
Inside This Issue. . .
• Message from the Chair
• Message from the Newslet-

ter Editor
• 2020 ICS Awards
• Message from the EIC of

IJOC
• IJOC Is on GitHub!
• FORged-by-Machines Con-

test
• COIN-OR: A 20-year Retro-

spective
• Research Highlight: Low-

Rank Methods for Semidef-
inite Programming

• Research Highlight: Outer
Approximation for Integer
Nonlinear Programs via De-
cision Diagrams

• Research Highlight: A Vi-
sual Summary of the Boxed
Line Method: A Criterion
Space Method for Biob-
jective Mixed Integer Pro-
gramming

• Research Highlight: A Com-
binatorial Cut-and-Lift Pro-
cedure with an Application
to 0-1 Chance Constraints

• Research Highlight: Sparse
Regression at Scale:
Branch-and-Bound rooted
in First-Order Optimization

“The Society is a great op-
portunity to get involved,
meet some new people
and generally combine
your professional inter-
ests with a little fun.”

Message from the Chair

Simge Küçükyavuz
Industrial Engineering and Management Sciences

Northwestern University, simge@northwestern.edu

What a year it has been! When I wrote my last “mes-
sage from the chair” for our newsletter in January 2020,
plans were underway for the ICS Conference in Tampa
in January 2021. In just a couple of months, the world
turned upside down! A once-in-a-century pandemic and
the ongoing uncertainty forced us to make the difficult
decision to postpone our biennial conference to January
23-25, 2022. Please mark your calendars and make this
conference a high priority! We miss the in-person experi-
ence of conferences after one-too-many Zoom meetings,

and look forward to seeing you in Tampa. This pandemic has also highlighted
the importance of decision-making under uncertainty, with problems such as
ventilator allocation, provider staffing, and vaccine distribution becoming ever
more crucial. To this end, our members have been developing computational
models and methods to solve such challenging problems.

In 2020, we launched a working group on quantum computing, chaired by
Giacomo Nannicini, which will help provide ICS members with information
and resources on this novel computing paradigm. We presented the inaugural
Harvey J Greenberg Research Award during our virtual ICS Business Meeting,
along with the traditional ICS Prize and ICS Student Paper Award. The fORged
by Machines contest, led by Suvrajeet Sen, had a second successful year with
the active engagement of our student members. So, we kept up the momentum
in our work despite these trying times, thanks to all our members and officers.
I hope you enjoy reading about some of the award-winning research in this
newsletter.

Message from the Newsletter Editor

Yongjia Song
Department of Industrial Engineering

Clemson University, yongjis@clemson.edu

It is the time to share the news for the society again and it is my pleasure to
put things together. In this newsletter, please be aware of the updates of the
society officers, board of directors, INFORMS Journal on Computing, as well as
research highlights and insights from the 2020 ICS awards. Special thanks
to all who contributed to this newsletter! I will also greatly appreciate any
comment or suggestion that you may have for the newsletter.

Officers
Chair:
Simge Küçükyavuz
Northwestern University
simge@northwestern.edu

Vice-Chair/Chair Elect:
Akshay Gupte
The University of Edinburgh
akshay.gupte@ed.ac.uk

Secretary/Treasurer:
Mary Fenelon
MathWorks
Mary.Fenelon@mathworks.com

Board of Directors

Willem-Jan van Hoeve
Carnegie Mellon University
vanhoeve@andrew.cmu.edu

Fatma Kılınç-Karzan
Carnegie Mellon University
fkilinc@andrew.cmu.edu

Bjarni Kristjansson
Maximal Software
bjarni@maximalsoftware.com

Siqian Shen
University of Michigan – Ann Arbor
siqian@umich.edu

Yongjia Song
Clemson University
yongjis@clemson.edu

Juan Pablo Vielma
Massachusetts Institute of Technology
jvielma@mit.edu

Editors
Journal on Computing:
Alice E. Smith
Auburn University
smithae@auburn.edu

ICS Newsletter:
Yongjia Song
Clemson University
yongjis@clemson.edu

The Inaugural Harvey J. Greenberg Research
Award

The award honors research excellence in the field of computation
and operations research applications, especially those in emerging
application fields. Honored research would focus on contributions
that exhibit the promise of making a significant impact in the scope of
OR/MS/Analytics practice.

Winners of the inaugural Harvey J. Greenberg Research Award:
Danial Davarnia and Willem-Jan van Hoeve for their paper “Outer
Approximation for Integer Nonlinear Programs via Decision Diagrams,”
forthcoming in Mathematical Programming Series A.

Committee members: Dorit Hochbaum (Chair), Pascal van Hentenryck,
and Karla Hoffman.

The 2020 ICS Prize

The ICS Prize is an annual award for the best English language
paper or group of related papers dealing with the Operations Re-
search/Computer Science interface. The 2020 prize was awarded
to Samuel Burer and Renato D. C. Monteiro for their pioneering
work on low-rank semidefinite programming, as detailed in the papers:

(1) A Nonlinear Programming Algorithm for Solving Semidefinite
Programs via Low-Rank Factorization, Mathematical Program-
ming Series B 95: 329 – 357 (2003);

(2) Local Minima and Convergence in Low-Rank Semidefinite Pro-
gramming, Mathematical Programming Series A 103, 427 – 444
(2005).

Committee members: Suvrajeet Sen (Chair), Fatma Kılınç-Karzan,
Necdet Serhat Aybat

The 2020 ICS Best Student Paper Award

The ICS Student Paper Award is an annual award for the best paper at
the interface of computing and operations research by a student author.
The 2020 winner was awarded to Tyler Perini, Georgia Institute
of Technology. Award-winning paper: “A Criterion Space Method for
Biobjective Mixed Integer Programming: the Boxed Line Method”.

Runner up: Margarita Castro (University of Toronto), “A Combi-
natorial Cut-and-Lift Procedure with an Application to 0-1 Chance
Constraints”. Honorable mentions: Hussein Hazimeh, MIT, “Sparse
Regression at Scale: Branch-and-Bound rooted in First-Order Opti-
mization”, and Prateek Srivastava, UT-Austin, “A Robust Spectral
Clustering Algorithm for Sub-Gaussian Mixture Models with Outliers”.

Committee members: Claudia d’Ambrosio (Chair), Georgina Hall and
Ruiwei Jiang

Message from the Editor-in-Chief of INFORMS Journal on Computing

by ALICE SMITH, DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING, AUBURN UNIVERSITY.
SMITHAE@AUBURN.EDU

Happy 2021 all INFORMS Computing Society members!
The editorial board of the journal met virtually in Novem-
ber 2020 as part of the INFORMS Annual Meeting. Up-
dates and statistics about the journal were presented and
discussed, and I offer some as points of interest below:

• IJOC was first published in 1989 and some 1500+
articles have been published since then.

• There are ten technical areas.
• There are 67 associate editors along with the 10 area

editors come from 15 countries over six continents.
• Over 30,000 downloads of IJOC papers occurred

during the first three quarters of 2020.
• The desk reject rate was about 33% and the median

time to first decision for papers undergoing review
was about 130 days.
• Two areas have expanded. Stochastic Models now

includes Reinforcement Learning and Software Tools
now accepts full-length papers and has developed a
full featured GitHub IJOC Repository for code and
data.
• There is a 55% increase for 2021 in page budget for

the journal to help with the publishing backlog.

So, as you can see, IJOC is healthy and progressive and
this is thanks to the many editors, the INFORMS staff,
the readers and authors of IJOC, and you, the supporting
society of the journal.

IJOC is on Github!

by TED RALPHS, SOFTWARE TOOLS AREA EDITOR AT IJOC, DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING,
LEHIGH UNIVERSITY. TED@LEHIGH.EDU

Back in November 2020, Alice Smith, the Editor-in-Chief
of our INFORMS Journal on Computing (IJOC) announced
some enhancements to the publication process of the Soft-
ware Tools area of IJOC, which will be rolling out to other
areas over time. This short note is to follow up on that
announcement in case you missed it. The most important
aspect of the changes is that the INFORMS Journal on
Computing is now on Github!

https://INFORMSJoc.github.io

The idea behind the hosting of digital artifacts, such as
software and data, on Github is that such artifacts, when
associated with accepted papers, are important archival
research products in their own right. Thus, we are aiming
to improve their visibility and availability. The Github or-
ganization provides a permanent home for such artifacts

and offers a single, comprehensive site for readers who
want to access them. An accompanying goal is to increase
the impact of publication for authors by providing them
with a separate DOI that allows these contributions to be
recognized and cited as separate research works. Please
explore the site and let us know what you think!

The editorial statement for the area has recently been
updated to invite both full-length papers and shorter, fo-
cused papers. Our aim is to make IJOC the first choice
for publishing software- and data-centric papers in the
OR realm. Please join us in building what we expect
will become the premier place to publish about soft-
ware within the INFORMS community! More informa-
tion can be found at https://pubsonline.informs.
org/page/ijoc/editorial-statement

About fORged-by-Machines (2019 – 2020)

by SUVRAJEET SEN, DATA-DRIVEN-DECISIONS LAB, UNIVERSITY OF SOUTHERN CALIFORNIA.
SEN@DATADRIVENDECISIONS.ORG

The fORged-by-Machines Contest is a new effort which
has been sponsored by Amazon Web Service (AWS) since
2019. This is intended as an effort to promote large scale
computations for problems arising from the integration
of predictive and prescriptive analytics. The role of the
machine in this integration is undeniable, be it, for data
from remote sensing and Internet of Things (IoT), or from
decisions involving models whose exact representations
may be so large as to compete with the number of atoms in
the universe. As companies like AWS and others know all
too well, talent to solve models of such magnitude require
both clever OR/MS, as well as computing savvy. With
Machine Learning becoming a household term, it seems
like the appropriate time for INFORMS Computing Society
to take the lead in promoting a contest which fORges the
strengths of ORMS and Computing through their common

interface, the machine. The total prize money for this
contest is $1750, with $1000 for the Winner, $500 for the
Runner-Up, and $250 for Honorable Mention. AWS also
supported the costs associated with a meeting room at
the conference hotel (in 2019), and to also host a small
reception during the presentations. For obvious reasons,
these aspects of the presentation session were not part of
the activities in 2020.

This contest is open to teams of Ph.D. students anywhere
in the world, provided one of their advisors is an INFORMS
member, and can attest to the status of team members as
Ph.D. students in their university. Other than being Ph.D.
students, there are no other restrictions which have been
announced for this contest. We have had entries from
a variety of countries, including China, Germany, Korea,

https://INFORMSJoc.github.io
https://pubsonline.informs.org/page/ijoc/editorial-statement
https://pubsonline.informs.org/page/ijoc/editorial-statement

Turkey, U.K., and of course the U.S. The prize winners for
each of the years is given below.

• 2019: Winner: Priyadarshan Patil (Univ. of Texas,
Austin); Runner-up: Saeed Chavoshi and Rahman
Khorramfar (NC State Univ.); Honorable Mention:
Roshanak Khalegi and Juan Xu (Univ. of Illinois)

• 2020: Winner: Santiago Nieto-Isaza, Emanuel Her-
rmann (Tech.Univ.- Munich); Runner-up: Saran-
thorn Phusingha, Alexandra Blennerhasset (Univ. of
Edinburgh); Honorable Mention: Barbara Rodrigues
and Malte Billen (Univ. of Edinburgh)

In these first couple of years, we have had a team of
three judges who have down-selected submissions to three
teams, and these three are designated as “finalists”. The fi-
nalists are invited to make presentations to the judges. All
finalists are judged as winners, although their rank among
the finalists is decided after a presentation and Q&A with
the judges. The first of these contests was held at the
INFORMS Annual Conference in Seattle (2019), and the
next one was held virtually at the INFORMS Annual Con-
ference (Online) in 2020. It goes without saying that the

contest itself would not have been possible without the
support of INFORMS members affiliated with AWS. In par-
ticular, Kerem Bulbul (AWS) and Semih Atakan (Amazon)
were instrumental in launching this effort. We are very
grateful to the judges (John Carlsson (USC), Anton Kley-
wegt (Ga. Tech.), and Mauricio Resende (Amazon)) for
their clarity of vision, and dedication to the theme of this
contest. As always, the INFORMS staff has been a pleasure
to work with; their professionalism and commitment to a
high-quality experience (including the Zoom era) remains
unparalleled. Finally, no report on this contest would be
complete without mentioning the support and commit-
ment of the ICS chair, Simge Küçükyavuz. Her steadfast
vision is fundamental to growth of both computing and
ICS within INFORMS. Finally, I must take this opportunity
to thank my current and former Ph.D. students who keep
pushing the boundaries of OR/MS computing, and keep
me thoroughly engaged in the transformation of Stochas-
tic Optimization from an essentially mathematical pursuit
to its computational realization, and making this sub-area
vibrant for “prime-time” applications.

COIN-OR: A 20-year Retrospective

by BRADY HUNSAKER BHUNSAKER@GOOGLE.COM
LOU HAFER LOU@SFU.CA

TED RALPHS TED@LEHIGH.EDU
MATT SALTZMAN MJS@CLEMSON.EDU 1

Build it, and they will come. That’s what they say. In the
early aughts, a hardy band of IBMers and a few intrepid
outsiders put this to the test. Did it work? How did that
cute and promising infant grow to be the truculent young
adult it is today? Twenty years on, we look back to provide
a few insights.

1 A (Very) Brief History

1.1 In the beginning?

The seed for what became the COIN-OR initiative was
planted and germinated by some observations about the
state and trajectory of research in computational optimiza-
tion in the late 90s. Increasingly, complex algorithms
were being built out of simpler parts. (Think of solvers
for mixed integer linear optimization problems (MILPs)
constructed from solvers for linear optimization problems
(LPs).) Without open-source software, many wheels were
being reinvented, stifling progress. At the same time, there
was no real venue for “publication” of software. Establish-
ing such a forum would kill two birds with one stone. The
pithy, elevator version of the mission of what was soon
to be created became “to be for software what the OR
literature is for theory.”

And so it was that in August of 2000, IBM announced

what was then billed as “The COIN-OR Initiative” at ISMP.
Back then, COIN-OR stood for Common Optimization IN-
terface for Operations Research, and the focus was to be
on developing and distributing open-source software for
solving optimization problems. To show its commitment
to the concept and to get things rolling, IBM seeded the
initial repository with some projects it had developed with
a few external partners and hosted the project’s infras-
tructure on its developerWorks platform. The first outside
contribution, Open Tabu Search (OTS), came in quickly
at the end of October 2000.

Initially, COIN-OR had more “parts” than “wholes,” which
was kind of the idea. Grab a few cut generators, a branch
and bound framework, and an interface to existing LP
solvers, and you could build yourself a MILP solver! The
initiative enjoyed strong support from IBM in the early
years. The IBMers quickly ramped up their contributions,
with the first official “release” of the existing suite of tools
coming one year later in August 2001. In April of 2002,
the venerable BDFL (Benevolent Dictator For Life: a com-
mon nickname for the spiritual leader of an open-source
project) of COIN-OR, John Forrest, posted a message to
the mailing list with the subject “Anyone want an Open
Source simplex solver?” There, he detailed, in his usual
humble and understated way, how he had set out to test
the Gomory cut generator in CGL and at a particular stage
“realized that if [he] did not stop soon [he] would have a

1The authors are the founding board members of the COIN-OR Foundation, Inc., which was created in 2004 as steward of the COIN-OR initiative.
The “we” throughout this article refers to a much larger cohort of volunteers and supporters who have been involved in the project over time.

simplex solver!”. Thus, the Clp project was born and was
followed a month later by the addition of Ipopt. January
2003 saw the introduction of Sbb (Simple Branch and
Bound), the first draft of what later grew into Cbc.

At around this time, plans were being made to fulfill
one of IBM’s explicitly stated goals for the project – to
move COIN-OR off IBM’s servers and develop it into a
community-based project. In November 2002, the IN-
FORMS Board approved a proposal to host COIN-OR for
three years. The fledgling was perched on the edge of the
corporate nest. But could it fly? No one knew for sure.

1.2 COIN-OR Foundation, Inc.

Discussions began in earnest about what a community-
based COIN-OR would look like. How should it be gov-
erned? And by whom? Should there be a formal submis-
sion and review process for inclusion in the repository?
Should the nascent organization try to raise money to
support activities? Should it be an official non-profit en-
tity? What about licensing and ownership of intellectual
property? We got a crash course, and dozens of meetings
later, with copious use of IBM’s teleconference facility (no
Zoom in 2002!), we had answers to some questions, but
many remained.

One thing quickly became certain, as INFORMS insisted
as a condition for hosting that we form a non-profit entity
for liability reasons. On March 1, 2004, we became the
COIN-OR Foundation, Inc., a Maryland corporation. Along
the way, we rebranded with a more inclusive interpreta-
tion of the by-then well-established acronym: COmpu-
tational INfrastructure for Operations Research (see
what we did there?). The inaugural business meeting of
the Foundation and one of the early tutorial workshops
on how to get started with COIN-OR took place at the
joint CORS/INFORMS Conference in May 2004. It took
another year to acquire 501(c)(3) public charity status;
our application was filed with the IRS in March 2005 and
approved in November 2005.

Things began to move quickly in the ensuing years. Clp
released v1.0 in October 2004 and Sbb rebranded to Cbc a
few weeks later. The INFORMS Annual Meeting in Novem-
ber marked the first appearance of the COIN-OR booth in
the trade show. INFORMS 2005 saw the first COIN-OR
Cup award (winner: John Forrest), the announcement of
Cbc v1.0, and, most importantly, the debut of the COIN-OR
chocolate coins!

2006 saw a number of technical advances. The build
harness that has grown into today’s BuildTools configu-
ration scaffolding debuted in May. We moved from CVS
to Subversion and TRAC for project management. Bon-
min, a nonlinear mixed-integer optimization code built
using COIN-OR components, appeared in the repository
in July. 2006 also brought the COIN-OR logo contest that
gave us our current logo, and it marked the formation
of the long-standing strategic partnership between the
foundation and the INFORMS Computing Society.

1.3 Fast forward to the present

We eventually hit our stride, notwithstanding the ever-
present feeling that COIN-OR hadn’t quite fully arrived.
While the Strategic Leadership Board (SLB) debated seem-
ingly mundane questions of strategy and growth behind
the scenes, the Technical Leadership Council (TLC) man-
aged the front-facing infrastructure and the review pro-
cess. We continued to attract quality contributions, and
every so often, a volunteer with the enthusiasm and will-
ingness to join one of our boards would wander in. To
those unsung volunteers who have contributed to COIN-
OR over the years, we owe a huge debt of gratitude. Thank
you!

Over the intervening years, the repository grew to 70
projects, and software was distributed to thousands of
users from our servers. COIN-OR hosted 15 Cup cere-
monies, convened 15 meetings of its membership, wrote
15 annual reports, put on countless tutorials and work-
shops, and hosted two multi-day workshops. The most
recent of these was a week-long workshop at the Institute
for Mathematics and its Applications at the University of
Minnesota. This was followed by several “coding sprints”
focused around some of the more recent efforts associated
with COIN-OR, such as the development of the new linear
optimization framework HiGHs and the JSON-based data
interchange format MOSDEX.

In 2014, the entire team was deeply honored when IN-
FORMS awarded the Impact Prize to COIN-OR. Although
nine names appear on the certificate, we all felt that credit
was due to many more people and organizations than
that. It is satisfying that these days, the answer to the
question “Have you heard about COIN-OR?” is more likely
to be a quizzical “of course, who hasn’t?” rather than the
blank expression of yesteryear. But have they really come?
Has it been worth the enormous effort? What have the
impacts been? Has the Foundation succeeded in achieving
its goals? Well, yes? and no. In the remainder of this
article, we provide some perspective on these and other
questions.

2 Reflections

2.1 How hard can it be?

It seemed like a good idea at the time, but it turns out that
operating a non-profit foundation is actually a lot of work!
And it should probably be obvious that researchers (be
they from academia or industry) are not the right ones to
put in charge of business operations. Nevertheless, when
we designed the COIN-OR Foundation’s structure, one of
the things we got right was to separate the care for the
institution, such as funding and legal requirements, from
care for the software and infrastructure that is its reason to
exist. The former is handled by the aforementioned SLB,
while the latter is handled by the TLC. While each board
occasionally became mired in the minutiae of its man-
date, the decision to keep them separate meant they were

each able to move forward more or less independently on
different tracks.

On the technical side, the goal was initially (and to a
large extent remains) to provide the infrastructure to al-
low others to easily do the core work of implementing
algorithms, insulating them from the effort of developing
the infrastructure for building, testing, ensuring portabil-
ity, maintaining issue trackers, making releases, archiving,
making source code available, maintaining web infras-
tructure, etc. For the TLC, keeping up with technology
has meant chasing a constantly moving target. Over the
years, we’ve migrated through three project management
systems and three version control systems, ported code
to work with countless compilers and operating systems,
moved the entire contents of the repository to new servers
four times, utilized three different continuous integra-
tion systems, migrated Web content across four different
servers and from plain HTML to a CMS, and the list goes
on. From the beginning, it’s been a constant battle to keep
up with advances in technology while making the time to
do the work we really love—implementing algorithms!

Meanwhile, on the strategic side, the SLB’s effort has gone
into questions of how to promote COIN-OR; how to imple-
ment the review process; how to increase participation;
how to manage potential legal issues; how to raise funds;
whether the Foundation itself should support development
or continue with volunteers. Easy to say, but as any of you
who have grappled with such matters will attest, the devil
is in the details.

2.2 Did they come?

Uptake was definitely slow at first, but we always knew
that we would need to remain focused on the long game.
Working with the tools as they were in the beginning took
a hacker’s mentality and a developer’s knowledge. There
was no StackOverflow. There were no installers, no bina-
ries. Development was geared towards Linux, which itself
was still primarily the domain of technological adventur-
ers. So while additional contributions filtered in and the
repository grew, the foundation leadership, with its dual
strategic and technical boards, slowly chipped away at the
barriers to entry and set a course for the future.

Over the years, participation and awareness have in-
creased dramatically. Still, we’ve struggled to engage the
community directly and to identify exactly who is using
COIN-OR codes and what the value proposition really is.
The growth of COIN-OR has largely mirrored and bene-
fitted from larger trends in software and technology. The
recent move to Github has allowed users to participate
in a more frictionless fashion, using tools they’ve become
accustomed to. The advent of popular, extensible high-
level languages, such as Python and Julia, means that
there are now ways to interface to COIN-OR codes from
almost every commonly-used development and modeling
environment. In short, the barriers to entry are lower. On
the flip side, this leaves us with many users we have no
way of knowing about and (a larger problem from our

point of view) many users who have no way of knowing
about us.

One significant “they” which has not come are developers
committed to helping ensure the long-term health of the
more utilitarian parts of the COIN-OR code base. We have
been struggling for many years with an exodus of core
developers as they move on to new challenges and phases
of their lives. Finding ways to lower the barriers to entry
and increase the rewards for new developers to participate
is something we have yet to do effectively.

2.3 What have we achieved?

Looking back, the report card is mixed. We have suc-
ceeded on some fronts and not on others. Above all,
COIN-OR provided, and continues to provide, a focus
on and infrastructure for nurturing the development of
quality open-source software for operations research. The
worth of that contribution is demonstrated in several ways.
Most obviously, the existence of the open-source compo-
nents led directly to the rapid development of increasingly
sophisticated tools for both optimization and modeling,
each building on the base provided by earlier contribu-
tions. Less obviously, the use of COIN-OR software in
other open-source projects, such as OpenOffice, has pro-
liferated. Even less obviously, the COIN-OR repository
provides a library for the art (dare we call it that?) of
programming that future developers can read and learn
from.

We have largely succeeded (in concert with many related
efforts and trends) in raising the profile of computational
research and increasing the academic credit associated
with software development activities. Although there is
still a long way to go, it looks far easier to get academic
credit for software these days than 20 years ago. This
progress is reflected in the emergence of new journals,
such as Mathematical Programming Computation, and
the Software Tools area of the INFORMS Journal on Com-
puting. Naturally, there were many forces simultaneously
at work that promoted this slow change, but we hope
COIN-OR had at least some role to play. At the very least,
the existence of the codes in COIN-OR has enabled a sub-
stantial amount of computational research that would not
have otherwise been possible.

On the negative side, we have so far failed to find signifi-
cant institutional funding for the maintenance and devel-
opment of COIN-OR. And we have so far largely failed
to attract a critical mass of developers with the time and
energy to maintain the existing code base. The answer to
how to make the reward commensurate with the effort
for new recruits still eludes us.

2.4 Whither from here?

As we complete our latest migration to Github, Word-
Press, and GSuite for Nonprofits, the effort involved in
maintenance of infrastructure is lessening and we are con-
templating a return to our original vision: to become a

well-respected, peer-reviewed publication venue for open-
source software related to operations research. The ques-
tion is how to do this while also maintaining our identity
as a resource for—and a community of—both develop-
ers and users within the operations research community.
What role do the Foundation and the people involved in it
have in continuing to maintain and develop the core set of
tools that have been built over the last 20 years, as their
original authors move on to other things?

And so, we are looking to the community for guidance.
What do you see as the value proposition of COIN-OR?
How has it impacted your work? What has it allowed you
to do? Is it worth our collective efforts to support? If
so, we challenge you to find a way of giving back. First
and foremost, help us raise awareness. Cite the COIN-OR
codes you find useful (in addition to the papers describing
them) and give us a shout-out on Twitter @coin_or! Make

others aware that they may be using COIN-OR without
knowing it. Did you know Mathematica embeds Clp and
that the solver in OpenOffice is powered by COIN-OR?
Volunteer some of your time as a COIN-OR board member
or to help with technical tasks. Best of all, polish up that
proof-of-concept code that backs up your publication and
make it available to other researchers. After all, the engine
of scientific progress is reproducibility and the engine of
reproducibility is open source!

Rest assured, we are not going anywhere soon. In fact, a
copy of the entire COIN-OR repository has been deposited
for posterity somewhere beneath the arctic tundra (for
real!2). But if you made it this far, thanks for reading
and we welcome your input on how to move forward and
serve the community’s needs. It’s a big tent and all are
welcome. We’ll leave the light on for ya!

Research Highlight: Low-Rank Methods for Semidefinite Programming

by SAMUEL BURER, DEPARTMENT OF BUSINESS ANALYTICS, UNIVERSITY OF IOWA, SAMUEL-BURER@UIOWA.EDU AND

RENATO D.C. MONTEIRO, DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING, GEORGIA TECH,
RENATO.MONTEIRO@ISYE.GATECH.EDU

In [4], published in 2003, the authors introduced the low-rank idea for solving semidefinite programs (SDPs), which
replaces the primal matrix variable X � 0 with a low-rank rectangular factorization RRT , resulting in a specially
structured, nonconvex quadratically constrained quadratic program (QCQP) in the variable R:

min{C •X : Ai •X = bi ∀ i,X � 0}
→ min{C •RRT : Ai •RRT = bi ∀ i}.

Although perhaps this change of variables is non-intuitive, it has the potential to alleviate the computational drawbacks
of interior-point methods for SDP—in terms of time, memory, and the ability to exploit sparsity and structure in the
problem data.

An important point is that the number of columns in R should be taken large enough so that not all optimal solutions
of the SDP are eliminated by the change of variables. For this, the authors drew on the theory of the geometry of
spectahedra (i.e., SDP feasible sets) [9, 1] to choose the number of columns minimally, i.e., large enough but not too
large. The authors then derived the standard first- and second-order necessary optimality conditions and highlighted
the interesting geometrical fact that the QCQP can have no strict local minima. Nevertheless, the authors established
new checkable, sufficient second-order conditions guaranteeing global optimality of the QCQP—and hence of the
primal SDP—and showed how these conditions closely relate to dual optimality of the SDP.

The authors finally developed a first-order augmented Lagrangian algorithm with inexpensive function and gradient
evaluations, which uses the low-rank idea to solve large-scale instances of the SDP relaxations of several combinatorial
optimization problems, while simultaneously taking into account sparsity and structure in the problem data. In
particular, the authors showed that the implementation outperformed both interior-point methods and other first-order
methods on these problem classes, sometimes by several orders of magnitude.

However, even though the algorithm performed well in practice, as may be clear from the above description, our
low-rank algorithm was properly seen as a heuristic for solving SDPs because there was no formal theory guaranteeing
that the algorithm would converge to a global optimal solution of the QCQP/SDP. This led to a lingering research
question: why should solving the nonconvex QCQP in place of the convex SDP work well in practice; shouldn’t it get
trapped in non-global local minima?

In [5], the authors provided a partial theoretical justification for why the low-rank approach converges to global
optimal solutions in practice. A key innovation in the paper is a careful comparison of the rank-constrained primal,
i.e., X � 0 with rank(X) ≤ r, and the QCQP over R with r columns. First, realizing that the rank(X) ≤ r constraint
can indeed introduce local minima in the primal, the change of variables X = RRT nevertheless does not introduce
additional local minima in the QCQP. In a sense, the change of variables doesn’t make the problem any worse. Second,

2https://archiveprogram.github.com/arctic-vault/

https://archiveprogram.github.com/arctic-vault/

if X is a local minimum of the rank-constrained primal, then one of two things must occur: either X is an optimal
extreme point of the original SDP (the “good case”), or X lies within a face of the feasible set of the SDP, which is
constant, or flat, with respect to the linear objective function (the “flat case”). Note that the flat case cannot occur
unless there does in fact exist a positive-dimension face having constant objective value, and even if that does occur, it
is unstable under perturbations of the objective function. This by itself provides some intuition as to why the low-rank
algorithm works in practice, i.e., because the good case is much more likely to occur for “random” objectives.

In addition to establishing this intuition, the authors further analyzed a slight variant of the augmented Lagrangian
algorithm from [4], having the following convergence guarantee: assuming that a local minimum is obtained at
each stage of the augmented Lagrangian algorithm, every accumulation point X = RRT of the resulting sequence is
globally optimal. Note that the analysis of this algorithm was still incomplete in two respects: (i) it did not directly
deal with the flat case, but rather cleverly avoided it; (ii) it assumed that a local minimum was obtained at each stage
of the augmented Lagrangian algorithm. More on these deficiencies below.

The authors also demonstrated additional, strong computational results—especially on the largest SDP relaxations of
the quadratic assignment problem solved up to that point in time—and discussed how to obtain valid dual bounds
from the primal-only algorithm.

Since the publication of [4, 5], the low-rank idea has become a standard approach for the design of algorithms
to solve large-scale, structured SDPs, and it has also been extended to other problem classes, especially problems
where a non-symmetric factorization Y = RST is appropriate [8]. A quick examination of papers citing [4, 5]
reveals applications in rank-minimization, network clustering, image analysis, quantum chemistry, robust PCA, etc. In
particular, the low-rank idea has enjoyed strong interest since about 2015, apparently for two reasons.

First, the low-rank idea has found a home in the machine-learning community, where it fits well within the current
trend of examining strong guarantees for nonconvex optimization problems. In addition to low-rank approaches
for SDP, there are a number of other cases in machine learning for which one can reliably compute global optimal
solutions, even though the optimization problem is highly nonconvex; see [11] for example. As a result, there is a
growing sense in machine learning that nonconvexity is not necessarily something to fear. Training neural networks is
another example, although admittedly the nonconvexity inherent in neural networks is quite different than low-rank
nonconvexity. So [4, 5] are a fundamental contribution to this important research trend in machine learning.

Second, the theory of why the low-rank algorithm works well for SDP has been largely settled in recent years. In
particular, the two deficiencies (i) and (ii) mentioned above have been addressed in [3], where the authors show that,
when the QCQP feasible set of the primal SDP is a smooth manifold, then for almost all cost functions, a second-order
stationary point R of the QCQP is globally optimal, i.e., the necessary second-order conditions are sufficient for global
optimality. Moreover, manifold-based algorithms deliver second-order stationary points. These strong guarantees
apply in many applications. For example, they apply for a particular SDP at the heart of an application in robotics
called “simultaneous localization and mapping” (SLAM), where the low-rank approach is one of the most popular
ones in practice [10]. Additional papers have extended results of this type, e.g., [6, 12, 7, 2]. So the theoretical
advancements in the low-rank area continue to evolve in exciting ways.

References

[1] A. Barvinok. Problems of distance geometry and convex properties of quadratic maps. Discrete Computational
Geometry, 13:189–202, 1995.

[2] S. Bhojanapalli, B. Neyshabur, and N. Srebro. Global optimality of local search for low rank matrix recovery. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 29, pages 3873–3881. Curran Associates, Inc., 2016.

[3] N. Boumal, V. Voroninski, and A. S. Bandeira. Deterministic guarantees for Burer-Monteiro factorizations of
smooth semidefinite programs. Comm. Pure Appl. Math., 73(3):581–608, 2020.

[4] S. Burer and R. Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank
factorization. Mathematical Programming (Series B), 95:329–357, 2003.

[5] S. Burer and R. Monteiro. Local minima and convergence in low-rank semidefinite programming. Mathematical
Programming, 103(3):427–444, 2005.

[6] D. Cifuentes and A. Moitra. Polynomial time guarantees for the burer-monteiro method, 2019.

[7] W. Ha, H. Liu, and R. F. Barber. An equivalence between critical points for rank constraints versus low-rank
factorizations. SIAM J. Optim., 30(4):2927–2955, 2020.

[8] D. Park, A. Kyrillidis, C. Carmanis, and S. Sanghavi. Non-square matrix sensing without spurious local minima

via the Burer-Monteiro approach. In A. Singh and J. Zhu, editors, Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pages 65–74, Fort
Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.

[9] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues.
Math. Oper. Res., 23:339–358, 1998.

[10] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard. Se-sync: A certifiably correct algorithm for
synchronization over the special euclidean group. The International Journal of Robotics Research, 38(2-3):95–125,
2019.

[11] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and B. Recht. Low-rank solutions of linear matrix equations
via procrustes flow. In M. F. Balcan and K. Q. Weinberger, editors, Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 964–973, New York, New
York, USA, 20–22 Jun 2016. PMLR.

[12] I. Waldspurger and A. Waters. Rank optimality for the Burer-Monteiro factorization. SIAM J. Optim., 30(3):2577–
2602, 2020.

Research Highlight: Outer Approximation for Integer Nonlinear Programs
via Decision Diagrams

by DANIAL DAVARNIA, DEPARTMENT OF INDUSTRIAL AND MANUFACTURING SYSTEMS ENGINEERING, IOWA STATE

UNIVERSITY, DAVARNIA@IASTATE.EDU AND WILLEM-JAN VAN HOEVE, TEPPER SCHOOL OF BUSINESS, CARNEGIE

MELLON UNIVERSITY, VANHOEVE@ANDREW.CMU.EDU

We would like to thank the INFORMS Computing Society Harvey J. Greenberg research award committee members, Dorit
Hochbaum, Pascal van Hentenryck, and Karla Hoffman, for the honor of being selected as the winner of this award. We
would also like to thank the ICS newsletter editor, Yongjia Song, for the kind invitation to share this research highlight
with the ICS community. This summary is based on our work [6].

3 Introduction

As a new technique to solve integer programs (IPs), decision diagrams (DDs) provide a graphical model that compactly
represents the solution set together with the objective rates of the IP; see [2] for an introduction. In principle, DDs
share similar recursive modeling as that used in dynamic programming (DP). However, instead of relying on the
complete enumeration of the entire state space, DDs employ key notions of IP such as relaxation, restriction and
branching search to overcome the drastic dimensionality growth of DP. Applications of DDs in various areas show
the effectiveness of using DDs in optimization; see [4, 5, 8, 9, 10]. Currently, designing a DD package that contains
effective relaxation, restriction and branching search relies on the existence of special structural properties in the
problem that allow for recursive formulations; see for instance the approach used in [1] for set covering and stable set
problems. This limitation encourages development of alternative DD techniques that can be applied to a broader class
of problems with more general structure.

In this paper, we undertake this task by introducing a novel outer-approximation (OA) framework [3], composed of
a DD constructor and a subgradent-type cut-generator, for a general class of IPs. The significance of this work is as
follows. (i) The subgradient vectors in the cut-generator are derived through computation of the shortest-path on the
graph of DD, making it a derivative-free approach, unlike the linearization cuts used in classical OA methods. (ii) The
DD construction and the cut-generating methods can both be applied to constraints of any form including noncovnex,
nonsmooth and even black-box models, providing a notable advantage over traditional OA techniques that require
convexity to guarantee global validity of cuts. (iii) The framework applies to IPs with general structures, a property
that mitigates the dimensionality issue of traditional DP models as well as the design limitation of typical DD models.
(iv) Unlike the standard approach in factorable programming that decomposes complicated terms of a constraint
separately, the DD representation considers the direct interaction of complicated terms in their base constraint,
allowing for generation of stronger cuts. (v) The proposed cut-generator is remarkably faster than conventional
cut-generating linear programs in finding a violated inequality during separation. Computational experiments are
conducted on both synthetic and benchmark instances from different application areas. The bounds obtained from the
developed framework exhibit significant gap improvements compared to those obtained from modern local and global

solvers.

4 Background on Decision Diagrams

Define N := {1, . . . , n}. We denote a DD by D = (U ,A, l(.)), where U represents the set of nodes and A represents
the set of arcs in a top-down directed multi-graph, and function l : A → Z indicates the label of arcs in A. The
multi-graph induced by D is composed of n arc layers A1,A2, . . . ,An, and n+ 1 node layers U1,U2, . . . ,Un+1. Node
layer U1 contains a single source node s, and the node layer Un+1 contains a single terminal node t. DD D represents a
set of points of the form x = (x1, . . . , xn) with the following encoding. The label l(a) of each arc a ∈ Aj , for j ∈ N ,
represents the value of xj . Each node in layer Uj has a maximum outdegree equal to the number of distinct integer
values in the domain of variable xj . This definition implies that each arc-specified path P = (a1, . . . , an) ∈ A1×. . .×An
from s to t encodes an integral assignment to vector x = (x1, . . . , xn) such that xj = l(aj) for all j ∈ N . The collection
of points encoded by all paths of D is referred to as the solution set of D denoted by Sol(D).

Using the above descriptions, we can model IPs with DDs. Consider the bounded IP z∗ = max {f(x) |x ∈ P}, where
f : Rn → R and P ⊆ Zn. To model the above IP with a DD, we first form a weighted DD, denoted by [D|w(.)], where
(i) D represents an encoding of solutions of P , and (ii) w(.) : A → R is a weight function associated with arcs of D so
that for each s-t path P = (a1, . . . , an), its weight w(P) :=

∑n
i=1 w(ai) is equal to f(xP), the objective value of the

integral solution corresponding to P. The above definition implies that z∗ is equal to the weight of the longest path
from s to t in the corresponding weighted graph. Note that the longest path can be obtained in O(|U|+ |A|), as it is
solved over a directed acyclic graph. A comprehensive review of DDs can be found in [2].

5 Cut-Generating Methods

The first step to design an outer approximation framework based on DDs is developing a cut-generating oracle. In this
section, we present two methods to derive valid inequalities for the convex hull of the feasible solutions of DDs. One is
based on a cut-generating linear program (CGLP) and the other is based on a subgradient-type method. Consider a DD
D = (U ,A, l(.)) with solution set Sol(D) = P. Proposition 1 gives a CGLP to separate a given point x̄ from conv(P).
Proposition 1. Consider a point x̄ ∈ Rn, and define

ω∗ = max
∑
k∈N

x̄kγk − θt (1a)

s.t. θt(a) − θh(a) + laγk ≤ 0, ∀k ∈ N, a ∈ Ak (1b)

θs = 0 (1c)

C(θ,γ) ≤ 0, (1d)

where t(a) and h(a) represent the tail and the head node of arc a, and C(θ,γ) ≤ 0 is a typical normalization constraint.
Then, x̄ ∈ conv(P) if and only if ω∗ = 0. Otherwise, x̄ can be separated from conv(P) via

∑
k∈N xkγ

∗
k ≤ θ∗t where

(θ∗;γ∗) is an optimal solution of (1).

The shortcoming of the above CGLP is its computational burden for large size DDs that are common in practice. To
mitigate this computational difficulty, we next derive a cut-generating method based on the projected subgradient
algorithm for convex programs. This method has the advantage of exploiting the network structure of DDs to generate
valid inequalities more effectively than the CGLP. The idea is to reformulate (1) as a bilevel program, which contains
variables γ at the higher level and has two properties: (i) its objective function is piecewise-linear and concave; (ii) its
subgradient at each point γ̄ can be obtained by calculating the longest path on an appropriately-weighted DD. Using
these properties, we design Algorithm 1, which can be shown to converge to an optimal solution of (1).

The geometric intuition of Algorithm 1 is as follows. The key is to view γ(τ) as the normal vector of a valid inequality
of the form γ(τ)x ≤ ψ whose right-hand-side ψ needs to be calculated. This calculation is done through lines 3 and 4
of the algorithm. These lines compute the minimum right-hand-side value for γ(τ)x ≤ ψ to be valid for conv(Sol(D)),
i.e., γ(τ)x ≤ γ(τ)xP(τ)

is the strongest valid inequality with the fixed normal vector γ(τ). We refer to this inequality as
normal inequality corresponding to γ(τ). It is easy to verify that the closure of normal inequalities for all vectors γ(τ)

describes conv(Sol(D)). With this perspective, the algorithm searches for the normal vector of a normal inequality
that separates x̄. The updating step in this search is obtained by “tilting" the current normal vector γ(τ) toward the
direction of the subgradient vector connecting xP(τ)

(which can be interpreted as a feasible point that is tight at the
current normal inequality) to x̄ (the point to be separated.)

Algorithm 1 A cut-generating algorithm based on a projected subgradient method

Input: A DD D = (U ,A, l(.)) and a point x̄
1: Initialize τ ← 0, γ(0) ∈ Rn, τ∗ ← 0, ∆∗ ← 0
2: while The stopping criterion is NOT met do
3: Create a weighted DD [D|w(.)] with arc weights wa = laγ

(τ)
k for all k ∈ N and a ∈ Ak

4: Find a longest s-t path P(τ) in [D|w(.)] and compute its encoding point xP(τ)

5: if γ(τ)(x̄− xP(τ)

) > max{0,∆∗} then
6: Update τ∗ ← τ and ∆∗ ← γ(τ)(x̄− xP(τ)

)
7: end if
8: Update φ(τ+1) ← γ(τ) + ρτ (x̄− xP(τ)

) for step size ρτ
9: Find the projection γ(τ+1) of φ(τ+1) onto the set defined by C(γ) ≤ 0

10: τ ← τ + 1
11: end while
12: if ∆∗ > 0 then
13: Return inequality γ(τ∗)(x− xP(τ∗)

) ≤ 0
14: end if

6 Outer Approximation

The cut-generating methods described in Section 5 can be used to form an outer-approximation for the following
integer nonlinear program (INLP)

max cᵀx

s.t. gj(x) ≤ 0, ∀j ∈ J (2)

x ∈ [l,u] ∩ Zn,

where gj(x) : Rn → R is a general nonlinear function. We refer to this INLP as (E).

It is well-known that when gj(x)’s are convex and sufficiently smooth, a linear outer-approximation model can be
constructed by replacing nonlinear constraints (2) with the so-called linearization cuts of the form gj(x̄) +∇gj(x̄)(x−
x̄) ≤ 0 for all points x̄ that violate gj(x) ≤ 0; see [3, 7] for a survey.

Inspired by this model, we design a novel outer-approximation framework that generalizes to problems with non-
convex constraint functions. To this end, we define the set of discrete points described by constraint j of (2) over
variable domains as GjZ := {x ∈ [l,u] ∩ Zn | gj(x) ≤ 0}. Let Dj be the DD representing the solutions of GjZ, i.e.,
Sol(Dj) = GjZ. Next, we define (ED(K)) for any finite set K ⊆ Rn as

max cᵀx

s.t. hj(x̄,x) ≤ 0, ∀x̄ ∈ K, j ∈ J̄(x̄) (3)

x ∈ [l,u] ∩ Zn,

where the inequality (3) is obtained via the CGLP of Proposition 1 to separate point x̄ ∈ K from the convex hull of the
solution set Sol(Dj). This inequality replaces the linearization cut in traditional outer-approximation methods. We
design two algorithms depending on the form of functions gj(x) in the description of (E).

The first algorithm, as given in Algorithm 2, applies to INLPs whose functions gj(x) are integer-quasiconvex. We
say that a function g(x) : Rn → R is integer-quasiconvex if conv(SαZ (g)) ∩ Zn = SαZ (g) for any integer-α-level set
SαZ (g) := {x ∈ Zn | g(x) ≤ α}. In words, any integer point of the convex hull of the integer-α-level set is feasible to
the level set. It is easy to verify that integer-quasiconvexity generalizes quasiconvexity and integer-convexity.
Proposition 2. Assume that all constraints gj(x) of (E) are integer-quasiconvex. Algorithm 2 converges to an optimal
solution of (E) or proves that it is infeasible in a finite number of iterations.

Algorithm 2 DD-ECP algorithm for integer-quasiconvex INLP

1: Initialize K ← ∅, i← 1
2: Solve (ED(K))
3: if (ED(K)) is infeasible then
4: Return infeasibility for (E)
5: else
6: Find an optimal solution x̄i of (ED(K))
7: end if
8: if gj(x̄i) ≤ 0 for all j ∈ J then
9: Return x̄i as an optimal solution of (E)

10: else
11: K ← K ∪ {x̄i}, i← i+ 1, go to 2
12: end if

The second algorithm, as given in Algorithm 3, applies to general INLPs, i.e., those whose functions gj(x) are not
integer-quasiconvex. In view of Algorithm 3, after the addition of x̄i to K, Flag is updated as follows. If a new DD
inequality hj(x̄i,x) ≤ 0 that is violated at x̄i is added to (ED(K)) for some j ∈ J̄(x̄i), we assign Flag ← False,
otherwise we assign Flag ← True. In words, if the optimal solution of the current ILP relaxation (ED(K)) cannot be
cut off with respect to any individual constraints of (E), the algorithm stops and returns the current objective value as
the best possible bound that can be obtained via individual constraint considerations. Otherwise, the optimal solution
is separated from the feasible region of (ED(K)) through DD inequalities and the steps are repeated. These arguments
imply the following convergence results for the DD-ECP algorithm.

Algorithm 3 DD-ECP algorithm for non-integer-quasiconvex INLP

1: Initialize K ← ∅, i← 1, Flag ← False
2: Solve (ED(K))
3: if (ED(K)) is infeasible then
4: Return infeasibility for (E)
5: else
6: Find an optimal solution x̄i of (ED(K))
7: end if
8: if Flag = True then
9: Return cᵀx̄i as a dual bound for (E)

10: else
11: K ← K ∪ {x̄i}, i← i+ 1, update Flag, go to 2
12: end if

Proposition 3. Algorithm 3 converges to p∗ = {cᵀx |x ∈ ∩j∈J conv(GjZ),x ∈ [l,u] ∩ Zn} or proves that it is infeasible
in a finite number of iterations.

The main difference between Algorithms 2 and 3 is that the latter is not guaranteed to converge to an optimal solution
of a general INLP. Nevertheless, Algorithm 3 always generates a linear outer-approximation for (E) at termination, and
hence its objective value serves as a dual bound. It turns out that these bounds are often tighter than those obtained
from typical convexification techniques such as factorable relaxations where each complicated term at constraints
is developed and decomposed separately. In contrast, the DD cuts are generated with respect to each individual
constraint with all of its complicated terms, which results in capturing deeper interactions between variables on
their domain and yielding stronger relaxations. Other advantages of using DD-ECP technique over the traditional
outer-approximation algorithms are summarized as follows. The DD cuts are always valid for the feasible region of
INLP even if the constraint functions are non-convex, providing an advantage over the traditional outer-approximation
schemes that rely on validity of linearization cuts for convex functions. Unlike the linearization cuts, the DD cuts do
not require any assumption on the smoothness of the functions as they are derivative-free. The DD cuts are structurally
stronger than linearization cuts, as the strength of the linearization cuts depends on the distance of the point to be
separated from the region defined by the constraint, whereas the DD cuts are independent of this distance and are
derived with respect to the convex hull of the region defined by the constraint. Furthermore, the linearization cuts are
always valid for the convex hull of the continuous points satisfied by the constraint, whereas the DD cuts are valid for
the convex hull of the discrete points satisfied by the constraint. This leads to the derivation of DD inequalities that
can cut through the continuous region defined by the constraint.

7 Computational Results

In this section, we showcase the potential of the DD-ECP algorithm by presenting computational results for a class of
INLP that appears in pricing problems in marketing applications. We refer the reader to [6] for more comprehensive
experiments on different benchmark and synthetic problem instances, as well as detailed algorithmic settings. The
pricing problem is defined as follows

min

n∑
i=1

cixi (4a)

s.t.
n∑
i=1

ajixie
−x

k
j
i
i ≥ bj , ∀j ∈ J (4b)

x ∈ [l,u] ∩ Zn, (4c)

where x represents the price vector for the set of n products. The objective function is to set a nonnegative weighted
sum of prices low for a firm that enters a competitive market to gain customer attention and market share. Mimicking
rounded price values, the price targets are selected from integers within a range, and then rescaled to achieve the
desired numeral precision. Constraint (4b) represents the profit satisfaction criterion in which the sum of profit
functions over all products at each market district j must exceed a minimum profit margin bj .

Since constraints (4b) are nonconvex, we use Algorithm 3. We evaluate the performance of our method by compar-
ing the bounds obtained from the DD-ECP algorithm with those obtained from the state-of-the-art global solvers
ANTIGONE, BARON, COUENNE and SCIP. We set the default problem size n = 200, constraint number |J | = 5,
variables’ bound [l,u] = [0, 10], time limit t = 300 seconds. To investigate the marginal impact of these factors on the
solution performance, we consider three categories of different values for each factor as reported on the horizontal
axis in Figures 1a –1d. The vertical axis in these figures show the absolute gap improvement rate for different solvers,
which is computed as the average of absolute gap closure for each algorithm along all randomly generated instances of
each category. As evidenced in these figures, the DD-ECP algorithm outperforms all solvers across different categories
and most of varying parameter values.

(a) Gap closure vs problem size (b) Gap closure vs time limit

(c) Gap closure vs constraint number (d) Gap closure vs variable bound

Figure 1. DD-ECP performance for the pricing problem

References

[1] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. Hooker. Optimization bounds from binary decision diagrams.
INFORMS Journal on Computing, 26:253–268, 2013.

[2] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. Hooker. Decision Diagrams for Optimization. Springer
International Publishing, 2016.

[3] P. Bonami, M. Kilinç, and J. Linderoth. Algorithms and software for convex mixed integer nonlinear programs.
In J. Lee and S. Leyffer, editors, Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its
Applications, volume 154. Springer, 2012.

[4] A. A. Ciré and W. J. van Hoeve. Multivalued decision diagrams for sequencing problems. Operations Research,
61:1411–1428, 2013.

[5] Danial Davarnia. Strong relaxations for continuous nonlinear programs based on decision diagrams. Operations
Research Letters, 49:239–245, 2021.

[6] Danial Davarnia and Willem-Jan van Hoeve. Outer approximation for integer nonlinear programs via decision
diagrams. Mathematical Programming, 2020.

[7] J. Kronqvist, D. Bernal, A. Lundell, and I. Grossmann. A review and comparison of solvers for convex MINLP.
Optimization and Engineering, 20:397–455, 2017.

[8] H. Salemi and D. Davarnia. On the structure of decision diagram-representable mixed integer programs with
application to unit commitment. http://www.optimization-online.org/DB_HTML/2021/01/8234.
html, 2021.

[9] R. St-Aubin, J. Hoey, and C. Boutilier. Approximation policy construction using decision diagrams. In Proceedings
of Conference on Neural Information Processing Systems, pages 1089–1095, Nantes, France, 2000.

[10] C. Tjandraatmadja and W.-J. van Hoeve. Target cuts from relaxed decision diagrams. INFORMS Journal on
Computing, 31:285–301, 2019.

Research Highlight: A Visual Summary of the Boxed Line Method: A
Criterion Space Method for Biobjective Mixed Integer Programming

by TYLER PERINI, GEORGIA INSTITUTE OF TECHNOLOGY, perinita@gatech.edu, NATASHIA BOLAND, DIEGO PECIN, AND

MARTIN SAVELSBERGH

Despite recent interest in multiobjective integer programming, few algorithms exist for solving biobjective mixed integer
programs. We present such an algorithm: the Boxed Line Method. For one of its variants, we prove that the number of
single-objective integer programs solved is bounded by a linear function of the number of nondominated line segments in
the nondominated frontier; this is the first such complexity result. An extensive computational study demonstrates that the
Boxed Line Method is also efficient in practice, and that it outperforms previously published algorithms on a diverse set of
instances.

Biobjective optimization problems with discrete decision variables arise in many fields, including scheduling [6],
geographic information systems [7], facility location [5], health care [9], and many more [11]. In contrast to single
objective optimization, the goal in biobjective (and, more generally, multiobjective) optimization is to generate a
set of solutions that induces the nondominated frontier (NDF), also known as the Pareto front. The NDF is the set of
nondominated points (NDPs): an NDP is a vector of objective values evaluated at a feasible solution with the property
that there exists no other feasible solution that is at least as good in all objective values and is better in one or more of
them. There has been enormous interest in these problems from the evolutionary algorithms community; see, for
example, the surveys of [3, 4, 12].

Biobjective mixed integer linear programs (BOMIPs), unlike pure integer programs, have only recently received
vigorous interest, in part due to their additional numerical challenges. BOMIP frontiers have a complex structure. The
frontier can contain closed, open, and half-open line segments, as well as isolated points; see, for example, the NDF
illustrated in Figure 2. Numerical tolerances, and how these are used within an algorithm, can significantly affect the
representation of the NDF it produces.

Recently, criterion space methods, in which the search for the NDF operates over the space of the vector of objective
function values, known as the criterion space, have emerged. Such methods have the advantage of being able to
exploit advances in single-objective solver software, since these methods repeatedly solve single-objective problems,
both linear programs (LPs) and mixed integer linear programs (which we will generically refer to as IPs), treating the
single-objective solver as a “black box”. Single-objective problems, either LP or IP, are the main “workhorses” of these
algorithms, which differ mainly in the structure and number of such problems that need to be solved before the NDF
is completely identified.

This paper makes the following key contributions.

1. We propose a new criterion space search method for solving the BOMIP: the Boxed Line Method. The method is

http://www.optimization-online.org/DB_HTML/2021/01/8234.html
http://www.optimization-online.org/DB_HTML/2021/01/8234.html

z1(x)

z2(x)

Figure 2. The nondominated frontier of a BOMIP where nondominated line segments are darkened.

designed to generalize the Balanced Box Method (BBM) [1], which is a computationally effective method for pure
integer BOIP. The resulting algorithm is amenable to analysis (discussed next) and produces a parsimonious
description of the NDF.

2. The algorithm has two variants that permit analysis of the number of single-objective IPs that they require to be
solved: a basic, iterative version and a recursive version. For both variants, we provide upper bounds on the
number of single-objective IPs required to produce the NDF. These are the first analytic results of this type for
mixed integer multiobjective problems.

3. We design an enhancement that takes advantage of a property of the NDF encountered in many BOMILP
instances, which can provide a significant improvement in runtime.

4. The benchmark instances originally proposed by [8], which have been used to test recent methods, have two
primary weaknesses: (1) sensitivity to numerical tolerances and (2) redundancy in structure of the NDF which
can bias comparisons of algorithms if one of the algorithms is designed to exploit this structure. We propose
a new approach to creating instances in a way that facilitates validation of BOMIP algorithms by producing
instances for which the frontiers are known precisely, a priori. It also supplements the existing suite of test
instances by providing instances having different structural characteristics.

5. We provide computational results that demonstrate the relative strengths and weaknesses of the Boxed Line
Method variants on two classes of the instances. The results are compared with the εTCM [10].

1 Algorithm Highlights

We define the biobjective mixed integer linear program (BOMIP) as

min
x∈X
{z(x) := (z1(x), z2(x))} (1)

where z1(x), z2(x) are linear in x and the feasible region is given by X ⊆ ZnI × RnC .

The basic approach of the BLM, similar to other criterion space algorithms, is to decompose the criterion space into a
series of rectangular regions called “boxes” that are stored in a queue. Each box is processed in the same way to find
nondominated line segments (NLSs) in the NDF, until the queue is empty. The algorithm is organized with an outer
loop, which handles boxes in the queue as well as updates the NDF, and an inner loop, which processes each box to
discover a NLS.

We introduce the outer loop at a high level in Figure 3. The white regions represent the boxes used to decompose the
criterion space. Figure 3(a) shows a box chosen from the queue. The first step of processing a box is to split a box in
half, horizontally, by line z2(x) = µ, as shown in Figure 3(b). By using lexicographic optimization, the leftmost NDP
z∗ that satisfies z∗2 ≤ µ is computed. When the NDP satisfies the inequality strictly, then the algorithm avoids the inner
loop and reduces to the balanced box method [1].

The more interesting case is when z∗2 = µ. As seen in Figure 3(b), then z∗ belongs to a NLS. The inner loop is called to
generate the line segment from the integer solution (a.k.a., the slice) containing z∗ and reduce this line segment to the

z1(x)

z2(x)

zL

zR

(a) Suppose the box B(zL, zR) is chosen from the queue.

z1(x)

z2(x)

zL

zR

µ
z∗

(b) Minimizing z1(x) then z2(x) below the split line µ yields
z∗ where z∗2 ≤ µ. Here we show where z∗2 = µ.

z1(x)

z2(x)

zL

zR

z1

z2

ẑ2

(c) The Inner Loop returns the nondominated line segment con-
taining z∗ (bold). Endpoints z1 and z2 are indicated as open
or closed. Also returned is the NDP that dominates each open
endpoint, e.g. ẑ2 above.

z1(x)

z2(x)

zL

zR

z1

z2

ẑ2

(d) The approximation of the NDF is updated with NLS,
and two new boxes are added to the queue, e.g., B(zL, z1)
and B(ẑ2, zR).

Figure 3. Outer loop procedure for the Boxed Line Method when z∗2 = µ.

nondominated portion. We give the highlights of the inner loop later; the NLS resulting from the inner loop is shown
in Figure 3(c).

In the final steps of the outer loop, the output from the inner loop is used to update the NDF and the queue. Any found
NLS are added to the NDF. The NLS and possibly other NDPs are used to define boxes that capture the remaining
unexplored areas of the criterion space, as shown in 3(d). At most two boxes are added to the queue, where their
summed area is at most half of the original box, and the next iteration of the outer loop begins.

Next, we introduce the basic inner loop. The inner loop takes as input the NDP z∗ and returns as output the NLS
containing it. An example of this procedure is shown in Figure 4. The line segment of the slice that contains z∗

can be computed simply by a restricted dichotomic approach. As shown in Figure 4(a), this line segment is an
overapproximation of the nondominated portion. The inner loop uses weighted sum scalarization with the gradient of
the line segment to identify new NDPs that dominate a portion of the line segment. Using that new NDP, the endpoint
of the line segment is updated. This iterative search and update process is shown in Figure 4(b)-(d). Once the line
segment is correctly reduced to the NLS, then the weighted sum scalarization will not find any new NDPs. The inner
loop returns the endpoints of the NLS along with new NDPs found.

Additionally, we designed a recursive variant of the inner loop. The recursion occurs when a NDP is found to dominate
a portion of the candidate line segment. At this point, the inner loop is called on the new NDP to determine the NLS
containing it. Once completed, a NLS or set of NLSs is returned to the parent call. An exhibit of the recursive inner
loop is illustrated in Figure 5. This recursive design provides tighter worst-case bounds and, on certain instances,
better computational performance.

z1(x)

z2(x)

z∗

z1

z2

(a) The darkened line is the line segment from the slice
containing z∗. This is the initial overapproximation of the
NLS.

z1(x)

z2(x)

z∗

z(y1) = v

z1

z2

(b) Solving weighted sum scalarized IP (within the white
region bounded by the previous z1,z2) identifies z(y1).
Endpoint z1 is updated accordingly, so it is now open.

z1(x)

z2(x)

z∗

z(y2)

z1

v = z2

(c) Solving the updated IP again (within the white region bounded
by the previous z1,z2) identifies z(y2). The new endpoint z2 is
computed, updated, and indicated as closed.

z1(x)

z2(x)

z∗z(y3) = v
z1

z2

(d) Solving the updated IP again yields z(y3). Update z1,
and one final IP solve confirms that L(z1, z2) is nondomi-
nated.

Figure 4. The basic inner loop takes as input NDPs zL, zR, and z∗. The output is the (maximal) NLS containing z∗, L(z1, z2), and
the NDP that dominates any open endpoint.

2 Complexity Results

We prove worst-case upper bounds on the number of IPs solved in order to generate the entire NDF as a function
of the number of NLSs in the NDF. For n ≥ 1 NLS, let `(n) be the worst-case number of lexicographic IPs solved by
completion of BLM, and let s(n) be the number of single-objective optimization IPs (e.g., scalarized IPs) solved by the
basic BLM. Similarly define `R(n) and sR(n) for the recursive BLM.

• For the outer loop, `(n) = `R(n) = 3n+ 2 for given n ≥ 1.
• For the basic inner loop, s(n) = n(n+1)

2 + 2(n− 1) for given n ≥ 1.
• For the basic inner loop, sR(n) = 2n− 1 for given n ≥ 1.

Therefore, in terms of total IPs solved, the basic BLM has a quadratic bound on the worst-case number of IPs, and the
recursive BLM has a linear bound.

3 Computational Study

Notably, this paper challenged the status quo for comparing BOMIP algorithms. The first algorithm of this class
was the Triangle Splitting Algorithm [2], which uses a relative tolerance in its computational study and therefore
is unreasonable to compare more accurate algorithms that use an absolute tolerance. Secondly, there are structural
weaknesses of the class of instances that have been historically used to measure the performance of BOMIP algorithms.
These instances, modified from [8], all share similarly structured frontiers which result in (1) potential bias for
designing and comparing algorithms and (2) in this particular case, great sensitivity to tolerances.

This paper provides a thorough computational study on two classes of instances comparing variants of BLM as well as

z1(x)

z2(x)

z∗

z1

z2

z̄∗

(a) Level 0: The original NDP is z∗, and initial approxima-
tion of the line is shown in bold. Solving a weighted sum
scalarized IP over the white region identifies NDP z̄∗.

z1(x)

z2(x)

z̄∗

z̄2¯̄z∗

(b) Level 1: The line approximated for z̄∗ is trimmed by its
intersection with L0, resulting in L1 = L(z̄∗, z̄2) with z̄2

closed. NDP ¯̄z∗ solves the next scalarized IP.
Level 2: Returns isolated NDP ¯̄z∗.

z1(x)

z2(x)

z̄∗ z̄2

¯̄z∗

(c) Level 1: Update endpoint z̄2, which is now open. One
more scalarized IP solve over the white region identifies
that L(z̄∗, z̄2) is nondominated.

z1(x)

z2(x)

z∗

z1

z2

z̄∗

¯̄z∗

(d) Level 0: Update endpoint z1 with respect to ¯̄z∗, so z1

is now open. Solving one final scalarized IP confirms that
L(z1, z2) is nondominated.

Figure 5. The recursive inner loop applied to NDP z̄∗ returns nondominated line segments L(z1, z2) and L(z̄∗, z̄2) and the isolated
NDP ¯̄z∗. We use level 0 to represent the base call and say that level i calls level i+ 1.

an existing algorithm for BOMIPs. In addition to the historical instances used for previous BOMIP algorithms [8],
we proposed a new class of structured instances that overcome the sensitivity issues and introduces a very different
structure of frontiers.

Given two variants of BLM, the recursive variant performs better on the generated instances, and another variant
performs better on the historical instances. Each variant, on its respective set of instances, also outperforms the ε-Tabu
Constraint Method on the largest instances of each class.

References

[1] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A criterion space search algorithm for biobjective
integer programming: the balanced box method. INFORMS Journal on Computing, 27(4):735–754, 2015.

[2] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A criterion space search algorithm for biobjective
mixed integer programming: the triangle splitting method. INFORMS Journal on Computing, 27(4):597–618,
2015.

[3] Carlos A Coello. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys
(CSUR), 32(2):109–143, 2000.

[4] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms, volume 16. John Wiley & Sons, New
York, 2001.

[5] Reza Zanjirani Farahani, Maryam SteadieSeifi, and Nasrin Asgari. Multiple criteria facility location problems: a
survey. Applied Mathematical Modelling, 34(7):1689–1709, 2010.

[6] Deming Lei. Multi-objective production scheduling: a survey. The International Journal of Advanced Manufacturing
Technology, 43(9-10):926–938, 2009.

[7] Jacek Malczewski. GIS-based multicriteria decision analysis: a survey of the literature. International Journal of
Geographical Information Science, 20(7):703–726, 2006.

[8] G Mavrotas and D Diakoulaki. A branch and bound algorithm for mixed zero-one multiple objective linear
programming. European Journal of Operational Research, 107:530–541, 1998.

[9] Abdur Rais and Ana Viana. Operations research in healthcare: a survey. International Transactions in Operational
Research, 18(1):1–31, 2011.

[10] Banu Soylu and Gazi Bilal Yıldız. An exact algorithm for biobjective mixed integer linear programming problems.
Computers & Operations Research, 72:204–213, 2016.

[11] DJ White. A bibliography on the applications of mathematical programming multiple-objective methods. Journal
of the Operational Research Society, 41(8):669–691, 1990.

[12] Aimin Zhou, Bo Yang Qu, Hui Li, Shi Zheng Zhao, Ponnuthurai Nagaratnam Suganthan, and Qingfu Zhang.
Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm and Evolutionary Computation,
1(1):32–49, 2011.

Research Highlight: A Combinatorial Cut-and-Lift Procedure with an
Application to 0-1 Chance Constraints

by MARGARITA P. CASTRO, mpcastro@mie.utoronto.ca, ANDRE A. CIRE, andre.cire@rotman.utoronto.ca, AND J.
CHRISTOPHER BECK, jcb@mie.utoronto.ca, UNIVERSITY OF TORONTO

We would like to thank the INFORMS Computing Society student paper award committee members, Claudia d’Ambrosio,
Georgina Hall, and Ruiwei Jiang, for the honor of being awarded runner-up in the ICS student Paper Award competition.
We would also like to thank the newsletter editor, Yongjia Song, for his invitation to share our research with the ICS
community. This is a summary of our joint work [12].

1 Introduction

Cutting plane methodologies have played a key role in the theoretical and computational development of mathematical
programming [10, 19]. This paper studies a cut generation procedure and lifting approach for binary optimization
problems of the form

max
x∈X⊆{0,1}n

c>x, (BP)

where the feasible set X is arbitrary, e.g., possibly represented by a conjunction of linear and/or non-linear constraints.
Our methodologies consist of exploiting network structure via a binary decision diagram (BDD) embedding of X. A
BDD is a graphical model that represents solutions as paths in a directed acyclic graph, which can be viewed as a
network-flow reformulation of X. Several BDD encodings have already been investigated for linear and non-linear
problems [6, 9, 18] and are used to exploit submodularity [7] or more general combinatorial structure [8].

We propose a sequential lifting procedure applicable to any initial inequality (e.g., given by another cutting-plane
technique). The lifting algorithm uses 0-1 disjunctions derived from a BDD representation of X to rotate inequalities
while maintaining their validity. We show that each step of our sequential lifting, when applicable, increases the
dimension of the face by at least one, and we establish conditions for which the inequality becomes facet-defining.
We also relate our procedure with lifting techniques from disjunctive programming [5], showing that our approach
generalizes well-known lifting procedures for 0-1 inequalities [4, 15, 20].

For our cut generation approach, we propose a new linear formulation of the BDD polytope based on capacitated
flows, which leads to an alternative cut generation linear program (CGLP) for separating infeasible points from X.
We show that the set of cuts derived from this model defines the convex hull of the solutions encoded by the BDD.
Moreover, in contrast to recent cutting-plane algorithms based on BDDs [14, 22], our CGLP does not require any
additional information about X, such as interior points or normalization constraints. Finally, for practical purposes,
we present a weaker but computationally faster alternative that solves a max-flow problem over the BDD to generate
valid inequalities.

For optimization problems where a BDD for X may be exponentially large in n, our lifting and cut procedures remain
valid when considering instead a limited-size relaxed BDD for BP, i.e., where the BDD encodes a superset of X. Several
efficient methods exist to build relaxed BDDs, such as only considering a subset of the problem constraints [8]. This
approach is similar in spirit, e.g., to when a linear relaxation is used to lift cover inequalities of a single knapsack
constraint [4]. Nonetheless, here we exploit the discrete relaxation provided by the BDD as opposed to a continuous
relaxation, which captures some of the combinatorial structure of the problem.

As a case study, we apply our combinatorial cut-and-lift procedure to a class of 0-1 chance-constrained problems.
Chance constraints are common in stochastic optimization to model uncertainty or enforce robustness [2, 21, 13]. In
particular, we focus on binary problems with normally distributed chance constraints:

max
x∈{0,1}n

c>x (CC)

s.t. P(a>j x ≤ bj) ≥ εj , ∀j ∈ {1, ...,m},

where, for each j, aj ∈ Rn are random variables with a joint normal distribution and εj is a threshold probability.
Each inequality can be rewritten as a second-order cone (SOC) constraint [23], which are amenable to commercial
solvers, e.g., CPLEX [16].

We investigate problems with multiple SOC inequalities, each reformulated with an appropriate BDD encoding. We
experiment on the knapsack chance-constraint benchmark [3, 17] and over 270 randomly generated instances with
joint-distributed chance constraints, incorporating both our general cutting and lifting approaches into CPLEX. We
show that our combinatorial cut-and-lift procedure achieves a 52.2% average root gap reduction, has comparable
average solving time, and solves 17 more instances on the knapsack benchmark when compared to existing cut-and-lift
methodologies [3]. Similarly, our procedure outperforms CPLEX on the random dataset by achieving a 35.3% average
root gap reduction, solving 31 more instances (168 vs. 137), and reducing the mean run-time threefold.

2 Background

This section introduces the notation used throughout this work and the background material on decision diagrams for
optimization. For convenience, we assume n ≥ 1 and let I := {1, ..., n} represent the component indices of any point
x in an n-dimensional set.

Binary Decision Diagrams. A BDD B is an extended representation of a set XB ⊆ {0, 1}n as a network. Specifically,
B = (N ,A) is a layered directed acyclic graph with node set N and arc set A. The node set N is partitioned into n+ 1
layers N = (N1, ...,Nn+1). The first and last layers are the singletons N1 = {r} and Nn+1 = {t}, respectively, where
r is the root node and t is the terminal node. An arc a = (u, u′) ∈ A has a source node s(a) = u and a target node
t(a) = u′ in consecutive layers, i.e., u′ ∈ Ni+1 whenever u ∈ Ni for i ∈ I.

The points of XB are mapped to paths in the network, as follows. With each arc a ∈ A we associate a value
va ∈ {0, 1}, where a node u ∈ N has at most one arc of each value emanating from it. Given an arc-specified r− t
path p = (a1, ..., an) with s(a1) = r and t(an) = t, we let xp := (va1 , va2 , . . . , van) ∈ {0, 1}n be the n-dimensional
point encoded by path p. Thus, if P is the set of all r − t paths in B, the set of points represented by the BDD is
XB =

⋃
p∈P{xp}.

A BDD B is exact for set X ⊆ {0, 1}n when X = XB, i.e., there is a one-to-one relationship between the points in X
and the r− t paths in B. Alternatively, B is relaxed when X ⊆ XB, i.e., every point in X maps to a path in B but the
converse is not necessarily true.
Example 1. Consider X = {x ∈ {0, 1}4 : 7x1 + 5x2 + 4x3 + x4 ≤ 8}. Figure 6 illustrates two exact BDDs for X: B1 on
the left-hand side and B2 on the right-hand side. Dashed and solid arcs have a value of 0 and 1, respectively. Each point
x ∈ X is represented by a path in B1 and B2. For example, x = (1, 0, 0, 1) ∈ X is encoded by the path ((r, u2), (u2, u4),
(u4, u5), (u5, t)) in B1, and by the path ((r, u′2), (u′2, u

′
5), (u′5, u

′
6), (u′6, t)) in B2. �

A BDD B is reduced if it is the smallest network (with respect to number of nodes) that represents the set XB. There
exists a unique reduced BDD for a given ordering of the indices I. Furthermore, given any B and an ordering, we can
obtain its associated reduced BDD in polynomial time in the size of B [11]. For instance, B1 in Figure 6 is reduced and
is obtained by merging nodes u′4 and u′5 from B2.

Several exact and relaxed BDD construction mechanisms are available for general and specialized discrete optimization
problems [8, 7]. These techniques are based on either reformulating the problem as a dynamic program, where B
represents an underlying state-transition graph, or by separating infeasible paths of a relaxed BDD. It is often the case
that BDDs can be exponentially smaller than enumerating XB explicitly [8]. If exact BDDs are too large, relaxed BDDs
can be built for X by either imposing a limit on the number of nodes (e.g., a polynomial in the problem input) or by
considering only a subset of the problem constraints.

r

u1 u2

u3 u4

u5

t

x1:

x2:

x3:

x4:

r

u′1 u′2

u′3 u′4 u′5

u′6

t

va = 0

va = 1

Figure 6. Two BDDs B1 (left-hand side) and B2 (right-hand side) with XB1 = XB2 . B1 is reduced.

3 Combinatorial Lifting

We now present our combinatorial lifting procedure and develop its structural properties. Throughout this section, we
assume that, for a given X ⊆ {0, 1}n, (a) π>x ≤ π0 is a valid inequality that supports conv(X); (b) B is an exact
BDD for X, i.e., XB = X; and (c) For any i ∈ I, there exists x,x′ ∈ X such that xi = 0 and x′i = 1. Assumption (a)
is a common lifting condition that is satisfied by setting π0 := maxx∈X

{
π>x

}
. This, in turn, can be enforced in linear

time in the size of B (see §3.2). Assumption (b) is needed for our theoretical results but it can be relaxed in practice
(see §3). For (c), we can soundly remove any i-th component not satisfying the assumption, adjusting n accordingly.

Our goal is to lift π>x ≤ π0 and better represent conv(X) by exploiting the network structure of B. The resulting cuts
are valid for any subset X ′ ⊆ X; e.g., when B (and hence X) is a relaxation of some feasible set.

3.1 Disjunctive Slack Lifting

The core element of our lifting procedure is what we denote by disjunctive slack vector (or d-slack). The i-th component
of the d-slack indicates the change in the maximum values of the left-hand side of π>x ≤ π0 when varying xi.
Definition 1. The disjunctive slack vector λ(π) with respect to π is

λi(π) := λ0
i (π)− λ1

i (π), ∀i ∈ I,

with λ0
i (π) := maxx∈X{π>x : xi = 0} and λ1

i (π) := maxx∈X{π>x : xi = 1}.
We now show in Theorem 1 how to apply the d-slacks to lift π>x ≤ π0. In particular, the resulting inequality is valid
for X (and thereby conv(X)), the dimension of the face necessarily increases, and points separated by the original
inequality are still separated after lifting. This last characteristic is important, e.g., if the input inequality π>x ≤ π0

was derived to separate a fractional point.
Theorem 1. Suppose λi(π) 6= 0 for some i ∈ I. Let 〈π′, π′0〉 be such that

π′j :=

{
πj if j 6= i,

πj + λj(π) otherwise,
∀j ∈ I, and

π′0 :=

{
π0 if i ∈ S+(π),

π0 + λi(π) otherwise.

The following properties hold:

(1) π′>x ≤ π′0 is valid for X.
(2) F (π) ⊂ F (π′) and dim(F (π′)) ≥ dim(F (π)) + 1.
(3) For any x̄ ∈ [0, 1]n with π>x̄ > π0, we have that π′>x̄ > π′0.

3.2 Extracting D-Slacks from BDDs

Identifying d-slacks λ(π) is a non-trivial task since we are required to solve 2n binary optimization problems, i.e., one
for each component i ∈ I and values 0 and 1. We develop a procedure to compute d-slacks by exploiting the network
representation of a BDD B = (N ,A) for X. We also show that the procedure complexity is linear in the number of
arcs |A|.

Algorithm 4 Sequential Combinatorial Lifting Procedure (〈π, π0〉, B)

1: Calculate the disjunctive slacks λ(π)
2: while λ(π) 6= 0 do
3: Choose i ∈ I such that λi(π) 6= 0
4: Apply Theorem 1 to calculate 〈π′, π′0〉
5: Set 〈π, π0〉 = 〈π′, π′0〉
6: Recalculate λ(π)
7: end while
8: return 〈π, π0〉

First, for each arc a ∈ A with value va ∈ {0, 1} and source s(a) ∈ Ni for some i ∈ I, we associate a length of πi · va.
Note that the longest r− t path of B with respect to such lengths maximizes π>x over X. Similarly, given the r− t
paths P of B, let

`a := max

{
n∑
k=1

πk · vak : p = (a1, . . . , an) ∈ P, ai = a

}
be the longest-path value conditioned on all paths that include a. Because each index i ∈ I is uniquely associated with
layer Ni, it follows that

λji (π) = max
a∈A
{`a : s(a) ∈ Ni, va = j} , ∀j ∈ {0, 1},

and the final d-slacks are obtained by the differences λ0
i (π)− λ1

i (π) for all i.

The lengths `a are derived by performing two longest-path computations over B. Specifically, let Ain(u) and Aout(u)
be the set of incoming and outgoing arcs of a node u ∈ N , respectively. The solution of the recursion L↓(π, r) = 0,

L↓(π, u) = max
a∈Ain(u)

{L↓(π, s(a)) + πi−1va},

for all u ∈ Ni, i ∈ {2, . . . , n+1}, provides the longest-path value L↓(π, u) from r to u, while the recursion L↑(π, t) = 0,

L↑(π, u) = max
a∈Aout(u)

{L↑(π, t(a)) + πiva},

for all u ∈ Ni, i ∈ {1, . . . , n}, provides the longest-path value L↑(π, u) from u to t. The values L↓(π, u) can
be calculated via a top-down pass on B, i.e., starting from r and considering one layer N2, . . . ,Nn+1 at a time.
Analogously, the values L↑(π, u) are obtained via a bottom-up pass on B, i.e., starting from t and considering one
layer Nn,Nn−1, . . . ,N1 at a time. For any arc a = (s(a), t(a)) such that s(a) ∈ Ni,

`a = L↓(π, s(a)) + L↑(π, t(a)) + πi · va.

Since each arc is traversed twice, the complexity of the procedure is O(|A|).

3.3 Sequential Lifting

The lifting procedure detailed in Theorem 1 can be applied sequentially to strengthen an inequality. We summarize
the procedure in Algorithm 4. The choice of i in step 3 is critical to the dimension of the resulting face, as illustrated
in Example 2.
Example 2. Consider the set X = {x ∈ {0, 1}3 : 5x1 + 2x2 + 3x3 ≤ 6} and inequality π>x = x1 + x2 + x3 ≤ 2
that supports conv(X). We have λ(π) = (1,−1,−1)> and the lifted inequality with respect to λ1(π) = 1 is π′>x =
2x1 + x2 + x3 ≤ 2 and has λ(π′) = 0. The lifted inequality is not facet-defining since dim(conv(X)) = 3 and
dim(F (π′)) = 1.

If we instead lift x1 + x2 + x3 ≤ 2 with respect to λ2(π) = −1, we get π′>x = x1 + x3 ≤ 1 and λ(π′) = 0. In this case,
the lifted inequality is facet-defining since dim(F (π′)) = 2.

In order to understand the impact of the index choice, we first show in Lemma 1 a relationship between d-slacks and
the dimension of the face. We later use this result to gauge when the sequential procedure leads to a facet-defining
inequality.
Lemma 1. The dimension of a face F (π) satisfies dim(F (π)) ≤ |S0(π)|. Moreover, |S0(π)| = 0 if dim(F (π)) = 0.

Example 2 depicts a case where |S0(π)| increases faster than the number of affinely independent points in F (π). In
view of Lemma 1, we would like to choose i so that |S0(π)| increases at a slower rate, since each lifting operation
increases dim(F (π)) by at least one according to Theorem 1-(2). We show in Theorem 2 that the slow increase of
|S0(π)| occurs when there exists a unique slack with minimum non-zero absolute value.

Theorem 2. Suppose there exists i 6∈ S0(π) such that |λi(π)| < |λi′(π)| for all i′ 6∈ S0(π) (i′ 6= i). Then, for 〈π′, π′0〉
obtained when lifting 〈π, π0〉 with respect to λi(π), dim(F (π′)) = dim(F (π)) + 1 and |S0(π′)| = |S0(π)|+ 1.

Theorem 2 provides a simple choice rule based on picking i with the minimum absolute d-slack. It also indicates when
this rule will converge to a facet-defining inequality. We formalize it in Corollary 1, derived as a direct consequence of
Theorem 2.
Corollary 1. If dim(F (π)) = |S0(π)|, the sequential lifting procedure (Algorithm 4) produces a facet-defining inequality
if, at each lifting iteration except the last, the chosen i ∈ I is such that |λi(π)| < |λi′(π)| for all i′ 6∈ S0(π) (i′ 6= i).

Finally, we note that it may not be possible to achieve a facet-defining inequality. For example, all non-zero d-slacks
have the same absolute value and |S0(π)| might increase by more than one while the dimension of F (π) does not
(see Example 2).

We remark that the algorithm above is similar in spirit to the lifting procedures for cover inequalities based on dynamic
programming [24]. There is also a strong relation between our sequential lifting and the n-step lifting procedure by
Perregaard and Balas [20]. We refer the reader to our paper for details [12].

4 BDD-based Cuts

While the BDD-based lifting procedure developed in §3 can enhance inequalities from any cutting-plane methodology,
we now exploit similar concepts to derive new valid inequalities for X based on the network structure of B. In
particular, we design inequalities that separate points from X by only relying on the combinatorial structure encoded
by B.

4.1 BDD Polytope

Existing BDD-based cut generation procedures [14, 18, 22] rely on the network-flow formulation NF(B) introduced
by [6], described as follows:

NF(B) := {(x;y) ∈ [0, 1]n × R|A|+ :∑
a∈Aout(u)

ya −
∑

a∈Ain(u)

ya = 0, ∀u ∈ N \ {r, t}, (1a)

∑
a∈Aout(r)

ya =
∑

a∈Ain(t)

ya = 1, (1b)

∑
a∈A:s(a)∈Ni,va=1

ya = xi, ∀i ∈ I
}
. (1c)

Equalities (1a) and (1b) are balance-of-flow constraints. Constraint (1c) links the arcs of B with x. In particular, NF(B)
projected over the x variables is equivalent to the convex hull of all solutions represented by B, i.e., projx(NF(B)) =
conv(X).

We propose an alternative formulation to NF(B) to define our cutting-plane algorithm. The new formulation, JNF(B),
corresponds to a joint capacitated network-flow polytope. The model maintains the balance-of-flow constraints and
replaces (1c) with (2a)-(2b). Both inequalities enforce a common capacity for arcs in a layer with the same value.
Proposition 4 shows that the two formulations are equivalent and, thus, projx(JNF(B)) = conv(X).

JNF(B) := {(x;y) ∈ [0, 1]n × R|A|+ : (1a), (1b),∑
a∈A:s(a)∈Ni,va=1

ya ≤ xi, ∀i ∈ I, (2a)

∑
a∈A:s(a)∈Ni,va=0

ya ≤ 1− xi, ∀i ∈ I }. (2b)

Proposition 4. JNF(B) = NF(B).

4.2 General BDD Flow Cuts

Our cutting-plane procedure formulates a max-flow optimization problem over JNF(B) to identify and separate points
x′ 6∈ conv(X), given by (3) below:

z(B;x′) = max
y∈R|A|+

x=x′

 ∑
a∈Aout(r)

ya : (1a), (2a), (2b)

 (3)

We note that (3) omits the constraint enforcing the flow to be equal to one as in (1b). We argue in Lemma 2 that the
condition z(B;x′) = 1 is necessary and sufficient to check if x′ belongs to conv(X).
Lemma 2. x′ ∈ conv(X) iff z(B;x′) = 1.

Our BDD-based CGLP uses the dual of (3) to generate valid inequalities that cut off x′ 6∈ conv(X). Consider ω ∈ R|N |
as the dual variables associated with constraints (1a), and ν,η ∈ Rn+ as the dual variables for (2a) and (2b),
respectively. Let w(B;x′) be the optimal solution value of the dual problem. Strong duality and Lemma 2 imply that
we can identify if x′ belongs to conv(X) if w(B;x′) = 1. Furthermore, we can use the optimal dual solution (ν∗;η∗)
to create a valid cut when w(B;x′) < 1: ∑

i∈I
xiν
∗
i +

∑
i∈I

(1− xi)η∗i ≥ 1. (4)

Theorem 3 shows that the set of all cuts of the form (4) describes conv(X).
Theorem 3. Let Λ(B) be the set of extreme points of the polyhedron defined by dual of z(B;x′). Furthermore, let PB be
the set of points x ∈ [0, 1]n that satisfy (4) for all (ν;η) ∈ projν,η(Λ(B)). Then, conv(X) = PB.

Thus, our cutting-plane procedure separates points x′ /∈ conv(X) by solving the dual of (3). The procedure returns a
cut of the form (4) where (ν∗;η∗) is an optimal solution of w(B;x′).

4.3 Combinatorial BDD Flow Cuts

The above cutting-plane procedure requires solving a linear program with |A| constraints and |N | + 2n variables.
Obtaining w(B;x′), thus, could be computationally expensive for instances where B is large. We propose now an
alternative cut-generation procedure that involves a combinatorial and more efficient max-flow solution over B.

First, we consider a relaxation of JNF(B) where the joint capacity constraints are replaced by individual constraints
for each arc, i.e., a standard capacitated network flow polytope over B:

CNF(B) := {(x;y) ∈ [0, 1]n × R|A|+ : (1a)− (1b),

ya ≤ xi, ∀a ∈ A, s(a) ∈ Ni, va = 1, i ∈ I, (5a)

ya ≤ 1− xi, ∀a ∈ A, s(a) ∈ Ni, va = 0, i ∈ I}. (5b)

Proposition 5. JNF(B) ⊆ CNF(B). Moreover, for any integer x /∈ conv(X), we have that x /∈ projx(CNF(B)).

Proposition 5 shows that for any integer point x′, x′ 6∈ X implies x′ 6∈ projx(CNF(B)). Example 3 illustrates that,
conversely, there might exist fractional points x′ /∈ conv(X) such that x′ ∈ projx(CNF(B)), and hence CNF(B) is a
weaker representation.
Example 3. Consider X = {x ∈ {0, 1}4 : 7x1 + 5x2 + 4x3 + x4 ≤ 8}, a fractional point x′ = (0.4, 0.6, 0.4, 1), and the
exact BDD B1 in Figure 6. It is easy to see that x′ /∈ conv(X) since 7x′1 + 5x′2 + 4x′3 + x′4 = 8.4 ≥ 8. However, there
exists a y′ ∈ R|A|+ such that (x′,y′) ∈ CNF(B) with value y(r,u1) = 0.6, y(r,u2) = 0.4, y(u1,u4) = 0.2, y(u1,u3) = 0.4,
y(u2,u4) = 0.4, y(u3,u4) = 0.4, y(u4,u5) = 0.6, y(u5,t) = 1, and all other arcs with flow equal to zero.

Similar to the general BDD flow cuts, we use the dual of the max-flow version of CNF(B) to identify points that do not
belong to conv(X). Consider ω ∈ R|N | as the dual variables associated with constraints (1a) and α the dual variables
associated with constraints (5a)-(5b). Let wr(B;x′) be the optimal solution value of the dual problem. Proposition 5
implies that for any x′ ∈ conv(XB), wr(B;x′) = 1. It follows that inequality (6) holds for any x ∈ conv(XB), where
α∗ is optimal to the dual:

∑
i∈I

 ∑
a∈A:va=1,
s(a)∈Ni

xiα
∗
a +

∑
a∈A:va=0,
s(a)∈Ni

(1− xi)α∗a

 ≥ 1. (6)

Of important note is that this separation problem is a classical min-cut problem, i.e., we are searching for a maximum-
capacity arc cut in the network that certifies that a point does not belong to the convex hull of X. While the resulting
inequalities are not as strong as the general BDD cuts (4) , we can leverage max-flow/min-cut combinatorial algorithms
to solve it more efficiently in the size of the BDD. Several algorithms are readily available to that end [1] and provide
both primal and dual solutions.

Furthermore, a consequence of the design of such cuts is that their strength depends on the BDD size. That is, two
BDDs B and B′ encoding the same set might generate different combinatorial flow cuts because of distinct min-cut
solutions. We show in Theorem 4 that the reduced BDD, which is unique, generates the tightest CNF(B) formulation
and is hence critical in such a formulation. We note that a reduced BDD can be generated in polynomial time in B′ for
any B′ representing the desired solution set [11].
Theorem 4. Let Br = (N r,Ar) be the reduced version of B, i.e., XBr = XB, and for each layer i ∈ I, |N r

i | ≤ |Ni|. Then,
CNF(Br) ⊆ CNF(B).

5 Case Study

For our numerical evaluation, we apply our combinatorial cut-and-lift procedure to binary problems with normally
distributed chance constraints. Recall that problem CC considers a linear objective and m constraints of the form

P(a>j x ≤ bj) ≥ εj , ∀j ∈ {1, ...,m}, (7)

where aj ∈ Rn is a random variable vector with joint normal distribution N(µj ,Σ
2
j), µji is the mean for each aji,

and Σ2
j ∈ Rn×n is the covariance matrix of aj . Values b ∈ Rm and ε ∈ [0.5, 1]m are deterministic parameters. Each

constraint (7) can be written as a non-linear inequality µ>j x+ Φ−1(εj)||Σjx||2 ≤ bj for all j ∈ {1, ...,m}, where Φ(·)
is the cumulative distribution of a standard Gaussian and || · ||2 is the Euclidean norm. In particular, this inequality is a
special version of the second-order cone (SOC) constraint, i.e.,

µ>x+ Ω

√ ∑
k∈{1,...,l}

(σ>k x− dk)2 ≤ b, (8)

for a given vector d ∈ Rl, a constant Ω ∈ R+, and matrix Σ = [σ1, ...,σl]
> such that σk ∈ Rn for all k ∈ {1, ..., l}.

We propose a novel BDD encoding for the general SOC inequalities (8) and evaluate its effectiveness for cases arising
in normally distributed chance constraints. We also present a BDD encoding for chance constraints with independent
distributions, i.e., where Σ2

j ∈ Rn×n is a diagonal matrix. In this case, inequality (8) reduces to a SOC knapsack [3]:

µ>x+ Ω

√∑
i∈I

σ2
iixi ≤ b. (9)

6 Empirical Evaluation

Table 1. Aggregated results showing the overall performance of each technique for GCC.

Solve Root Gap Final Gap Time (sec) # Nodes # Cuts % Lifted

CPLEX 137 20.8% 7.7% 550.4 176,860.3 128 -
BW 139 20.0% 7.3% 409.5 252,865.5 31 -
BWL 150 15.7% 5.9% 280.8 150,200.1 23 90.7%
BG 166 13.5% 4.6% 210.0 84,592.0 324 -
BGL 168 13.4% 4.4% 169.7 78,058.3 132 72.0%

This section presents an empirical evaluation of our combinatorial cut-and-lift procedure for CC (see §5). We create a
BDD for each of the m chance constraints and apply our procedure for each such constraint at the root node of the
branch-and-bound tree. For any fractional point x ∈ [0, 1]n, we iterate over each BDD until one of them generates
either a general or combinatorial BDD flow cut, as we describe in detail below. We then lift the inequality using
Algorithm 4. The procedure ends when x cannot be cut-off.

We test our approach over the knapsack chance constraints (KCC) data set [3, 17] and generate a random set of
instances for general chance constraints (GCC) (i.e., inequality (8) with d = 0) following a similar procedure for

0 30 60 | 0% 30% 60%

0

50

100

150

200

250

Time (min) | Opt. Gap (%)
#

In
st

an
ce

s
So

lv
ed

BGL

BG

BWL

BW

CPLEX

Figure 7. Profile plot comparing the accumulated number of instances solved over time (left), and the accumulated number of
instances over a final gap range (right) for GCC dataset.

generating KCC. We consider n ∈ {75, 100, 125}, m ∈ {10, 20}, Ω ∈ {1, 3, 5}, and density 2/
√
n over all the constraints.

Parameters µj , Σj , and c are sampled from a discrete uniform distribution with µj ∈ [−50, 50]n, Σj ∈ [−20, 20]n×n

and c ∈ [0, 100]n. Parameters bj are given by

bj= t

 n∑
k=1

µ+
jk + Ω

√√√√ n∑
i=1

max

{
n∑
k=1

σ+
jik,

n∑
k=1

σ−jik

}2
 ,

for all j ∈ {1, ...,m} where t ∈ {0.1, 0.2, 0.3} is the constraint tightness, a+ := max{0, a}, and a− := max{0,−a} for
any a ∈ R. Notice that bj with t = 0.3 will remove approximately 50% of the possible assignments for x ∈ {0, 1}n.
Then, we generate 5 random instances for each combination of n, m, Ω, and t, i.e., a total of 270 instances.

We implement four variants of our approach to test the BDD cuts and lifting procedure. The first two, BW and BWL,
consider the weaker combinatorial BDD cuts (see §4.3), where BW omits the lifting procedure and BWL includes it.
The other two variants, BG and BGL, use the combinatorial BDD flow cuts first and try the general BDD flow cuts (see
§4.2) if the weaker approach fails to produce a cut. As before, BGL utilizes our lifting procedure in every generated
constraint while BG does not. We use a BDD width limit (i.e., maximum number of nodes per layer) of 4000 nodes for
all variants.

We also implement the cover cuts and lifting procedure for the KCC case [3]. We test their cover cuts with and without
their continuous SOC lifting, C and CL, respectively, and also with our BDD lifting, BCL.

Our procedures are implemented in C++ in the IBM ILOG CPLEX 12.9 solver using the UserCuts callback at the root
node of the search. All experiments consider a single thread, a one-hour time limit, and the linearization strategy to
solve the SOC problems.

6.1 Overall Performance

Table 1 presents the average results of all techniques for the GCC instances. The first column presents the number of
problems solved to optimality. The second and third columns correspond to the average root gap and final gap across
all instances. The fourth and fifth columns are the average solving time (including the BDD construction time) and
nodes explored for the subset of instances that all techniques solve. The sixth column shows the number of cuts added
by either the solver (i.e., for CPLEX) or our techniques. The last column presents the average percentage of original
constraints that are lifted at least one time.

Table 1 shows that all our variants have better performance than CPLEX. BGL has the best performance solving 31
more instances than CPLEX. The difference on instances solved can be explained by the root node gap reduction for
our approaches. Also, our lifting variants consistently solve more instances and are on average faster than BW and BG.

Figure 7 depicts the performance of each algorithm for the GCC instances. The graph illustrates the number of
instances solved over time (left side) and the accumulated number of instances over a final gap range (right side).
We see a clear dominance of our general BDD flow cuts (i.e., BG and BGL) and also the impact of lifting in number
of instances solved and gap reduction. In particular, BG and BGL have the largest gap reductions and BWL has a
consistently smaller gap than CPLEX. BW also improves upon CPLEX by a small margin.

7 Conclusions

We introduce a novel lifting and cutting-plane procedure for binary programs that leverage their combinatorial
structure via a BDD encoding of their constraints. Our lifting procedure relies on 0-1 disjunctions to rotate valid
inequalities and uses a BDD to efficiently compute the disjunctive sub-problems. While our combinatorial lifting
can enhance any cutting-plane approach, we also propose a new BDD-based cut generation algorithm based on an
alternative network-flow representation of the BDD.

BDDs give us the flexibility to apply our procedure to a wide range of non-linear problems. As a study case, we
tested our procedure over normally distributed linear chance-constrained problems, a common application of SOC
inequalities. To do so, we introduce a novel BDD encoding for these constraints and compare the performance of
our procedure against a state-of-the-art solver and existing cut-and-lift procedure for SOC knapsacks. The empirical
results show that our technique solves 31 more instances, reducing the final gap by 42.6% and having a threefold
decrease in run-time over the general chance-constrained instances. In addition, our technique outperforms existing
cut-and-lift methodologies for SOC knapsack problems by solving 17 more instances, achieving a 96.3% final gap
reduction, and having comparable average solving time. We note that our procedure performs best when the solution
set of each inequality is smaller and the quadratic term of the SOC inequalities is predominant.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Inc., USA, 1993.

[2] Alper Atamtürk and Avinash Bhardwaj. Network design with probabilistic capacities. Networks, 71(1):16–30,
2018.

[3] Alper Atamtürk and Vishnu Narayanan. The submodular knapsack polytope. Discrete Optimization, 6(4):333–344,
2009.

[4] Egon Balas. Facets of the knapsack polytope. Mathematical programming, 8(1):146–164, 1975.

[5] Egon Balas. Disjunctive Programming. Springer, 2018.

[6] Markus Behle. Binary decision diagrams and integer programming. Ph.D. Thesis, 2007.

[7] David Bergman and Andre A Cire. Discrete nonlinear optimization by state-space decompositions. Management
Science, 64(10):4700–4720, 2018.

[8] David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John N Hooker. Discrete optimization with decision
diagrams. INFORMS Journal on Computing, 28(1):47–66, 2016.

[9] David Bergman and Leonardo Lozano. Decision diagram decomposition for quadratically constrained binary
optimization. Optimization Online e-prints, 2018.

[10] Robert E Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunderling. Mixed-integer programming:
A progress report. In The sharpest cut: the impact of Manfred Padberg and his work, pages 309–325. SIAM, 2004.

[11] Randal E Bryant. Graph-based algorithms for boolean function manipulation. Computers, IEEE Transactions on,
100(8):677–691, 1986.

[12] Margarita P Castro, Andre A Cire, and J Christopher Beck. A combinatorial cut-and-lift procedure with an
application to 0-1 second-order conic programming. Under Review, 2020.

[13] Abraham Charnes and William W Cooper. Chance-constrained programming. Management science, 6(1):73–79,
1959.

[14] Danial Davarnia and Willem-Jan van Hoeve. Outer approximation for integer nonlinear programs via decision
diagrams. Mathematical Programming, Feb 2020.

[15] Peter L Hammer, Ellis L Johnson, and Uri N Peled. Facet of regular 0–1 polytopes. Math. Prog., 8(1):179–206,
1975.

[16] IBM. ILOG CPLEX Studio 12.9 Manual, 2019.

[17] Seulgi Joung and Sungsoo Park. Lifting of probabilistic cover inequalities. Operations Research Letters, 45(5):513–
518, 2017.

[18] Leonardo Lozano and J Cole Smith. A binary decision diagram based algorithm for solving a class of binary
two-stage stochastic programs. Mathematical Programming, pages 1–24, 2018.

[19] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. 1988.

[20] Michael Perregaard and Egon Balas. Generating cuts from multiple-term disjunctions. In IPCO, pages 348–360.
Springer, 2001.

[21] Oleg V Shylo, Oleg A Prokopyev, and Andrew J Schaefer. Stochastic operating room scheduling for high-volume
specialties under block booking. INFORMS Journal on Computing, 25(4):682–692, 2013.

[22] Christian Tjandraatmadja and Willem-Jan van Hoeve. Target cuts from relaxed decision diagrams. INFORMS
Journal on Computing, 31(2):285–301, 2019.

[23] Cornelis Van de Panne and W Popp. Minimum-cost cattle feed under probabilistic protein constraints. Management
Science, 9(3):405–430, 1963.

[24] Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimization, volume 55. John Wiley &
Sons, 1999.

Research Highlight: Sparse Regression at Scale: Branch-and-Bound rooted
in First-Order Optimization

by HUSSEIN HAZIMEH, MIT OPERATIONS RESEARCH CENTER, hazimeh@mit.edu

This article is a summary of paper [12], which I co-authored with my advisor Rahul Mazumder and Ali Saab. We would
like to thank the committee, which was chaired by Claudia d’Ambrosio and included Georgina Hall and Ruiwei Jiang, for
the honorable mention. We would also like to thank Yongjia Song for the invitation to write this article.

1 Introduction

In linear regression, `0 regularization aims to find a small subset of features that leads to the best fit in terms of
squared error. This foundational problem dates back to over five decades [13], with growing interest in the wider
statistics, operations research, and computer science communities. This problem can lead to compact learning models
that are easy to interpret, and thus it has important applications in critical domains such as healthcare and insurance.

In this work, we focus on the linear regression problem with a combination of `0 and `2 regularization. Given a data
matrix X ∈ Rn×p with n observations and p features, and a response vector y ∈ Rn, the problem is defined as follows:

min
β∈Rp

1

2
‖y −Xβ‖22 + λ0‖β‖0 + λ2‖β‖22, (1)

where the `0 (pseudo) norm, ‖β‖0, is defined as the number of nonzero entries in the vector β, and ‖β‖22 is the squared
`2-norm of β (also referred to as ridge regularization). The regularization parameter λ0 ≥ 0 controls the number of
nonzeros (selected variables), and λ2 ≥ 0 controls the amount of shrinkage imposed by the `2 regularizer. Problem
(10) with λ2 = 0 leads to the classical best subset selection problem. If λ2 > 0, then the ridge regularizer can mitigate
overfitting in certain settings—see [10, 15, 11] for further discussions on this matter. Recently there has been exciting
work on developing Mixed Integer Programming (MIP)-based approaches to solve (10), e.g., [3, 17, 6, 4, 11, 19].
Current work shows that under many important high-dimensional regimes, `0-based estimators possess statistical
properties (variable selection, prediction, and estimation) that are superior to computationally friendlier alternatives
such as `1 regularization (Lasso) [18] and stepwise regression—see [11] for an in-depth discussion.

Despite its appeal, Problem (10) is NP-Hard [16] and poses computational challenges. [3] demonstrated that modern
MIP solvers can handle instances with p up to a thousand. Larger instances can be handled when λ2 is sufficiently
large and the feature correlations are low, e.g., see [4]; and also [5] for the classification variant of Problem (10).
While these state-of-the-art global optimization approaches show promising results, they are still relatively slow for
practical usage [10, 11], as they typically take in the order of minutes to days to obtain optimal solutions. For example,
our experiments show that these methods cannot terminate in two hours for typical instances with p ∼ 104. On the
other hand, the fast Lasso solvers, e.g., glmnet [8], and approximate methods for (10), such as L0Learn [11], can
handle much larger instances, and they typically terminate in the order of milliseconds to seconds.

Our goal in this work is to speed up the global optimization of Problem (10). In particular, we aim to (i) reduce
the run time for solving typical instances with p ∼ 104 from hours to seconds, and (ii) scale to larger instances
with p ∼ 107 in reasonable times (order of seconds to hours). Scaling to such instances will facilitate the adoption
of `0 regularization in practice and allow for a better understanding of its empirical properties. To this end, we
propose a specialized, nonlinear branch-and-bound (BnB) framework for solving Problem (10) to certified optimality.

One of the distinguishing features of our framework is a specialized first-order optimization method for solving
the node subproblems in the BnB tree. The first-order method heavily exploits the problem structure to speed
up computation and reduce memory requirements. Our framework is open-source and freely available at https:
//github.com/alisaab/l0bnb. This makes our approach different from prior work on global optimization for
Problem (10), which rely on commercial MIP solvers such as Gurobi and MOSEK. These MIP solvers are also based on
a BnB framework, but they are equipped with general-purpose subproblem solvers and heuristics that do not take into
account the specific structure in Problem (10). In the next section, we give an overview of our approach.

2 Overview of Our Approach

2.1 MIP Formulation

Two MIP formulations for Problem (10) have been commonly used in recent literature. The first uses Big-M constraints
to model the `0 norm. The second uses a perspective reformulation [7, 9, 6] and does not require a Big-M. In [12], we
discuss how each of these two formulations has unique advantages. For example, each formulation has a range of λ0

and λ2 for which it leads to tighter relaxations than the other formulation. To combine the advantages of these two
formulations, we merge them into one hybrid formulation. Next, we introduce the hybrid formulation. We assume
that there is a finite scalar M (a-priori specified) such that an optimal solution of (10), say β∗, satisfies: ‖β∗‖∞ ≤M .
Then the hybrid formulation is defined as follows:

min
β,z,s

1

2
‖y −Xβ‖22 + λ0

p∑
i=1

zi + λ2

p∑
i=1

si (2a)

s.t. β2
i ≤ sizi, i ∈ {1, 2, . . . , p} (2b)

−Mzi ≤ βi ≤Mzi, i ∈ {1, 2, . . . , p} (2c)

zi ∈ {0, 1}, si ≥ 0, i ∈ {1, 2, . . . , p} (2d)

The perspective constraints (11b) and the Big-M constraints (11c) enforce: zi = 0 =⇒ βi = 0. Thus, the term∑p
i=1 zi represents the `0 norm of β. Moreover, each continuous variable si represents β2

i (in particular, at any optimal
solution (β∗, z∗, s∗), we have s∗i = (β∗i)2 for all i). These observations can be used to show that formulation (11) is
equivalent to Problem (10). Note that formulation (11) can be represented as a mixed integer second order cone
program (MISOCP) and can be handled using existing MISOCP solvers such as Gurobi and MOSEK. However, these
solvers face difficulties in scaling beyond p ∼ 103. Next, we present a specialized BnB framework for solving Problem
(11) at larger scales.

2.2 A Specialized Branch-and-Bound (BnB) Framework

In this section, we give a high-level overview of our specialized nonlinear BnB framework for solving formulation
(11). First, we briefly recall the high-level mechanism behind nonlinear BnB, in the context of our problem.

Nonlinear BnB at a Glance: The algorithm starts by solving a nonlinear relaxation for (11), i.e., the root node.
Then, it selects a branching variable, say variable j ∈ {1, 2, . . . , p}, and creates two new nodes (optimization
subproblems): one node with zj = 0 and another with zj = 1, where all the other zi’s are relaxed to the interval
[0, 1]. For every unvisited node, the algorithm proceeds recursively, i.e., by solving an optimization subproblem at the
current node and then branching on a new variable to create two new nodes. This leads to a search tree with nodes
corresponding to optimization subproblems and edges representing branching decisions.

To reduce the size of the search tree, our BnB prunes a node (i.e., does not branch on it) in either one of the following
situations: (i) the subproblem at the current node has an integral z or (ii) the objective of the current subproblem
exceeds the best available upper bound on (11). The subproblem need not be solved exactly; lower bounds (a.k.a.
dual bounds) can be used instead.

Our discussion above outlines how nonlinear BnB operates in general. Of course, the specific strategies used, such
as solving the relaxations, passing information across the nodes, and selecting branching variables, can have a key
impact on scalability. In what follows, we give an overview of our strategies.

A Primal Relaxation Solver: Unlike the state-of-the-art approaches for nonlinear BnB, which employ primal-dual
relaxation solvers [2], we rely solely on a primal method. Specifically, we design a highly scalable coordinate descent
(CD)-based algorithm for solving the continuous node subproblems corresponding to formulation (11). Our CD

https://github.com/alisaab/l0bnb
https://github.com/alisaab/l0bnb

operates on subproblems that are reformulated in the β space (as opposed to the extended (β, s, z) space) where the
Big-M and perspective constraints are eliminated. The algorithm heavily shares and exploits warm starts, active sets,
and information on the gradients, across the BnB tree. In contrast, interior point methods, which are commonly used
in commercial non-linear BnB solvers, face difficulties in exploiting sparsity and warm starts.

Dual Bounds: Dual bounds on the subproblems are required by the BnB for search space pruning, yet our re-
laxation solver works in the primal space for scalability considerations. Thus, we develop a new efficient method for
obtaining dual bounds directly from (approximate) primal solutions. A key observation we exploit in this method
is that by fixing some dual variables, the dual problem can be partially maximized in closed form. We provide an
analysis of this method and show that the tightness of the corresponding dual bounds depends on the sparsity level
and not on the number of features p; this serves as a theoretical justification for why our proposed method works well
in high dimensions.

Branching and Incumbents: We develop an efficient variant of strong branching [1], which leverages the so-
lutions and active sets of previous node relaxations to make optimization tractable. Moreover, we employ several
efficient heuristics to obtain good incumbents.

The mathematical formulations and details of the strategies above are discussed in [12].

3 Experiments

We perform a series of high-dimensional experiments to study the run time of our BnB and compare to state-of-the-art
approaches. While our dataset and parameter choices are well-grounded from a statistical perspective, we note that
our goal here is not to study the statistical properties of `0 estimators. We refer the reader to [3, 4, 11] for empirical
studies of the statistical properties.

3.1 Experimental Setup

Synthetic Data Generation: We generate a multivariate Gaussian data matrix with samples drawn from MVN(0,Σp×p),

a sparse coefficient vector β† ∈ Rp with k† equi-spaced nonzero entries all set to 1, and a noise vector εi
iid∼ N(0, σ2).

The response is then obtained from the linear model y = Xβ†+ ε. We define the signal-to-noise ratio (SNR) as follows:
SNR= Var(Xβ†)/σ2. In all the experiments, we set σ2 to achieve SNR= 5—this is a relatively difficult setting which
still allows for full support recovery, under suitable choices of n, p, and Σ (see [11] for a discussion on appropriate
levels of SNR).

Warm Starts, λ0, λ2, and M : We obtain the warm start from L0Learn3 [11] and use it for all the MIP solvers
considered. Unless otherwise specified, we fix λ0 to a value λ∗0 which leads to a support size of k† (i.e., that of the true
model). The parameters λ2 and M can affect the run time significantly, so we study the sensitivity to these choices in
our experiments. We consider choices of λ2 that are relevant from a statistical perspective. We define λ∗2 as the λ2

which minimizes the `2 estimation error, among all k†-sparse solutions. More formally, for every λ0, λ2, let β(λ0, λ2)
denote an optimal solution to Problem (10). We define λ∗0 and λ∗2 as a solution of:

λ∗0, λ
∗
2 ∈ argminλ0,λ2≥0‖β† − β(λ0, λ2)‖2

s.t. ‖β(λ0, λ2)‖0 = k†.

We estimate λ∗0 and λ∗2 using L0Learn by doing a two-dimensional grid search over λ0 and λ2; in particular,
λ2 ∈ [10−4, 10] and the range for λ0 is selected automatically by the toolkit. In the experiments, we report our λ2

choices as a fraction or multiple of λ∗2 (e.g., λ2 = 0.1λ∗2). Moreover, we define M∗ as the minimum M for which the
hybrid formulation (11) is equivalent to (10). We estimate M∗ as the `∞ norm of the solution obtained by L0Learn,
and we report our choices in terms of M∗. Note that in almost all cases considered, the support of β† is correctly
recovered by L0Learn, which yields high quality estimates for M∗ and λ∗2.

Solvers and Settings: Our solver, L0BnB4, is written in Python with critical code sections optimized using Numba
[14]. We compare L0BnB with Gurobi and MOSEK on formulation (11). We also compare against [4] who solve the
cardinality-constrained variant of (10); here we set the number of nonzeros to k†. For all approaches, we set the
threshold for the relative optimality gap5 to 1.0%.

3We use the default CD-based algorithm in L0Learn. We remind the reader that L0Learn is a local optimization method that does not provide
certificates of global optimality.

4https://github.com/alisaab/l0bnb
5Given the upper bound UB and lower bound LB, the relative optimality gap is defined as (UB − LB)/UB.

https://github.com/alisaab/l0bnb

3.2 Comparison with the State of the Art

In this section, we study the scalability of the different solvers in terms of the number of features p. We generate
synthetic datasets with n = 103, p ∈ {103, 104, 105, 106}, and k† = 10. We consider a constant correlation setting,
where Σij = 0.1 ∀i 6= j and 1 otherwise. The parameters λ2 and M can have a significant effect on the run time.
Thus, we report the timings for different choices of these parameters. In particular, in Table 2 (top panel), we fix
M = 1.5M∗ and report the timings for the choices λ2 ∈ {0.1λ∗, λ∗, 10λ∗} (where λ∗2 and M∗ are defined in Section
3.1). In Table 2 (bottom panel), we fix λ2 = λ∗2 and report the timings for M ∈ {M∗, 2M∗, 4M∗,∞}.

Table 2. (Sensitivity to λ2 and M) Running time in seconds for solving (10) (via formulation (11)) by our proposal
(L0BnB), Gurobi (GRB) and MOSEK (MSK). The method [4] solves the cardinality-constrained variant of (10). The
symbols “*” or “-” mean that the method does not terminate in 2 hours. “**” means that the method terminates before
2 hours due to insufficient memory (30GB). Optimality gap is shown in parentheses for “*” and “**”, and is 100% for
“-”. Choices of λ2 and M are discussed in the text.

λ2 = λ∗2 λ2 = 0.1λ∗2 λ2 = 10λ∗2
p L0BnB GRB MSK [4] L0BnB GRB MSK [4] L0BnB GRB MSK [4]
103 6 95 216 1079 2 81 273 - 0.01 2372 54 0.4
104 14 - 5354 *(45%) 33 - 6693 - 0.8 - 1511 0.6
105 255 - *(35%) *(70%) 544 - *(41%) - 10 - *(3%) 13
106 3468 - - *(88%) *(7%) - - - 43 - - 4123

M = M∗ M = 2M∗ M = 4M∗ M =∞
p L0BnB GRB MSK L0BnB GRB MSK L0BnB GRB MSK L0BnB GRB MSK
103 0.7 35 106 1 199 279 1 1636 259 1 2307 336
104 2 - 1909 21 - 6646 23 - *(7%) 23 - -
105 25 - *(9%) 543 - *(59%) 588 - - 628 - -
106 309 - - 7180 - - **(3%) - - **(3%) - -

The results in the top panel of Table 2 indicate significant speed-ups, reaching over 200, 000x compared to Gurobi,
5000x compared to MOSEK, and 3600x compared to [4]. At λ2 = λ∗2, L0BnB is the only solver that can handle p ≥ 105,
and can, in fact, handle p = 106 in less than an hour. Recall that λ∗2 minimizes the `2 estimation error and leads to an
estimator that is the closest to the ground truth.

For λ2 = 0.1λ∗2, L0BnB is again the only solver that can handle p ≥ 105. For λ2 = 10λ∗2, the optimization problem
seems to become easier: L0BnB is up to 600x faster compared to λ∗2, and [4] can handle up to 106. However, L0BnB
in this case, is ∼ 100 times faster than [4] at p = 106. The speed-ups for λ2 = 10λ∗2 can be attributed to the fact
that a larger λ2 adds a large amount of strong convexity to the objective (via the perspective term)—improving the
performance of the relaxation solvers6. It is worth emphasizing that our L0BnB is prototyped in Python; as opposed to
the highly efficient BnB routines available in commercial solvers such as Gurobi and MOSEK.

Ideally, we desire a solver that can address (10) over a range of λ2 values, which includes values in the neighborhood
of λ∗2. However, the results in Table 2 suggest that the state-of-the-art methods (except L0BnB) seem to only work
for quite large values of λ2 (which in this case, do not correspond to solutions that are interesting from a statistical
viewpoint). On the other hand, L0BnB seems to be the only method that can scale to p ∼ 106 while being relatively
robust to the choice of λ2.

In the bottom panel of Table 2, the results also indicate that L0BnB significantly outperforms Gurobi and MOSEK for
different choices of M . For all the solvers, the run time increases with M , and the longest run times are for M =∞,
which corresponds to the (pure) perspective formulation. However, even with M = ∞, L0BnB can still achieve a
decent gap (3%) for p = 106 in less than two hours.

Additional ablation studies and experiments on real data are presented in [12].

6Gurobi is the only exception to this observation. We investigated this: Gurobi generates additional cuts only for the case of 10λ∗2 , which seems
to slow down the relaxation solver.

4 Conclusion

We considered the exact computation of estimators from the least squares problem regularized with a combination of
the `0 and `2 norms. We developed a highly specialized nonlinear BnB framework for solving the problem. To solve
the node subproblems in BnB, we designed a scalable first-order method, unlike state-of-the-art MIP solvers which
rely on primal-dual methods. Our first-order method consists of coordinate descent along with active set updates
and gradient screening, which exploit the information shared across the search tree to reduce the coordinate update
complexity. Moreover, we proposed a new method for obtaining dual bounds from the primal coordinate descent
solutions and showed that the quality of these bounds depends on the sparsity level, rather than the number of
features. Experiments on both real and synthetic datasets indicate that our method is over 3600x faster than existing
solvers, handling high-dimensional instances with p = 8.3× 106 in the order of seconds to a few minutes. Our work
demonstrates that carefully designed first-order methods can be highly effective within a BnB framework; and can
perhaps, be applied to more general mixed integer programs involving sparsity.

References

[1] Applegate, D., Bixby, R., Cook, W., Chvátal, V.: On the solution of traveling salesman problems (1998)

[2] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization.
Acta Numerica 22, 1–131 (2013)

[3] Bertsimas, D., King, A., Mazumder, R., et al.: Best subset selection via a modern optimization lens. The Annals
of Statistics 44(2), 813–852 (2016)

[4] Bertsimas, D., Van Parys, B.: Sparse high-dimensional regression: Exact scalable algorithms and phase transitions.
arXiv preprint arXiv:1709.10029 (2017)

[5] Dedieu, A., Hazimeh, H., Mazumder, R.: Learning sparse classifiers: Continuous and mixed integer optimization
perspectives. arXiv preprint arXiv:2001.06471 (2020)

[6] Dong, H., Chen, K., Linderoth, J.: Regularization vs. Relaxation: A conic optimization perspective of statistical
variable selection. ArXiv e-prints (2015)

[7] Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Mathematical
Programming 106(2), 225–236 (2006)

[8] Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent.
Journal of Statistical Software 33(1), 1–22 (2010). URL http://www.jstatsoft.org/v33/i01/

[9] Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indicator
variables. Mathematical programming 124(1-2), 183–205 (2010)

[10] Hastie, T., Tibshirani, R., Tibshirani, R.J.: Extended comparisons of best subset selection, forward stepwise
selection, and the lasso. arXiv preprint arXiv:1707.08692 (2017)

[11] Hazimeh, H., Mazumder, R.: Fast Best Subset Selection: Coordinate Descent and Local Combinatorial Optimiza-
tion Algorithms. ArXiv e-prints (2018)

[12] Hazimeh, H., Mazumder, R., Saab, A.: Sparse regression at scale: Branch-and-bound rooted in first-order
optimization. arXiv preprint arXiv:2004.06152 (2020)

[13] Hocking, R.R., Leslie, R.: Selection of the best subset in regression analysis. Technometrics 9(4), 531–540
(1967)

[14] Lam, S.K., Pitrou, A., Seibert, S.: Numba: A llvm-based python jit compiler. In: Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1–6 (2015)

[15] Mazumder, R., Radchenko, P., Dedieu, A.: Subset selection with shrinkage: Sparse linear modeling when the snr
is low. arXiv preprint arXiv:1708.03288 (2017)

[16] Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM journal on computing 24(2), 227–234
(1995)

[17] Pilanci, M., Wainwright, M.J., El Ghaoui, L.: Sparse learning via boolean relaxations. Mathematical Programming
151(1), 63–87 (2015)

[18] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B
(Methodological) 58(1), 267–288 (1996)

[19] Xie, W., Deng, X.: Scalable algorithms for the sparse ridge regression (2020)

http://www.jstatsoft.org/v33/i01/

	A (Very) Brief History
	In the beginning?
	COIN-OR Foundation, Inc.
	Fast forward to the present

	Reflections
	How hard can it be?
	Did they come?
	What have we achieved?
	Whither from here?
	Introduction
	Background on Decision Diagrams
	Cut-Generating Methods
	Outer Approximation
	Computational Results

	Algorithm Highlights
	Complexity Results
	Computational Study
	Introduction
	Background
	Combinatorial Lifting
	Disjunctive Slack Lifting
	Extracting D-Slacks from BDDs
	Sequential Lifting
	BDD-based Cuts
	BDD Polytope
	General BDD Flow Cuts
	Combinatorial BDD Flow Cuts

	Case Study

	Empirical Evaluation
	Overall Performance

	Conclusions
	Introduction
	Overview of Our Approach
	MIP Formulation
	A Specialized Branch-and-Bound (BnB) Framework
	Experiments
	Experimental Setup
	Comparison with the State of the Art
	Conclusion

