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ICS 2011
1/9/11-1/11/11

The 12th INFORMS Computing Society Conference will take place from Jan-
vary 9th to January 11th, 2011 at the Monterey Marriott in Monterey, California,
USA. Some important dates for the conference are

Author Registration November 1, 2010
Early Registration November 1, 2010
Hotel Registration (conference rate) December 20, 2010

This conference focuses on the interface of computer science, artificial intelli-
gence, operations research, and management science. The conference organizers in-
vite you to submit theoretical and applied work that highlights the conference theme:
Operations Research, Computing and Homeland Defense.

General Co-Chairs for the conference are Rob Dell and Kevin Wood, from the
Naval Postgraduate School. The conference webmaster is Bill Hart.

Message from the Chair

Robert Vanderbei
Operations Research and Financial Engineering
rvdb@prinecton.edu

As Chair of ICS, one of my duties is to write a brief note for the ICS newsletter
on the overall wellbeing of the society. Faced with this task, my first thought was to
read what Robin Lougee wrote in a similar context a few years ago. I read the first
sentence of her report and thought, hey, that’s exactly what I want to say. But, of
course, I didn’t want to be guilty of plaigerism. Then, I read on and noticed that she
was quoting from Dick Barr’s report from more than 10 years earlier. So, here, again,
is what Dick said more than a decade ago: “The Computer Science Technical Section
is in excellent shape, with a healthy treasury, a sizable and active membership, a strong
presence at the national INFORMS meetings, its own successful conference series, an
excellent journal, an informative newsletter, an established and recognized prize for
excellence, and attendees that know how to have a good time.” With the exception of
a bit of discontinuity with the newsletter and a growth from one prize to three, these
words still hold forth today.

(continued on p. 12)
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Message from the Editor

Jeff Linderoth
University of Wisconsin-Madison
linderoth@wisc.edu

“Like every man of sense and good feeling, I abominate
work.” —Aldous Huxley

As the observant member undoubtedly surmised, the society had some trouble
in filling the giant shoes of the last ICS Newsletter Editor, Harvey Greenberg. 1
would like to thank all the authors of this issue for providing me with material, and
for their Job-esque patience for this issue to be produced.

“I have offended God and mankind because my work
didn’t reach the quality it should have.”
—ILeonardo da Vinci

The authors however, have offended neither God nor mankind. In this issue,
we have our regular collection of updates—a COIN-OR update from Matt Saltz-
man, a Mathematical Programming (Optimization?) Glossary update from Allen
Holder, and an IJOC update from John Chinneck. We also have a review of Harvey
Greenberg’s “Myths and Counterexamples” by Jim Orlin and a book review by Todd
Munson. Our feature article on GPU Computing is from Sangkyun Lee. I hope the
readership finds these features and articles as interesting as I did.

“If at first you don’t succeed, try, try again. Then
quit. There’s no point in being a damn fool about
it.” —W. C. Fields

This year will mark the end of my less-than-esteemed run as ICS Newsletter
Editor. If you are interested becoming the next Newsletter editor, and clearing the
very low bar that I have set, please contact me or Bob Vanderbei. I am happy to help
the next Newsletter with the transition. And I promise...

“I’'m not going to criticize my successor.”
—George W. Bush

My one piece of advice for the next editor is to visit www.brainyquote.com, as

“The ability to quote is a serviceable substitute for
wit.” —W. Somerset Maugham
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COIN-OR

Matt Saltzman, Clemson University
mjs@clemson.edu

The Computational Infrastructure for Op-
erations Research (COIN-OR, http://www.
coin-or.org) is the premier website devoted to open-source
software for the operations research community.

The year 2009 was an active one for COIN-OR on many
fronts. These are just a few of the achievements of the COIN-
OR community.

%
R
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New Developments in 2009

New projects that went live in 2009 include LEMON, a li-
brary of C++ classes for graph and network optimization;
ADOL-C, an automatic differentiation library for C and C++;
and METSIib, a library for developing metaheuristics.

Optimization Services (OS) now supports the Couenne MINLP
solver and offers APIs for solver options and results. OS is
now available in a binary distribution for Windows.

A Google Summer of Code project integrated Ipopt with the
ASCEND modeling environment to produce an integrated
open-source environment for modeling and solving NLPs.

The COIN-OR Strategic Leadership Board has made signif-
icant progress in revising the legal policies and procedures
for projects. The Technical Leadership Council is develop-
ing new infrastructure and build procedures for the projects
that use our BuildTools support.

The 2009 COIN Cup was awarded in San Diego to Yuri Levin,
Tatsiana Levina, Jeff McGill, Mikhail Nediak and Huseyin
Topaloglu, who applied COIN-OR technologies DFO and
IPOPT to develop novel techniques for cargo capacity man-
agement and dynamic pricing.

The biggest recent COIN news is the retirement of John
Forrest from IBM Research and from stewardship of the CLP
(COIN-OR Linear Programming) and CBC (COIN-OR Branch
and Cut) projects. The new CLP project manager is Julian
Hall of University of Edinburgh, and the support team includes
Matt Saltzman of Clemson University and Lou Hafer of Simon
Fraser University. The CBC project manager is Ted and the
support team includes Matt, Lou, Bjarni Kristjannson of Max-
imal, Dan Fylstra and Edwin Straver of Frontline, and Bill Hart
and Cindy Phillips from Sandia.

Plans are under way for events honoring John and cele-
brating COIN-OR’s 10th anniversary at the Austin INFORMS
meeting. See
https://projects.coin-or.org/Events/wiki/lJJHFCOIN10.

Portions of this article appeared in the October 2009 issue of
OR/MS Today. Reprinted with permission.

Mathematical Programming Glossary

Allen Holder, Rose-Hulman Institute of Technology
holder@rose-hulman.edu

The Mathematics Programming Glossary continues to be
an active resource for our community, receiving about 91,000
hits per week. The Glossary is also increasingly cited by other
references such as Wikipedia. Over the last several months we
have continued with the term-by-term edits needed for the new
design; with only six letters remaining. Although not com-
plete, the new version is posted at
glossary.computing.society.informs.org/ver2/mpgwiki/.

We should have a complete release early in the summer.

The Glossary, under the thankful guidance of Chris Beck,
has embarked on a substantial addition of terms relating to
constraint programming. This important area had largely been
neglected, and over the next year we hope to advance our ex-
posure in this area. A new supplement on complexity theory
is also expected over the next few months.

The Glossary houses Harvey Greenberg’s "Myths and Counter
Examples in Mathematical Programming." The latest revision
was posted on February 20, 2010, and it has 213 entries span-
ning linear programming, integer programming, dynamic pro-
gramming, nonlinear programming and problems of other spe-
cial forms. It is a remarkable collection and is being down-
loaded about 1,100 times per week.

The Computing Society’s Mathematical Programming Glos-
sary will have an entry here.

Please visit http://glossary.computing.society.informs.org/
to use the MP Glossary and learn how you can contribute.

Message from the
Editor of INFORMS
Journal on Computing
John Chinneck

Carleton University
joc@mail.informs.org

joc.pubs.informs.org/

Things are busy at the INFORMS Journal on Computing!
We published 46 papers in the four 2009 issues, covering a
wide variety of topics at the interface of operations research
and computer science. Highlights included the seven-paper
Special Cluster on High-Throughput Optimization that appeared
in the summer issue, and a survey article on Evolutionary Al-
gorithms for Vehicle Routing by Jean-Yves Potvin in the fall
issue. The current winter 2010 edition includes a feature arti-
cle, complete with rejoinders, on Merging Al and OR to Solve
High-Dimensional Stochastic Optimization Problems Using Ap-
proximate Dynamic Programming by Warren Powell, the lead-
ing researcher on this topic.

Here are some recent statistics. For the one-year period
February 1, 2009 through January 31, 2010 decisions were
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rendered on 253 papers. The rate of submission continues to
be quite high. There are currently around 90 papers in process.

We are fortunate to have support from seven prominent
sponsors for 2010: ARKI Consulting and Development, GAMS
Development Corporation, Haverly Systems Inc., IBM T.J. Wat-
son Research Center, the INFORMS Computing Society (of
course), LINDO Systems Inc., and Palisade Corporation.

2009 also saw changes in personnel, with the addition of
a number of knowledgeable new Associate Editors: Sanjeeb
Dash of the IBM T.J. Watson Research Center, Antonio Fran-
gioni of the Universitdd di Pisa, Balaji Padmanabhan of the
University of South Florida, and David Parkes of the Harvard
University, William J. Stewart of North Carolina State Univer-
sity, Daniel Zeng of the University of Arizona. There were also
changes in Area Editors as two of our long-time area experts
stepped down from their posts. Allen Holder replaced found-
ing JOC Editor-in-Chief Harvey Greenberg as the Area Edi-
tor for Computational Biology and Medical Applications (re-
cently renamed Applications in Biology, Medicine and Health
Care), while Michela Milano of the Universitd di Bologna re-
placed John Hooker as Area Editor for Constraint Program-
ming and Optimization.

As always, we are on the lookout for excellent research at
that interesting intersection between operations research and
computer science: send us your best work! As a reminder, the
journal has nine major areas (Applications in Biology, Medicine
and Health Care; Computational Probability and Analysis; Con-
straint Programming and Optimization; Design and Analysis
of Algorithms; Heuristic Search and Learning; Knowledge and
Data Management; Modeling: Methods and Analysis; Sim-
ulation; and Telecommunications and Electronic Commerce)
and well as Feature Articles. You can the Journal online at
http://joc.pubs.informs.org.

Wachter and
Biegler Win the
ICS Prize

Andreas Wichter, of IBM TJ Watson Research Center, and
Lorez Beigler, of Carnegie Mellon University were the win-
ners of the 2009 INFORMS Computing Society Prize. for the
paper “On the Implementation of an Interior-Point Filter Line-
Search Algorithm for Large-Scale Nonlinear Programming.”
This paper is the basis of the highly successful code IPOPT
for nonlinear programming. This open-source software pack-
age, which is one of the most advanced codes for large-scale
nonlinear programming,dAe read more is the first to combine
a barrier nonlinear programming method with a line search fil-
ter method, with a fundamental convergence theory for this
approach. The result is an efficient, large-scale nonlinear pro-

gramming code with global convergence properties and fast
local convergence properties under weak assumptions. As de-
scribed in the paper, IPOPT includes a number of refinements
that overcome the Maratos effect (slow convergence) and ef-
fectively deal with negative curvature and rank deficiency in
nonlinear problems. Moreover, it strongly leverages recent ad-
vances in automatic differentiation for first and second deriva-
tives along with indefinite factorizations of large, sparse ma-
trices. In independent tests IPOPT has consistently performed
among the top state-of-the-art nonlinear programming solvers.
IPOPT is available freely, is easy to use, and has interfaces
to many modeling packages. As a result, it makes large-scale
nonlinear programming accessible to a broad audience.

Wen Wins ICS
Student Paper
Prize

Zaiwen Wen, a Ph.D. student at Columbia University was
the winner of the 2009 ICS Student Paper Award for his work
on A Line Search Multigrid Method for Large-Scale Nonlinear
Optimization, joint with Donald Goldfarb.

The paper presents a line search multigrid method for solv-
ing discretized versions of general unconstrained infinite di-
mensional optimization problems. At each iteration on each
level, the algorithm ﬁAg read morecomputes either a “direct
search” direction on the current level or a “recursive search”
direction from coarser level models. Introducing a new condi-
tion that must be satisfied by a backtracking line search pro-
cedure, the “recursive search” direction is guaranteed to be a
descent direction. Global convergence is proved under fairly
minimal requirements on the minimization method used at all
grid levels.

Myths and
Counterexamples in
Mathematical
Programming

James Orlin
M.IT.

James Orlin is the The Edward Pennell Brooks Professor of Operations Re-
search at the MIT Sloan School of Management. Professor Orlin specializes
in network and combinatorial optimization. He has helped develop improved
solution methodologies in airline scheduling, railroad scheduling, logistics,
network design, telecommunications, inventory control, and marketing. To-
gether with MIT Sloan colleague Thomas L. Magnanti and Ravindra K. Ahuja
from the University of Florida, he has written the award-winning text Network
Flows: Theory, Algorithms, and Applications (Prentice Hall, 1993).

The following false statements about topics in math pro-
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gramming all have something in common.

1. A transportation problem with unique shipping costs has a
unique optimal shipment.

2. In a dynamic lot size problem, a stochastically greater lead
time cannot result in a lower average cost.

3. Newton’s method (for non-linear programming) converges
to a stationary point if the starting point is sufficiently close.

. In a multi-objective linear program, one should put the
greatest weight on the most important objective.

5. Given differentiable functions, an optimal point must sat-
isfy the Lagrange Multiplier Rule.

The common feature of all five false statements is that they
are all contained in Harvey Greenberg’s collection Myths and
Counterexamples in Mathematical Programming. The collec-
tion is maintained on line at http://glossary.computing.society.
informs.org/myths/CurrentVersion/myths.pdf. As Greenberg
points out, the counterexamples may be viewed as “erroneous
results, paradoxes, fallacies, anomalies, pitfalls, and counter-
intuitive results.” Many of the myths and counterexamples
have been claimed as true either in refereed publications or
in books.

The collection is currently 133 pages long with over 150
myths and counterexamples. It is divided into sections on the
following subtopics: linear programming, integer program-
ming, nonlinear programming, dynamic programming, mul-
tiple objective programming, and special form programs.

I am a huge fan of counterexamples as a way of improving
mathematical intuition. I find the myths especially interesting.
[Truth in advertising: I might not be nearly so enthusiastic
about a myth if it was a correction of something I published.]

Greenberg’s first version of Myths and Counterexamples
was made available to the public in 1996 at the same time
that he made available other teaching materials. The idea of
myths and counterexamples was inspired to a large extent by
counterintuitive results published in the literature. For exam-
ple, Ron Graham’s result that the makespan of a list schedule
can increase (get worse) even if the number of processors in-
creases or if the processing time of each job decreases. Gra-
ham’s counterexamples imply that the computation time of a
program running on a computer with parallel processors can
increase if the number of processors increases or if the time of
each task is decreased.

In its first incarnation, the collection of myths and coun-
terexamples was small and largely unnoticed. Over time, Green-
berg gathered more examples. He made a major update to the
collection in January, 2008, and another major update in Oc-
tober 2008. The current version was last updated March 15,
2009.

Greenberg has remained especially interested in “more for
less” paradoxes such as Graham’s makespan paradoxes, and

Braess’s paradox, which states that adding a new road to a road
network can simultaneously increase everyone’s transit time.

Greenberg is actively engaged in expanding the collection,
and encourages anyone who has a counterintuitive result or
fallacy to send it to him. He plans to expand the number of
counterexamples on each topic, and leaves open the possibility
of adding new topics over time.

The collection will be of interest to anyone who is inter-
ested in challenging and improving their intuition in math pro-
gramming.

ICS Members in the News

Anna Nagurney was a speaker at the 2009 World Science
Festival in NYC in mid June. Anna had lofty colleagues as
speakers, including five Nobel laureates; mathematicians such
as Barrow and Penrose; musicians such as Joshua Bell, Bobby
McFerrin, and Yo-Yo Ma; and esteemed academics Alan Alda,
Glenn Close, and Harrison Ford. A full list of the speakers is
at http://worldsciencefestival.com/speakers/2009.

University of Wisconsin-Madison Computer Scientist Michael
Ferris was one of five scientists selected to lead work in the
new public institute, the Wisconsin Institue of Discovery, to
open in December 2010. The goal of the institute is to explore
biotechnology, nanotechnology and information technology,
said John Wiley, interim director of the institute and former
University of Wisconsin chancellor. Tools to improve human
health and welfare likely will result, he said. Prof. Ferris won
the internal competition with his proposal for a Center for Op-
timization in Biology and Medicine. The web site for the in-
stitute is http://discovery.wisc.edu/.

GPU Computing
Meets Optimization

Sangkyun Lee
University of
Wisconsin-Madison

Sangkyun received his M.S. in computer sciences in 2008 in the University of
Wisconsin, Madison. He is now a Ph.D. student in the department of computer
sciences of the University of Wisconsin, Madison. He is interested in large-
scale nonsmooth convex programming problems.

Graphic adapters had been simple devices manufactured
for displaying graphics to computer screens. But recent calls
for representing realistic and/or realtime graphics have evolved
them into massively parallel and programmable units, called
graphical processing units (GPUs), which are ready to be used
for general computations. The idea of using GPUs for generic
computations has been around from late 70’s, but it is only
recently that the idea became popular, as regular PCs begin to
equip powerful GPUs.
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GPGPU is the name of performing general computations
on GPUs (http://www.gpgpu.org/), and there have been major
trend changes of tools for GPGPU:

e OpenGL (2000 ~ present, http://www.opengl.org/): An in-
dustrial standard graphics library. It is vender-independent,
but primarily designed for graphics, not computations.

e Vendor-dependent platforms (2007 ~ present): CUDA from
NVIDIA, CTM from AMD (former ATT). Codes run only
on the GPUs from a specific vendor, but more efficiently.

e OpenCL (2009 ~ future, http://www.khronos.org/opencl/):
Open Computing Language. An open standard for GPGPU,
being driven mainly by Apple.

This article focuses on NVIDIA’s CUDA (Compute Uni-
fied Device Architecture), because it provides an efficient but
easy-to-use computing platform akin to the popular C language.

“There is nothing more practical than a good theory
(K. Lewin.)”

Albeit this saying accords with my belief, recent develop-
ments have opened a new era for practical parallel computing
for everybody.

Parallel Computation using GPUs

Parallel computation has a long history, but GPGPU has
distinctions from the predecessors.

o GPUs provide many processors optimized for computation
at extremely low prices, about two dollars per processor.
In 1982, Cray X-MP provided up to four processors at $15
million.

e GPUs are designed to minimize the control overheads of
multiple processors. In general multiprocessor environ-
ments, user tasks are controlled by operating systems along
with other tasks in the system. In CUDA, a device driver,
not an OS, manages GPU threads preventing interventions
from non-GPU tasks.

e GPUs suffer minimal context switching overheads. For a
numerical operation, all operands should be loaded into
CPU resources named registers. As registers are scarce in
a CPU, they need to be shared among CPU threads. When
a thread A yields a CPU to another thread B, the content
of the registers used by A should be stored in the system
memory, and the register contents of B should be reloaded
to registers from the memory (if any). This context switch-
ing suffers from limited memory bandwidth. In contrast, as
GPU threads in CUDA receive dedicated set of registers,
register loads/unloads are unnecessary.

To emphasize the last point, let’s consider parallelizing a
‘for’ loop in C using threads.

\ GPU
A

A

8 Scalar Processors

Texture memor

\| Streaming Multiprocessor

Global memory

Figure 1. A Schematic
view of a GPU. A streaming multiprocessor (SM) has eight scalar
processors (SPs), connected to global memory.

for(i=0; i<BIG_NUMBER; ++i) C[i] = A[i] + B[il;

It will be a simple but bad idea to spawn a BIG_NUMBER of
CPU threads, each of them computing one component of the
array C — as many threads contend for the smaller number of
CPUs, context switching overhead will soon surpass the ad-
vantage of parallelism. With GPUs, on the other hand, creating
many threads is the usual way to parallelize such a loop.

There have been many researches in various areas report-
ing great speed-ups of numerical tasks using GPUs, including
machine learning , medical imaging , DNA sequence align-
ment , and molecular modeling/simulations (see [1] for refer-
ences therein.) GPUs have been used for implementing op-
timization methods like Newton’s method 7?%4°%7 and conju-
gate gradient method 5793, GPU-based matrix factorization
algorithms Vokev08.Jung08 wil] be useful for many other opti-
mization techniques.

NVIDIA GPUs

NVIDIA provides a wide range of GPU products that can
be used for GPGPU. While old models like GeForce 8800,
9800 provide only single precision floating point computa-
tions, new products like GeForce GTX 280 support double
precision as well. Tesla products provides GPUs with larger
memory. We list some of the most popular GPUs in Table 1.

All NVIDIA GPUs consist of streaming multiprocessors
(SMs), each of them is composed of 8 scalar processors (SPs).
For example, a GeForce GTX 280 in Table 1 has 30 SMs, and

Name SPs memory (bandwidth) precision
GeForce GTX 280 | 240 1 GB (141.7 GBY/s) s&d
GeForce 9800 GTX | 128 512 MB (70.4 GB/s) S

Tesla C1060 240 4GB (102 GBys) s&d
Tesla C870 128 1.5 GB (76.8 GB/s) S

Table 1: NVIDIA GPUs. New devices support both single(‘s’) and
double(‘d’) precision floating point operations.
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therefore 8 X 30 = 240 SPs in total. An SM also has one
instruction unit, 8192 registers, small on-chip shared memory
and read-only caches.

GPUs have off-the-chip memory called global memory,
which is accessible from all SPs within a single GPU. The con-
nection between the global memory and SPs is very fast (see
Table 1); however, global memory and a host computer con-
nects via PCI-Express bus, which is much slower (8 GB/s.)

CUDA Platform

CUDA is a free software platform to support computations

on NVIDIA GPUs (http://www.nvidia.com/object/cuda_home.

html.) It provides a complier for CUDA codes, which are ex-
tensions of the standard C programs. A CUDA code contains
CPU parts that call GPU routines with thread execution con-
figurations, and GPU parts called kernels.

CUDA splits a computation task into a grid of blocks, where
a block consists of a set of threads. Each block is automati-
cally scheduled to run on a certain SM, and as there are eight
SPs in an SM, eight threads in each block run concurrently
at a time. All SMs run concurrently and can be synchronized
by barriers. All SPs in the same SM run the same instruc-
tion, but at possibly different states and with different streams
of data. This computation model is called a single-instruction
multiple-thread (SIMT) model.

For example, let’s see how CUDA adds two N-by-N ma-
trices A and B, and then store the result as the matrix C. The
CPU part looks as follows:

int mainQ)
{
dim3 block(16,16);
dim3 grid((N + block.x - 1) / block.x,
(N + block.y - 1) / block.y);
matAdd<<<grid, block>>> (C, A, B);
}

In this code, each thread block is defined to have 16 x 16
threads. We split the matrix dimension into blocks, defin-
ing a grid. Finally we call a GPU routine matAdd, with the
grid and block configurations; CUDA uses a special construct
<<< ... >>> for this. The GPU part looks as follows:

__global__ void matAdd(float** C, float **A, float **B)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i <N& j<N)
C[il[j1 = A[i1[3] + B[i1[jl;
}

This GPU function is executed by each thread in the grid.
The qualifier __global__ represents that this function can be
called from both CPU and GPU parts. The global variables
blockldx , blockDim and threadIdx of CUDA tell the loca-
tion of the current thread in the grid. Each GPU thread com-
putes one output entry of the matrix addition.

For convenience, CUDA provides GPU versions of BLAS
Level 1, 2 and 3 operations in CUBLAS library, and discrete

a @ @ @ Block 1,2 Block 1,3
®
Block 2,1 Block 2,2 Block 2,3
Block 3,1 Block 3,2 Block 3,3
Atask r

Figure 2. A CUDA task
split into a 3-by-3 grid of nine blocks, with six threads in each block.

Fourier transforms in CUFFT library. You can also try Jacket
GPU engine for Matlab (http://www.accelereyes.com/) to feel
GPU performance without changing your existing Matlab codes
too much. These pre-built libraries are easy-to-use, but often
slower than customized codes — in order to get the maximum
performance out of GPUs, you would have to create GPU rou-
tines by yourself.

“You have to learn the rules of the game. And then
you have to play better than anyone else (A. Einstein.)”’

In [1], algorithms to solve large-scale nonsmooth convex
optimization problems, compressive sensing and image restora-
tion, are implemented using native CUDA, finding solutions
maximally 100 times faster than the same algorithm imple-
mented in Matlab. Fast implementations are important in both
applications: in compressive sensing, the allowance of mak-
ing fewer observation comes from the assumption that we can
solve the reconstruction problem efficiently; fast image restora-
tion is necessary in order to be used as a pre-processing step
of realtime tasks, computer vision for example.

Compressive Sensing
The idea of compressive sensing is to reconstruct a sparse
signal from a few observations. Given that a signal vector x €"
is S-sparse, which means that the number of nonzero compo-
nents of x is at most S, we aim to recover x from the observa-
tions y €” with m < n, where each observation is some linear
function of the signal; y can be represented as y = Ax + z with
some matrix A € C"™" and a noise vector z. We formulate the
recovery problem as
mxin |lx|l; subject to [|Ax — y|| < €. (1)
The theory of compressive sensing tells that if the transfor-
mation matrix A satisfies a certain property called restricted
isometry property (RIP), then the solution of (1) recovers the
original signal x. RIP ensures that all distances between any
two S -sparse signals are well preserved in the measurement
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space, after being operated on by A. And thankfully, simple
construction of A is often suffice. For example, we can form A
by sampling n columns uniformly at random on the unit sphere
of ™. With very high probability, the matrix A acquired by this
process obeys RIP provided that

m>C-Slog(n/S)

for some constant C. In other words, (1) yields the true signal
from m measurements even when m is only a modest multiple
of S. Compressive sensing has many interesting applications,
including single-pixel camera, MRI, DNA microarray, etc (see
more in http://dsp.rice.edu/cs.)

Separable approximation for compressive sensing
The problem (1) can be reformulated as

min ¢(x) + 7l (2)
where ¢(x) := %Ile - yII% and for some regularization param-
eter 7 > (. Note that for 7 > 7.« the solution is x = 0, where

. T
Tmax = |47 Ylleo

Although (2) is a simple convex quadratic program, the high
dimensionality of x and the fact that A is dense in many appli-
cations give rise difficulties.

Among the many algorithms to solve the problem (2), we
focus on the SpaRSA approach of [6]. SpaRSA uses a second-
order approximation of the smooth part ¢(x) of (2) at the cur-
rent iterate x*; SpaRSA obtains the new iterate x**! by solving
the subproblem:

CPU GPU Speedup

T/Tmax : - - - -
iters time (s) | iters time (s) | total iter
0.000100 | 107 107.08 | 129 2.08 51 62
0.000033 | 131 129.10 | 131 2.10 61 61
0.000010 | 149 14531 | 160 2.57 57 61

Table 2: Computational results for a 1-D DCT sensing matrix of dim
131072 x 1048576, with 26214 spikes

CPU GPU Speedup

T/Tmax 0 : 0 N .
iters time (s) | iters time (s) | total iter
0.10 64  98.25 64  1.00 98 98
0.05 65 103.10 70 1.08 95 102
0.02 80 117.97 84  1.30 91 95

Table 3: Computational results for a 2-D DCT sensing matrix of dim
20972 x 1048576, with 1031 spikes

As the major operation in SpaRSA is the matrix-vector
products involving A and A7, it is important for a GPU imple-
mentation to store A compactly and compute the multiplica-
tion efficiently. We formed our matrix A by randomly select-
ing m rows from an n-dimensional discrete cosine transform
(DCT) matrix. This matrix A satisfies RIP, and the matrix-
vector product for A can be calculated in O(nlogn) operations
using fast Fourier transform (FFT) algorithms (with O(n) pre-
and post-processing steps) . We used the FFT routine provided
by CUFFT library.

All the other linear algebra operations can be implemented
using CUBLAS library, but often operations are better to be
implemented natively in CUDA, rather than split into elemen-
tary operations, for better GPU utilization.

We measured the time taken to acquire the solution of (2)
using SpaRSA algorithm, comparing the implementation on

7
X = arg min ?”Z - xk”% +(z - x)"AT (A - y)+ 7zl 3) cPUs (using Matlab with a single core of an Intel quadcore

for some @ > 0. The subproblem (3) is the same as (2) except
that the true Hessian A” A replaced by a;/, and a constant term
is omitted. It requires O(n) operations to solve the subproblem
as it is separable in the components of z, and for each com-
ponent a closed-form solution exists. We choose @; so that
ai] mimics the behavior of the true Hessian along the last two
iterates, inspired by Barzilai and Borwein 2¢<88 ' Set o by

O 1AsMB
ST ISR

“)

@k

where s¢ 1= x* — X! and Y := Vo(x¥) — Vo(x*~"). This
approach does not necessarily give a decrease in the objective
(2) at each iteration; a monotone variant of SpaRSA uses the
value (4) as an initial guess, then repeatedly increases @y by
some constant factor until the new iterate x**! gives a lower
function value than x*.

SpaRSA on GPUs

CPU at 2.66GHz) and the implementation on GPUs. For ex-
periments we first constructed a one-dimensional signal of length
n, with a sensing matrix consists of m < n rows drawn ran-
domly from an nxXn DCT matrix. The signal consists of [m/5]
spikes, half of which have magnitude near 1 with the remain-
ing half having magnitude between 10~ and 10~* (logarithms
uniformly distributed), with noise of order 107¢ on each el-
ement. For two-dimensional experiment, we construct a two
dimensional signal of length n = 7 X 7 for some positive in-
teger 7. The signal consists of spikes of +1 or —1, of which
the fraction is .001. We set m to be 20 times the number of
spikes, and measurements are corrupted by noises drawn inde-
pendently from a normal distribution.

To run the GPU implementation, we use one of the two
GPUs in a GeForce 9800 GX2 device, which has 128 scalar
processors and 512 MB of global memory (64 GB/s). The re-
sults are shown in Table 2 and Table 3. The CPU and GPU al-
gorithms are identical but give different numbers of iterations,
as the CPU code uses double precision but the GPU code uses
single precision arithmetic. But both implementations return
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solutions with almost the same mean square error. For 1-D
case we achieve about 60 times of speedup, whereas for the
2-D case up to 100 times.

Image restoration

Given a compact image domain €, we want to restore the
error-free image u € € from a distorted image f, which is
assumed to be obtained by some linear transform,

&)

y=Bu+z

where B is a transform matrix and z is a noise component.
The image is restored by solving the total-variation (TV)
regularization problem introduced by Rudin, Oscher, and Fatemi

(8],

. A
min | 9l + 51 - Bul. ©)
s 2

This method is known to be highly effected in removing un-
wanted fine-scale detail while preserving edges. Assuming
that # has bounded variation, we can rewrite

f Vx| = f f —uvV-w. (7
Q Q Q

Using (7), we can form a minimax problem of (6) as follows

Vu-w = max
Iwl<1

max
wll2<1

min max £(u,w) :=
u |wlk<1

Pl
f—uv-w+§||y—3u||§. (8)
Q

Note that £(u, w) is convex in terms of u and concave in terms
of w, and the saddle point is attained.

We focus on the primal-dual hybrid gradient projection
(PDHG) approach proposed by Zhu and Chan [9]. This method
generates a sequence of primal-dual pairs (1, w¥) by perform-
ing dual ascent and primal descent updates at each iteration,

)
(10)

i
W= Priney W + TV, Lk, wh))

k+1 k

=u k+1)’

u — (V. LW w

where Px(v) means the projection of v onto the set X. The
algorithm repeats these updates until duality gap falls below a
certain threshold. The steplengths are defined by 7; := (.2 +
Bk)Ad and o := (.5 —1/(1 + .2k))/7 as in [9]. This method
is very simple yet has striking performance on practical image
restoration problems.

PDHG on GPUs

In GPU implementation, the crucial parts of PDHG are the
spatial gradient and the divergence operator appear in the gra-
dient computation of (9) and (10), respectively. In both op-
erations, we split the variables u and w into two dimensional
blocks, in which each thread (i.e. each scalar processor) takes
care of one component of the output matrix. The SP at the
(i, j)-th location of the output matrix has to access not only the
(i, j)-th location of the input vector, but also adjacent locations

Image Tol CPU GPU Speedup
size iters time (s) | iters time (s) | total iter
l.e-2 11 0.03 11 0.02 2 2
1282 led4 | 79 0.21 79  0.02 11 11
l.e-6 | 338 0.90 329 0.07 14 13
l.e-2 13 0.17 13 0.02 9 9
2567 le-4 | 68 0.81 68  0.03 32 32
le-6 | 304 3.57 347  0.11 33 38
l.e-2 12 095 12 0.03 31 31
5122 le-4 | 54 396 54 0.05 76 76
le-6 | 222 16.08 238 0.19 84 90
l.e-2 14 542 14 0.08 64 64
10247 le-4 | 69 2580 69 024 106 106
le-6 | 296 103.54 | 324 1.02 102 111
l.e-2 13 3141 13 0.28 114 114
20482 le-4 | 67 149.24 67 090 165 165
l.e-6 | 319 694.16 | 338 4.12 169 179

Table 4: Computational results of image denoising (1=0.041.)

of the input matrix in the i and j directions, which are also
needed by other threads. As memory bandwidth is limited, we
have to reuse those values if they once read by other threads.
A simple but efficient way for reusing is imposing a cache on
the input matrix (global memory is not cached by itself.) In
CUDA this cache is called as a texture, which provides a read-
only cache of a user-specified global memory area.

Table 4 shows the result of image denoising experiments,
which corresponds to the case when the matrix B in (5) is an
identity matrix. The input images are contaminated by a Gaus-
sian noise of mean 0 and standard deviation 0.1.

GPUs: yet another coprocessors?

In 80’s, the Intel processors like 8086, 80286 and 80386
lacked floating point computation (FP) hardware units. As
FP computations were done by software, if you wanted to
run FP-computation-hungry applications, you had to buy sep-
arate hardware called ‘coprocessors’, which had model names
‘80x87°. Now it is hard to even hear of coprocessors, because
they are behind the scene, embedded even in consumer CPU
chips.

GPUs look pretty much like a new kind of coprocessors;
now they provide huge FP computation horsepower by means
of massive parallelism, or by going multi-cores, which is the
virtue of newest computation units. Would someday we see
those new coprocessors merge with CPUs? We won’t have to
wait for long. Intel’s new Core 2 CPUs (codename Nehalem)
with integrated on-chip GPUs are to be unveiled in Q3 2009.
This CPU-GPU integration will relieve the burdens of moving
data between CPUs and GPUs, which choke the current gen-
eration of GPUs. GPU computing is making impractical prac-
tical, giving optimizers the chances to challenge more difficult
problems.
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Introduction to
Derivative-Free
Optimization, A. R. Conn,
K. Scheinberg, and L. N.
Vicente, SIAM, 2009.

Todd Munson

Mathematics and Computer Science
Division Argonne National
Laboratory

Todd Munson is a member of Argonne ’s Mathematics and Computer Science
Division, working primarily in the areas of large-scale continuous optimiza-
tion and nonlinear complementarity problems. Munson is a lead developer of
PATH, the most widely used code for solving complementarity problems; the
Network Enabled Optimization System (NEOS), a collaboration between Ar-
gonne and Northwestern University that provides access to optimization pack-
ages through a variety of Internet interfaces; and the Toolkit for Advanced Op-
timization (TAO), an open source collection of parallel algorithms for solving
large-scale nonlinear optimization problems.

Introduction to Derivative-Free Optimization offers a brief
tour through pattern-search and model-based methods for

derivative-free optimization and the important research being
performed. The book is split into two main parts: the first de-
velops the mathematical framework, and the second develops
globally convergent algorithms. A third section briefly men-
tions other topics, such as the emerging research on derivative-
free methods for constrained optimization problems. An ap-
pendix has pointers to some available derivative-free optimiza-
tion software. Readers looking for a discussion of other tech-
niques, such as genetic and evolutionary algorithms and sim-
ulated annealing, should look elsewhere since these are not
covered in this volume.

The mathematical discussion in the first part of the book
provides suitable background for the later algorithmic discus-
sion and includes chapters on sampling, on properties of inter-
polation and regression models using Lagrange polynomials,
and on techniques for computing with Lagrange polynomials.
The relationships between A-poisedness, the condition num-
ber of the interpolation matrix using the shifted, scaled sam-
ple set, and the resulting error bounds are particularly useful
in understanding the later algorithms and convergence proofs.
While several examples are included in the text, these sections
may have benefited from additional illustrative examples to
give the reader more intuition.

The chapter on computational methods for Lagrange poly-
nomial is also good but could have been expanded. The ba-
sic algorithm to compute the Lagrange polynomials for well-
poised sample sets via an orthogonalization procedure can be
easily coded from the description. The completion and im-
provement algorithms for ill-poised sets are harder to imple-
ment because they may require the use of a global optimiza-
tion method. The text in the trust-region chapter on finding
global solutions for quadratic functions in a ball could have
either been included in this chapter when discussing quadratic
models or turned into an appendix referenced by both chap-
ters, for example, to provide the reader a more complete algo-
rithm. All the computational methods presented can be sen-
sitive to finite-precision arithmetic. While the resulting inter-
polation error may not matter in practice, a discussion on the
effects of finite-precision arithmetic and mitigation strategies
and the consequences of only approximating globally optimal
solutions could have been included.

The algorithmic discussion based on this mathematical
framework includes pattern-search, Nelder-Mead, line-search,
and trust-region methods. Roughly half of this section is de-
voted to the trust-region framework and algorithms based on
the trust-region framework. This material is well developed
and offers a good contrast to trust-region methods when deriva-
tives are available. In the latter case, we want the trust-region
radius to become large, while in the derivative-free case, the
trust-region radius needs to converge to zero, since this is in-
dicative of convergence to a stationary point for fully linear
and quadratic models. While this emphasis on trust-region
methods is understandable given their importance, an expanded

ICS News

Fall 2010

Page 10


http://www.mcs.anl.gov/~tmunson/

treatment of other topics, such as the line-search method us-
ing simplex derivatives with a limited-memory quasi-Newton
Hessian approximation or the extension of the pattern-search
method to nonsmooth functions, would have been desired. In
particular, much of the algorithmic coverage pertains to fully
linear and quadratic models of the objective function, and most
convergence proofs assume the objective function is at least
continuously differentiable with a Lipschitz continuous gradi-
ent. On a few occasions, however, results based on convex
analysis are included where the objective function is assumed
to be only Lipschitz continuous. The inclusion of these re-
sults is necessary to demonstrate applicability of the methods
to problems where derivatives do not exist. The book, how-
ever, would have benefited from an appendix on convex anal-
ysis to familiarize readers with the relevant concepts.

In short, the book is well written, with a good mixture of
topics. It is not a complete review of every topic, but that is
to be expected given the ongoing activity in this community. I
highly recommend this book for researchers wanting to learn
about the current state of the art in pattern-search and model-
based derivative-free optimization and for those interested in
pursuing research in this area. Much of the material could
be used in a graduate course on derivative-free optimization
but may need to be supplemented depending on the choice of
topics.

Editor’s Note: An errata for the book is available at http:
/’www.mat.uc.pt/~Inv/idfo.

Clarification of Criteria for
Publication: Heuristic Search and
Learning

David Woodruft
University of California-Davis

The editorial policy for the Heuristic Search and Learning
Area, as given on the web site for the INFORMS Journal on
Computing is:

This area focuses on the application of heuristic
methods for solving difficult operations-research
problems or in learning contexts. In particular, it
covers topics such as Metaheuristics (Tabu Search,
Scatter Search, Genetic Algorithms and Evolu-
tionary Methods, Ant Algorithms, Simulated An-
nealing, etc.) and Neural-Network techniques. Hy-
brid approaches combining existing heuristic meth-
ods, alone or in conjunction with techniques from
other areas of operations research or computer sci-
ence, are also of particular interest. The emphasis
within the area is on papers presenting method-
ological innovations that can be applied to a wide
range of problems or situations. Survey papers

covering recent advances in a given field and pa-
pers aimed at providing a conceptual integration
of the area are also welcome.

A sentence of interest is: “The emphasis within the area is
on papers presenting methodological innovations that can be
applied to a wide range of problems or situations.” A simple
assertion that the innovations can be applied elsewhere does
not meet the burden of proof required in good scientific prac-
tice. The authors must demonstrate generality in a convincing
manner, either experimentally or theoretically. Rarely, it may
be clear that a method is broadly important even when it is
tested on only one problem, but this would be very unusual.

For many outlets in our field, a necessary and sufficient
condition for publication is to show better results than a set
of competitors over a portion of some set of test instances.
While this may be a reasonable standard in some settings, it is
generally insufficient for the INFORMS Journal on Comput-
ing, especially given that a significant fraction of our audience
are not specialists in heuristic search and learning. Obtaining
some best-known results will be helpful in making the case for
the paper, but it is not normally sufficient.

The problems considered in the paper must be “important”
in some sense, though this is difficult to define precisely and is
subject to some tradeoffs. Importance may be demonstrated by
application to a problem of practical significance, or demon-
stration that the problem has been extensively studied in the
research literature, for example.

A scientifically rigorous paper presenting methodological
innovations that can be applied to a wide range of important
problems or situations is not easy to create. The good news
is that it is relatively easy to recognize such a paper, and they
will be published quickly because they are very valuable. Pa-
pers in this category will not generally require numerous major
revisions that need to go back to the referees: a paper present-
ing methodological innovations that can be applied to a wide
range of problems or situations does not need a committee to
make it perfect. Conversely, the referees generally candAZt
walk authors through the process of discovering and describ-
ing methodological innovations that can be applied to a wide
range of problems or situations.

Survey papers must provide “conceptual integration”, which
rules out annotated bibliographies, though these are quite use-
ful and heavily cited. Of course, survey papers that provide
conceptual integration are even more useful, and when one
of those is submitted we will work to review it and accept it
quickly so that it appears in a timely manner.
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Message from the Chair

(continued from page 1 <)

Treasury: At the beginning of 2010, the Society had ap-
proximately $22,935.72

Our next business meeting will be this November at the IN-
FORMS Meeting in Austin, Texas. Come, bring a colleague,
bring a student, and bring your ideas. Hope to see you in
Austin.

Membership: We started 2010 with 461 members, of which A ckn owledg ments

more than 100 were new members who joined under our suc-
cessful student membership drive. This year, we created a new
Membership Committee led by Dick Barr to continue explor-
ing new means of enhancing the society’s value to its members
and growing our ranks. (Renew your membership!)

Presence at National Meeting: In San Diego, we had 56
sessions, a bit of a decrease from last year but, given the overall
state of the economy, a respectable showing. It looks like ICS
will also have a significant presence at this years meeting in
Austin, Texas.

ICS Conference: We are preparing for our 12% (!) con-
ference to be held January 9-11, 2011 in beautiful Monterey,
CA. For some reason it took the folks at INFORMS a bit longer
than usual to negotiate and finalize the selection of venue and
so we are getting a late start. But, we are beyond that now.
Please mark your calendars. Submission deadline for abstracts
is October 1, 2010.

Prizes: At the Austin meeting, we will give out two prizes:
the ICS Prize and the ICS Student Paper Award. Also, at the
Monterey meeting we will be awarding the second Harvey J.
Greenberg Award for Service to ICS, which acknowledges the
life-time achievements of people who had an impact on ICS.
There is no shortage of deserving candidates for any of the
awards, and this year it is even easier to apply using the new
standard ICS prize email addresses. For details on selection
criteria and nomination procedures, go to the ICS website,
http://computing.society.informs.org, and click on Prizes.

Thanks to Editor Jeff Linderoth and the team of contribut-
ing authors, you can find details on these and all the other ICS
happenings in this wonderfully comprehensive newsletter.

This edition marks my first as ICS Chair. I would like to
express my heart-felt thanks to outgoing Chair, Robin Lougee,
for the wonderful job she did over the past two years. She
made ICS both interesting and fun.

Thank you to all the outgoing officers, Robin Lougee (past-
Chair), Rob Dell (past-Board Member), Pascal Van Henten-
ryck (past-Board Member), Steve Dirkse (past-Board Mem-
ber), Matt Saltzman (past-Board Member),

We’re lucky to have a strong new group of officers at the
helm: Bill Cook (Chair-elect), Kipp Martin (Secretary/ Trea-
surer), in addition to the continuing Board Members: Jonathan
Eckstein (Board), and Jonathan Owen (Board). I look forward
to working with them all in my new role as your Chair, and
with YOU.

ICS is a great opportunity to get involved, meet some new
people, and generally combine your professional interests with
a little fun. So, what do you need from ICS? What do you
want? Let’s hear it.

The Editor thanks all contributors and those who provided ser-
vice to ICS. Last, but not least, thanks to Harvey Greenberg.

INFORMS Computing Society

Forming the Building Blocks of
Operations Research
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