimization. His early work on facets of the vertex packing
polytope and their liftings, and on vertex adjacency on the set parti-
tioning polytopes, paved the way toward the wider us of polyhedral
methods in solving integer programs. His characterization of perfect

0/1 matrices reinforced the already existing ties between graph theory
and 0-1/programming. Padberg is the originator and main architect
of the approach known as branch-and-cut. Concentrating on the trav-
eling salesman problem as the main testbed, Padberg and Rinaldi
successfully demonstrated that if cutting planes generated at various
nodes of a search tree can be lifted so as to be valid everywhere, then
interspersing them with branch and bound yields a procedure that
vastly amplifies the power of either branch and bound or cutting planes
themselves. This work had and continues to have a lasting influence.
One of the basic discoveries of the 1980’s in the realm of combinato-
rial optimization arrived at by three different groups of researchers in
the wake of the advent of the ellipsoid method for convex programming,
was the equivalence of optimization and separation: Padberg and M.R.
Rao formed on these groups. Padberg’s work combines theory with al-
gorithm development and computational testing in the best tradition of
Operations Research and the Management Sciences. In his joint work
with Crowder and Johnson, as well as in subsequent work with others,
Padberg set an example of how to formulate and handle efficiently
very large scale practical 0/1 programs with important applications to
industry and transportation.

For more on his work, one should refer to the following
texts (or to the more than 110 papers that he published):

e Martin Grotschel (editor) The Sharpest Cut: The impact
of Manfred Padberg and his work, STAM, 2004.

e Manfred Padberg and Dimitris Alevras Linear optimiza-
tion and extensions, Springer, 3rd edition, 2001.

e Manfred Padberg and M. Rijal Location, Scheduling,
design and integer Programming, Kluwer, 1996.

He is survived by his wife, Suzy Mouchet-Padberg, his
brother Friedhelm Padberg, his sister Christa Padberg, his
daughter Britta Padberg-Schmitt, his son Marc-Oliver Pad-
berg, his stepson Hannibal Renberg and five grandchildren:
Franziska, Franz-Josef, Mia, Maya and Mei.

Highlights:
Segmenting a
Geographic Region
Optimally

John Gunnar Carlsson —
University of Minnesota

I would like to take this opportunity to thank the 2013
ICS Prize Committee, which was chaired by Dorit Hochbaum
and included Chris Beck and Daniel Bienstock. The prize
was awarded for the three papers [14, 15, 13], which were co-
authored with Erick Delage of HEC Montréal and Raghuveer
Devulapalli of the University of Minnesota. I am overwhelmed
by this honor and very grateful for this distinction.
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http://menet.umn.edu/~jgc/

The focus of these three papers is the problem of partition-
ing a geographic region into smaller sub-regions for allocating
resources or distributing a workload among multiple agents.
Dividing a territory into sub-regions is a natural problem that be-
longs to many different domains within the world of operations
research, such as air traffic control, congressional districting,
vehicle routing, facility location, urban planning, and supply
chain management. Indeed, as exemplified in [12], effective
division of geographic territory has been a fundamental societal
problem since the times of antiquity:

Homer, in describing the Phaiakian settlement in
Scheria, speaks of a circuit wall for the city.... Im-
plicit in the foundation of new colonies was the
notion of equality among the members, exempli-
fied in the division of their prime resource, the land.
To achieve this, accurate measurement and equi-
table division were from the outset essential, even
when gods or privileged men were to be honored
with larger or better assignments.

Scientifically speaking, one of the major difficulties that prob-
lems of this type pose is their intrinsically interdisciplinary
nature; in order to determine an optimal partition of a territory,
one must combine tools from a variety of disciplines, such as
mathematical optimization, computational geometry, geometric
probability theory, and geospatial analysis. More concretely,
complications arise when we are forced to reconcile the usual
allocation objectives (such as minimizing workloads within
sub-regions or ensuring equitable provision of a resource dis-
tributed in the region) with geometric shape constraints (such
as requirements that all sub-regions be contiguous or convex).

The current approach to problems of this type is to first
discretize the region into pixels and then solve a large (combi-
natorial) integer program, e.g. one having a binary variable x;;
for each region i and pixel j. This approach suffers from several
drawbacks: first, large-scale combinatorial programs are often
computationally intractable for large problem instances. Sec-
ond, it may be difficult to impose geometric shape conditions
(requiring connected sub-regions, for example) within a com-
binatorial framework. Third, some problem instances possess
certain properties that allow us to obtain a solution rapidly by
exploiting their structure (which can be lost when discretizing
the problem). A further advantage is that by exploiting a par-
ticular problem structure, we are often able to determine what
attributes of the problem affect the outcome most significantly.
For these reasons, our approach is to instead formulate the
problems geometrically and then use a (fast) geometric (instead
of slow combinatorial) algorithm to solve them.

The three awarded papers are all devoted to the same family
of problems, but the tools used therein are all considerably dif-
ferent from one another: the paper [13] uses divide-and-conquer
recursion, the paper [14] uses distributionally robust optimiza-
tion, and [15] uses infinite-dimensional linear programming.
The following sections briefly describe these three solutions.

:
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Figure 1: We begin with a set of n = 13 vehicle “depots” p;
with fixed locations and a probability density f (-) defined on
the rectangular service region R (1a), which we then partition
into n pieces (1b). This partition should be constructed so that,
when a large collection of points is sampled independently from
f () (1c), the n TSP tours of all the points in each sub-region
plus the depot point are balanced (1d).

1 “Dividing a territory among several
vehicles”, INFORMS Journal on Com-
puting 24.4 (2012)

This paper is concerned with the problem of dividing a geo-
graphic region into pieces in order to distribute the workloads
of a fleet of vehicles that originate at a collection of depots.
Specifically, we are given a simply connected polygonal re-
gion R (i.e. a connected region with no holes) that contains a
collection of n depot points P = {py, ..., p,}, representing the
starting locations of a fleet of vehicles. The vehicles must visit
clients whose exact locations are unknown, but are assumed
to be independent and identically distributed (i.i.d.) samples
from a known probability density f(-). Our goal is to partition
R into n disjoint sub-regions, with one vehicle assigned to each
sub-region, so that the workloads in all sub-regions are asymp-
totically equal when a large number of samples is drawn. For
each sub-region R;, we will solve a travelling salesman problem
in which the point set consists of a depot point plus all points
in R;. See Figure 1.

One of the main difficulties in this division problem lies
in estimating the workload in a sub-region. Specifically, if N
points are sampled independently from f (), we let TSP (R;; N)
denote the length of a TSP tour of the sampled points that lie
in R;. Applying a standard coupling argument to a well-known
result of geometric probability, the BHH Theorem [10], we
can show that that TSP (R;; N) obeys a law of large numbers.
Specifically, with probability one, it turns out that as N — oo,

TSP (R;; N) ff A :
N - B A Vf () (D
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Figure 2: Recursive partitioning for the case where f(-) is the
uniform distribution (so that we want all sub-regions to have
equal area) and there are n = 32 depot points.

where (8 is a universal constant known to satisfy 0.6250 < 8 <
0.9204 and “dA” denotes the usual area integral. This tells us
that the quantity (8 ffR Vf (x)dA) VN estimates TSP (R;; N)

within a term of o( \/ﬁ).

Based on the preceding paragraph, it is clear that we de-
sire a partition of R such that f fR_ \Vf (x)dA is equal for all
i €{l,...,n} (this guarantees that all workloads are balanced
within o( VN) as N — o). This is very easy to achieve, in the
absence of other criteria; for example, a partition might consist
exclusively of vertical lines, with each vertical strip cutting off
f fg wip m dA = 1/n f fR 1/ f(x)dA. For this reason, we impose
additional constraints on our algorithm that should, in principle,
give a better solution. A natural constraint to impose is that
each sub-region R; should contain the depot point that we have
assigned to it. This still leaves us with considerable freedom
because we have not yet imposed any constraints on the sub-
regions. For example, one would expect that sub-regions ought
to be connected. A further property that might be desired is
that for any two points u, v € R;, the shortest path between u
and v be contained in R;. When the input region is convex,
this constraint is equivalent to requiring that each sub-region R;
also be convex. When R is not convex, this property is called
relative convexity: each sub-region R; must be convex “relative”
to the input region R. Thus, we seek a partition of R into pieces
that satisfies three constraints:

e The asymptotic workloads f fR_ V. f(x) dA must be equal
for all i, /

e Each sub-region R; contains exactly one depot point p;,
and

o All sub-regions must be relatively convex.

We find this partition using a recursive algorithm that divides
R into successively smaller pieces, as shown in Figure 2. This
algorithm is based on the famous topological ham sandwich
theorem, which is now more than 75 years old [11].

2

“Robust partitioning for stochastic mul-
tivehicle routing”’, Operations Research

61.3 (2013)

As in the preceding section, this paper is concerned with the
problem of dividing a geographic region into pieces in order to
distribute the workloads of a fleet of vehicles that originate at
a collection of depots. However, we now have an ambiguous
distribution setting because the demand density function f(-)
is not known; rather, we only have access to first and second
moment information in the form of a center of mass u € R
and a covariance matrix ¥ > 0. Our objective is to find a
partition Ry, ..., R, such that the worst-case workload (taken
over all possible distributions with the given first and second
moments) is as small as possible. The worst-case workload in
a particular region, R;, can be computed using the following
infinite-dimensional optimization problem

maximize f f Vf (x)dA
f()=0 R;

fj;f(x)dA = 1
ffof(x)dA = u
ffofo(x) dA

By using Lagrangian duality, it can be shown that the distri-
bution f*(-) defined on R that maximizes the workload for
sub-region R; must take the form

s.t.

IA

T +uu’ .

ffx)= IT(xXeR)+s6(x—X),

4(r +x7q + x7Qx)?
where 7 (-) denotes the indicator function and §(-) denotes the
Dirac delta function. By combining this result with a Sperner’s
lemma-type argument, we give a fast algorithm for finding
a “robust partition” that makes better use of first and second
moment data as they become available.

3 “Dividing a territory among several
facilities”, INFORMS Journal on Com-
puting 25.4 (2012)

This paper considers the problem of dividing a geographic
region into pieces in order to distribute the workloads of a
collection of facilities located within that region. Specifically,
given a geographic region R, a probability density f(-) defined
on R, and a collection of facilities py, ..., p, contained in R, we
measure the workload of facility p; in servicing sub-region R;
to take the form ffRi ajllx — p;||* dA for given a; and k, i.e., pro-
portional to the integral of a monomial function of the distance
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between a point in R; and its associated facility p;. In order
to balance the workloads of these facilities, our partitioning
problem can be expressed as

mlnlmlze max {ff a;llx — pill* f(x) dA}
UR,- = R

0 Vi#j.

S.t.

RiNR; =

We can convert the above formulation into an infinite-dimensional

integer program which happens to have an integrality gap of
unity, and whose dual program is the finite-dimensional prob-
lem

maxi}\mizefff(x)min{/liaillx—piIkI}dA s.t.
R 1
n
D=1
i=1
A = 0 Vi

By studying the complementary slackness conditions of these
primal-dual pairs, we conclude that the optimal solution to
our original problem consists of sub-regions whose boundary
components are those curves that satisfy

llx — pill

llx = pjll
which are actually circular arcs, or more precisely, arcs belong-
ing to circles of Apollonius. We can also consider the related
problem of minimizing the aggregate workload subject to mass
constraints, given by

= constant,

S.t.

I/n Vi

ffR‘f(x)dA =
Jr = R

RiﬂRj = 0 VI;":J,

which we conclude (based on a similar analysis) must have an
optimal solution whose boundary curves are hyperbolic arcs.

Highlights:
Sequential
Bayes-Optimal
Policies for Multiple
Comparisons with a
Known Standard

Jing Xie and Peter I.
Frazier—Cornell University

Multiple Comparisons with a Known Standard (MCS) is
a fundamental problem from simulation in which we allocate
simulation effort across a number of simulated systems, so as to
best determine whether or not each system’s true expected per-
formance exceeds a known threshold. It arises most frequently
when determining which proposed systems meet a performance
requirement, e.g., a service-level agreement for a call center,
or a mandated maximum risk probability in an air traffic con-
trol system. It also arises when checking feasibility as part of
a larger optimization via simulation problem, and outside of
simulation, when crowdsourcing classification tasks to human
workers on sites like Amazon’s Mechanical Turk.

In the MCS problem, if our ability to simulate is unlim-
ited, then we can simulate each system a very large number of
times, get very accurate estimates of system performance, and
classify systems as above-threshold or below-threshold with
high accuracy. However, if simulations are time-consuming, as
they often are when simulating complex systems, we cannot
afford to do this for all systems, and we must instead choose
intelligently the number of simulation samples to take from
each system.

To help us make such intelligent choices, we can behave
adaptively, using the first few samples to get a rough idea of
each system’s performance, and then adjusting later sampling
effort: allocating fewer samples to systems whose performance
is far from the threshold and thus easy to classify as above or
below; more samples to hard-to-classify systems close to the
threshold; and in some cases abandoning with no additional
samples those impossible-to-identify systems with performance
extremely close to the threshold.

The contribution of [1] is a Bayes-optimal strategy for mak-
ing these adaptive sampling decisions. [1] formalizes the MCS
problem as a Bayesian sequential decision-making problem, by
placing a Bayesian prior distribution over the true performance
of each system, and then seeking to do well with respect to
the average-case performance under this probability distribu-
tion. Sampling is constrained either by a price paid for each
sample taken (appropriate when using cloud computing ser-
vices, which charge per CPU hour), or by a simulation budget,
which is assumed to be random and geometrically distributed
for tractability.

As a sequential decision-making problem, the optimal strat-
egy is characterized as the solution to a stochastic dynamic
program, but solving this dynamic program directly is impos-
sible for even moderately-sized problems, because the curse
of dimensionality causes the state space to grow exponentially
in the number of systems. The key insight of [1] is to show
that this dynamic program can be decomposed across systems,
and the optimal strategy then computed by solving a number of
much smaller dynamic programs. The computation for this new
method grows linearly in the number of systems, rather than
exponentially, allowing it to be used in practice. This decom-
position technique also links the MCS problem to multi-armed

ICS News

Fall 2014

Page 8


http://people.orie.cornell.edu/jx66/
http://people.orie.cornell.edu/jx66/

bandits, as the decomposition used in the random geometric
horizon setting is the same as the one used in the multi-armed
bandit problem.

[1] Jing Xie, Peter 1. Frazier, “Sequential Bayes-Optimal
Policies for Multiple Comparisons with a Known Standard,”
Operations Research, vol. 61, no. 5, pp 117461189, 2013.

Highlights: Resource Cost
Aware Scheduling

Carrasco, Iyengar, and
Stein—Columbia University and
Universidad Adolfo Ibanez

1 Introduction

Managing non-renewable resource consumption is fast emerg-
ing as a problem of critical importance. There is always a trade-
off between resource consumption and performance: more
resource consumption typically results in better performance.
This trade-off also arises in many scheduling problems, where
resource management decisions must be combined with the
scheduling decisions to optimize a global objective.

Recently, scheduling problems in which one has to balance
scheduling performance (using metrics such as completion
time, tardiness, or flow time) with CPU speed, and therefore
the energy consumed, have been extensively studied. However,
the problem of balancing resource consumption with schedul-
ing performance was proposed much earlier. Vickson [32]
observed that in many practical settings, the processing time
of a job depends on the amount of resources (e.g. catalizer,
workforce size, energy, etc.) utilized, and the relationship be-
tween resource utilization and processing time depends on each
job’s characteristics. Other examples of scheduling problems
with resource dependent job processing time include repair and
maintenance processes [19]; ingot preheating processes in steel
mills [24, 33]; many workforce intensive operations; VLSI cir-
cuit design [25]; and more recently processing tasks in a CPU,
where the job processing times depends on CPU speed, the
available RAM, bus speed, as well as other system resources.

The literature on resource dependent job processing time
problems has mainly focused on two models. In the first model
the processing time p; of job i as function of resource con-
sumption level u; is piece-wise linear function of the form
pi(uy) = min{pi, b; — a;u;}, where a;, b; are job parameters and
12 is the smallest possible processing time. More recently, the
processing time as a function of the resource consumption level
is assumed to be of the form p;(u;) = (p,-/ui)k for some p > 0
and £ > 0. A survey the many different approaches to these
problems can be found in [30].

Energy aware scheduling (EAS) of computing tasks is an
important example of resource aware scheduling problems,
and has received much attention recently. CPUs account for

50-60% of a typical computer’s energy consumption [1]; con-
sequently, CPU energy management is especially important
for laptops and other mobile devices. It is clear that when
scheduling computing tasks, it is important to take both the
relevant scheduling quality of service (QoS) metrics such as
makespan, weighted completion time or weighted flow time,
and the energy consumption into account. Modern CPUs can
run at multiple speeds; the lower the speed, the less energy
used, and the relationship is device-dependent but typically
superlinear. Thus, the energy consumed can be controlled by
speed scaling.

In the EAS literature the power P consumed by the CPU
is a polynomial function of speed s of the form P(s) = °
for some constant S € [2,3]. Recent work uses a more gen-
eral power function with minimum regularity conditions, like
non-negativity, but in all the cases the power function is not job-
dependent since the jobs are homogeneous [4, 6]. Our approach
allows job-dependent power functions, and thus can be applied
to a more general class of problems outside the specific setting
where only speed is the controllable resource. Furthermore,
most energy aware algorithms assume cost functions that are
closely related to energy consumption; however in practice, the
actual energy cost is not simply a function of energy consump-
tion, it is a complicated function of discounts, pricing, time
of consumption, storage costs (in the case of mobile devices),
etc. That observation motivated our consideration of a more
general class of cost functions that are only restricted to be
non-negative. We are not aware of any other work that allows
such general costs.

There are three main settings for energy aware scheduling
problems: optimizing a QoS metric with an energy budget [28,
29], minimizing energy subject to a QoS constraint [5, 7, 8, 34],
or optimizing some combination of a scheduling objective and
energy consumption [2, 4, 6, 9]. Our work is in the third setting.
Implicit in the last criterion is the assumption that both the
resource used and time can be (implicitly) converted into a
common unit, such as dollars. The prior work on speed scaling
algorithms assumes that the energy cost is only a function
of the speed. We allow for the cost to be dependent on all
the resources being utilized. For example, in the context of
scheduling computational tasks, we can allow for the cost to
depend on the CPU speed, the available RAM, and bus speed
and size, among others.

In this paper we consider the commonly studied scheduling
metric, weighted completion time. This metric has not received
attention in the resource or energy cost aware scheduling litera-
ture, even though it has applications in several different areas
such as software compilers, instruction scheduling in VLIW
processors, MapReduce-like systems, manufacturing processes,
and maintenance procedures among others [16, 17, 18, 27]. In
all these applications there are related resources that can be
used to control the speed at which jobs are processed, which
should be taken into account. Furthermore, in many settings
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jobs have precedence constraints as well, something that has
not been dealt with in the current literature, and by allowing
general precedence constraints we could extend our results to
other metrics such as makespan.

Minimizing weighted completion time is well studied in
the combinatorial scheduling literature. Phillips et al. [26]
and Hall et al. [22, 23] introduced the concept of a-points
that has lead to small constant factor approximation algorithms
for many scheduling problems [31]. In the a-point approach,
the scheduling problem is formulated as an integer program in
terms of decision variable x;, that is 1 if job i completes at time 7.
The a-point of each job is defined as the earliest time at which
an « fraction of the job has completed in the linear relaxation.
The jobs are ordered in the order of their a-points and run in
non-pre-emptive fashion. We extend the a-point technique by
defining a-speeds that are achieved by time-sharing between
resource operating points.

2 Results Highlighs

We make several contributions to the problem of scheduling
with non-renewable resources:

e We introduce a model that extends the previous cost models
(linear, convex, and other energy models) by allowing a more
general relation between job processing time (or equivalent
processing speed) and resource consumption.

o We further generalize the problem by allowing arbitrary prece-
dence constraints and release dates.

e We give approximation algorithms for minimizing an objec-
tive that is a combination of a scheduling metric (weighted
completion time) and resource consumption cost.

e We introduce the concept of a-speeds, which extend the
a-points technique to problems with multiple speeds.

e We show that these algorithms have small constant approx-
imation ratios and also demonstrate the effectiveness of the
algorithms via experiential results, as well as test its perfor-
mance with other metrics.

2.1 Cost Model

We consider a more general model of resource cost than has
previously been used. Our setting captures both of the currently
used models by considering an arbitrary non-negative speed
function S(¥?), where Y@ e ¥ = (¥, ..., ¥} denotes one
of the g allowable operating points of the resources. This is a
typical situation in computers and server clusters where only a
discrete number of configurations is available: bus speed, avail-
able RAM, CPU speed, etc. We also generalize the resource
cost, which is generally linear in the literature, by considering
an arbitrary non-negative job-dependent resource cost func-
tion R;(¥®), which gives the additional flexibility of allocating
different levels of resources to different jobs.

2.2 Main Result

Our paper contains results for two related scheduling problems,
we state here the most general result:

Theorem 2.1. Given n jobs with precedence constraints and
release dates and a general non-negative resource cost function,
there is an O(1)-approximation algorithm for the problem of
non-preemptively minimizing a weighted sum of the completion
time and resource cost.

The constants in the O(1) are modest. Given some € > 0,
the algorithm has a (4 + €)-approximation ratio when only
precedence constraints exist, and (3 + 2 V2 + €)-approximation
ratio when release dates are added.

2.3 Our Methodology

We extend the interval-indexed IP proposed by Hall et al. [23]
to handle resource costs and speed scaling, and then design
a new a-point based rounding algorithm to obtain the result-
ing schedules. In doing so we introduce the new concept of
a-speeds. We assume that we have a discrete set of g allowable
resource operating points ¥ = {¥ ..., W@}, and that the
speed at which the job is precessed is a general non-negative
function of the resource operating point. In our interval-and-
operating-point-indexed IP, a variable x;;; is 1 if job i runs
at resource operating point W) and completes in interval .
We can then extend the standard interval-indexed integer pro-
gramming formulation to take the extra dimensions of resource
consumption and speed into account Once we have solved its
linear program relaxation (LPi), we need to determine both an
a-point and a-speed. The key insight is that by “summarizing"
each dimension appropriately, we are able to make the correct
choice for the other dimension. At a high level, we first choose
the a-point by “collapsing” all pieces of a job that completes in
the LPi in interval ¢ (these pieces have different speeds), being
especially careful with the last interval, where we may have to
choose only some of the speeds. We then use only the pieces
of the job that complete before the a-point to choose the speed,
where the speed is chosen by collapsing the time dimension and
then interpreting the result as a probability mass function (pmf),
where the probability that the job is run at speed S(¥) de-
pends on the total amount of processing done at that operating
point. We then define the concept of a-speeds, which is related
to the expected value under this pmf, and run the job at this
speed. We combine this new rounding method with extensions
of the more traditional methods for dealing with precedence
constraints and release dates to obtain our algorithm.

3 Problem Formulation

We are given a single machine that requires p different resources
to run. The machine has ¢ different resource operating points
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YO ew = (¥, . W), where YO = [}’ w0 is
described by a vector of p values, one for each resource. We are
also given a function S : R? — R, which maps each operating
point ¥ to a speed o; = S(¥), and a function R;(xp?), with
R : R? — R,, which denotes the cost of running job i at the
resource operating point 1. Additionally, we are given n jobs,
where job i has a processing requirement of p; machine cycles,
a release time r;, and an associated positive weight w;. We may
also be given precedence constraints among the jobs and we do
not allow preemption.

A schedule defines, for each job, a time interval during
which it runs, and for each time in that interval, a resource
operating point from the allowable set. As in previous work,
we can make some observations that simplify the structure of a
schedule. By time sharing between different operating points
the machine can run at any point within the convex hull of
¥. We thus extend the domain of the speed function and the
cost function to include points ¢ in the convex hull of ¥ in
the natural way: for ¥ such that 9 = 23:1 ;P9 with
Yj4; =1and A; € [0,1], then if ¢ = ¥;6,¥" then S(y) =
> 6;,S(¥Y) and R(y?) = Z?:l AjR(PY). By extending
our domain in this way, we can assume that each job runs at
one resource operating point, and one speed. We can further
assume that a point with lower speed also has lower cost, for
otherwise we could achieve that point by running at a higher
speed and then idling, thereby achieving an even better cost.
Throughout the paper, we will use capital ¥ to denote the input
set of operating points and lowercase ¢ to denote points in the
convex hull.

We can define a schedule precisely as follows. Let 1
denote the operating point at which job i runs, thus s; = S(¢)”)
denotes the speed at which job i runs in the machine, and p; =
%, its processing time. Let C; denote the completion time
of job 7, and let IT = {n(1), ..., n(n)} denote the order in which
the jobs are processed, i.e. (k) = i implies that job i is the k-th
job to be processed. Then Cr(y = max{rx, Cri-1)} + ’;:—(‘; is the
completion time of the i-th job to be processed, with Cry = 0.

The objective is to compute a feasible schedule consisting
of an order I, possibly subject to precedence and/or release
date constraints, and the vector of resource requirements ¢ =
[w(l) 1,b(”)] minimizes the total cost,

n
FAL ) = 3 [R@®) + e Crit ] - @)
i=1

For convenience we will use an extended version of the nota-
tion of Graham et al. [20] to refer to our different resource cost
aware scheduling problems, i.e. 1|r;, prec| Y. Ri(xp®) + w;C;,
will refer to the problem setting with 1 machine, with r; re-
lease dates, precedence constraints, and the weighted comple-
tion time as the scheduling performance metric. We assume,
w.l.o.g., that the resource operating points are ordered by speed
(slowest first), and use o; = S(¥®) to denote the i slowest
speed.

To model this problem we modify and extend the interval-
indexed formulation proposed by Hall et al. [23] to accommo-
date speeds and resource cost. The interval-indexed formulation
divides the time horizon into geometrically increasing intervals,
and the completion time of each job is assigned to one of these
intervals. Since the completion times are not associated to a
specific time, the completion times are not precisely known but
are lower bounded. By controlling the growth of each interval
one can obtain a sufficiently tight bound.

The problem formulation is as follows. We divide the time
horizon into the following geometrically increasing intervals:
[, &1, (k, (1 + €)x], (1 + €)k, (1 + €)%«], ..., where € > 0 is
an arbitrary small constant, and « = % denotes the smallest
interval size that will hold at least one whole job. We define
interval I, = (7,1, 7;], with o = x and 7, = «(1 + €)""'. The
interval index ranges over {1,...,T}, with T = min{[#] : (1 +
el > max’_ r; + > ey and thus, we have a polynomial
number of 1ndlces 1.

Let x;j, equals 1 if job i runs at o.p. ¥ and completes in
time interval /,, and O otherwise. By using the lower bounds
7,1 of each time interval I;, a lower bound to (2) is written as,

ll()’

n q T

min Z Z R (‘I’(j)) + WiT,_l) Xijt - (3)
X i=1 j=1 t=1
The following are the constraints required:
q T
D xp=1vi, )
=1 =1
n q t
DML AT 5)
i=1 j=1 u=1 ~J
X =0, ifr, < ri+ 2 Vi gt ©6)
gj
xij €40, 1}, Vi, j,t 7
q t q 1
RTINS ®)

j=1 u=1 j=1 u=1

It is important to note that this integer program only pro-
vides a lower bound for (2); in fact its optimal solution may not
be schedulable.

4 Approximation Algorithm

We now describe our proposed approximation algorithm, called
SCHEDULE BY @-INTERVALS AND @-SPEEDS (SAIAS), detailed in
Algorithm 1.

Let X;j; denote the optimal solution of the linear relaxation
of the integer program (3)-(8). In steps 1 and 2 of the al-
gorithm, we divide the time into geometrically increasing in-
tervals and compute the set of possible speeds S. Next, in
3 we compute the optimal solution X and in step 4, given
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Algorithm 1 SCHEDULE BY @-INTERVALS AND -SPEEDS FOR RESOURCE Costs (SAIAS)

Inputs:
Divide time into increasing time intervals /, =
Compute the set of possible speeds S = {0, ..., 0}
Compute an optimal solution X to the linear relaxation (3)-(8).
Compute the a-intervals I* and the sets J,.

R O S R

set of jobs, a € (0, 1), € > 0, set of resource operating points ¥, speed function S, and resource function R.
(Tr-1, 7], with 7, = k(1 + €)1,

Compute an order I1* that has sets J; ordered in non-decreasing values of ¢ and

the jobs within each set in a manner consistent with the precedence constraints.

@)

Compute the a-speeds s* via (10).

N

8 return speeds s°, order I1?, and completion times C?.

Set the i-th job to start at time max{rxu, Cy,;_,,}, where C7, , is the
completion time of the previous job using the rounded a-speeds, and C¢

w0 = 0-

0 < @ < 1, we compute the a-interval I7 of job i, defined
as I = min {t P2 Dt Kiju 2 a}.

Since several jobs may finish in the same interval, let J;
denote the set of jobs that finish in interval [, J; = {i : I =1},
and we use these sets to determine the order I1* as described
in step 5. Next in step 6, we compute the @-speeds as follows.

Since Y7 i Z _, Xiju > @, we define auxiliary variable {%;;} =

Xijr when ¢ < I, max {min {)'c,-ﬂin, a - Z,’;ll Xigge —,3,} , O} when
-1 _

= Z;{:l Y1 Xiju < a. Note
. - . oo

that fqr t‘hls auxiliary variable, we have that Z?Zl I Kiju =

a. This is a key step that allows us to truncate the fractional

solution so that for every job i, the sum of X;;; up to time

interval " for each speed j can be interpreted as a probability

mass function. We define this probability mass function (pmf)

p' = (i, ..., 1) on the set of speeds S = {oy, ..., 07} as

t = I and O otherwise, where ;

It

1 ~
,Ulj= ;inju .

u=1

)

Let §; define a random variable distributed according to the
pmf ul,ie. ,uj. = P(§; = o). Then, the a-speed of job i, s, is
defined as follows:

i

1

1 q
- EH -
. Si —

Q
i j=1

(10)

2}

gj

We define the a-speeds using the reciprocal of the speeds
since the completion times are proportional to the reciprocals.
Note that (9) defines the fraction of the machine cycles require-
ment p; that must be processed at each operating point ¥V to
achieve the a-speed s7.

Finally, in steps 7 and 8 we compute the completion times
given the calculated speeds and return the set of speeds s, the
order I1* and the completion times C®.

To analyze the performance guarantee of our algorithm, we
first prove that the output of the SAIAS algorithm is indeed
feasible, which is done by analyzing the constraints of the IP.

Lemma 4.1. Suppose iy < i. Then (8) implies that <1

Since the SAIAS algorithm schedules jobs by first ordering
the sets J; in increasing order of ¢, and then orders the jobs
within each set in a way that is consistent with the precedence
constraints, Lemma 4.1 implies that the SAIAS algorithm pre-
serves the precedence constraints, and, therefore, the output of
the algorithm is feasible.

Finally, we can compute performance guarantees for our
algorithm. The key ideas behind our proofs is that we can
bound the resource costs using Jensen’s Inquality, thanks to the
convexity requirements in our functions, and the completion
times can be bounded by using the a-speeds.

Theorem 4.2. The SAIAS algorithm with @ = % isa (4 + e)-
approximation algorithm for the 1|prec| Y, Ri(1p®) +w;C; prob-
lem, with a general non-negative R;(1)) resource cost function.

Release dates makes the problem somewhat harder since
they can introduce idle times between jobs, but we can obtain
the following result for that setting.

Theorem 4.3. The SAIAS algorithm with @ = V2 - 1isa (3 +
2 V2+€)-approximation algorithm for the 1|r;, prec| Y. Ri(1p™)+
w;C; problem, with a general non-negative R;(1)) resource cost
function.

We also further study the problem when the resource is
just the energy consumption, i.e. Ri(xp®) = v,-p,-s'f ! where
v; > 0 and 8 > 2 are constants. In this setting we can improve
our solution by recalculating the optimal resource operating
point once the order is defined by the SAIAS algorithm. The
following result establishes that we can compute the optimal
resource operating point for each job, for any given order.

Lemma 4.4. Given the schedule order 1%, the optimal speed
at which to run job i is given by

(1)

-~’n} ’

where /l;‘,k is the optimal solution of the following optimization
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Problem Instances | Size (n) | Average Ratio | 99.5% | Worst Ratio
20,000 7 1.055 1.231 1.420
Offline 20,000 100 1.1357 1.218 1.273
20,000 500 1.133T 1.157 1.184
3,000 1,000 1.136! 1.150 1.155
Heuristic Improvement 20,000 7 0.991 1.000 1.000
20,000 100 0.991 0.994 0.995
Online (no prec) 20,000 7 1.141 1.600 2.456
20,000 100 1.3977 1.496 1.627

Table 1: Experimental Results Summary for Total Weighted Completion Time.

problem:

n l

> Z/l,k] , (12

Jj=i k=1

Zzﬁ,,rﬁzgp, ;
Jj=

i= 1
S.t.. . /ltj = w; VI’

./=l
Aij 0, Vjell,...,

\%

i}, Vi,
with b = 5 L and B = 7 w

This result follows from a careful analysis using the op-
timality conditions of the problem. Note from (11) that the
optimal speed of the i-th job only depends of the dual variables
of the completion time constraints of future jobs, and not past
ones.

Corollary 4.5. If r; = 0, Vi, then the optimal speed of job i is
Bl Zieiwj
B-Dy;*

This result is an extension of the speed rule used in most of
the energy aware scheduling literature for the flow time metric
[3, 4]. Furthermore, using Lemma 4 and Corollary 4.5 one
can design an algorithm that computes the optimal speeds for
a given order IT in O(n) time, when there are no release dates,
and in O(n?) time, when there are release dates.

When no precedence constraints and release dates exist,
there are two versions of this problem that can be optimally
solved in polynomial time: when all weights w; are equal and
when all jobs have the same size and energy cost function:

given by s; =

1
Theorem 4.6. If w; = w, Yior piv’
is optimal if

= ¢, Vi then the order I1

Wn(i) Wr(i+1)
= 1

, Yie{l,...,n=1} .

B B
Pri)Vaiy  Pr+DVar1)

This theorem is an extension of Smith’s Rule for the energy
setting, and its proof is based on an interchange argument,
making sure to account for the changes in energy consumption
when jobs are interchanged.

S Experimental Results

There are very few examples of performance analysis in the
resource aware scheduling literature. A notable exception is

[3]. We also present experimental results for other settings not
covered in our theoretical results, such as online scheduling
and when the total weighted flow time is used as the scheduling
metric.

We restricted our simulations to the speed-scaling energy-
aware scheduling case, that is, we have ¢ different operating
points, where ¥ = ¢-; and S(o ;) = o;. Furthermore, we use
the standard polynomial relationship between speed and energy
used in most of the literature as the resource cost function, i.e.
Ri(s) = v,'p,-sffl, where v; > 0 is a job parameter, p; € N, is
the job size, and 8 = 3. For each analysis we simulated a large
number of randomly generated instances, which are available
in the author’s webpage.

For small instances we compared the output of our al-
gorithm with the integer solution of the interval-and-speed-
indexed formulation (IP1), its linear relaxation (LPi), and the
integer and relaxed solutions of a time-and-speed-indexed for-
mulation for this problem (IPt and LPt respectively). Although
we do not explicitly give these formulations, we use them in
the experiments to help us understand whether the error comes
from the rounding in the algorithm or the interval relaxation in
the LP. All simulations were done in Matlab, using Gurobi [21]
to solve the IP and LP relaxations of each instance.

Our experimental results show that the SATAS algorithm,
in practice performs very close to optimal, with average approx-
imation ratios below 1.14. Furthermore we also show that these
results remain similar even when the size of the instances grow
several orders of magnitude. It is important to note that when

Figure 3: SAIAS/LPi Ratios with n = 500 and n = 1, 000.
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analysing large instances, since the IPt formulation is too large
to be solved in a reasonable time, we compared the algorithm’s
output with the LPi solution, and thus the real approximation
ratio is likely to be even better. The results also show that a
modification to the algorithm, where we compute the optimal
speeds given the order computed by the SAIAS algorithm, fur-
ther reduces the approximation ratios. This improvement can
also be used in the online setting. Table 1 shows a summary
of all the results when the weighted completion time metric is
used.

We also modified the SAIAS algorithm to handle the case
when the total weighted flow time is used as scheduling metric,
showing very good results as well, with an average approxima-
tion ratio of 2.59.

For each instance size we characterize the distribution of the
approximation or competitive ratios via histograms. We believe
that displaying the entire distribution is important since it gives
a better understanding of how the algorithm performs. In the
histogram we highlight the average value for all simulations and
the 99.5% quantile. For both these measures we also display
the 99.99% confidence intervals, shown as doted lines around
the corresponding value.

As an example, Figure 3 shows the results for instances of
n = 500 and n = 1000 jobs. Although we are comparing the
algorithm’s output to the LPi solution, the approximation ratio
remains small. The average, worst, and 99.5% percentile can
be found in Table 1. The fact that the approximation ratio is not
much bigger is important since for n = 7 the ratio between the
LPi and the IPt solution was in average 0.83, hence much of
the error shown in Figure 3 could be attributed to the relaxation
interval relaxation.
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