
 

Record ICS Activity at INFORMS Pittsburgh I N S I D E  T H I S  I S S U E  
1 Record ICS Activity in 

Pittsburgh 
John Chinneck, Carleton University, Ottawa,Canada, chinneck@sce.carlton.ca
 ICS Chair 
 1 Branch and Relax Global 

Optimization for NLP and 
MINLP’s 

Now THAT was a meeting!  A record 46 ICS-sponsored sessions, a  raucous Business 
meeting and wine and cheese, receptions nightly, numerous new ICS members signed 
up (welcome to you new folks!). 

 ICS is currently in very good financial shape, thanks largely to income from the terrific 
ICS Conference in 2005 organized by Bruce Golden, Raghu Raghavan and Ed Wasil 
(these same fellows were part of the team that won the 2005 ICS Prize: wow!). Here's 
thanks to all those folks who organized tracks for ICS: Dave Woodruff, Manuel Laguna, 
Sanjay Mehrotra, Robin Lougee-Heimer, Pascal Van Hentenryck, Andrew 

    
 
 
 
 
 
 

 
  Pittsburgh continued on page 12

2 Message from the Editor  

 10 Member Profile:                    
Mary Fenelon  

 
 

  
11   2006 ICS Prize 

 11   2006 Student Paper Award 
  

John Chinneck captivating the audience at the ICS Business Meeting 

The Branch-and-Reduce Global Optimization 
Approach for Algebraic NLPs and MINLPs  
N. V. Sahinidis, University of Illinois at Urbana-Champaign (nikos@uiuc.edu

 Branch-and-Reduce continued on page 3

“Many problems in 
engineering design and 
business management 
nowadays demand the 
solution of optimization 
models that are nonlinear 
and may even involve 
integer variables .”   

) 
 Mohit Tawarmalani, Purdue University, (mtawarma@mgmt.purdue.edu) 
 
1.  Introduction 
Elements of what are now identified as nonlinear optimization techniques were used in
1801 by Gauss to predict the position of the lost asteroid Ceres, and in 1875 by Gibbs 
in the analysis of fundamental thermodynamic and chemical equilibrium problems.
Many problems in engineering design and business management nowadays demand the
solution of optimization models that are nonlinear and may even involve integer 
variables.  For instance, if one accounts for congestion effects, design of networks and
production plans typically lead to nonlinear models.  Chemical process models often
use bilinearities in order to enforce mass balances and employ integer variables to  
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  ICS Officers 

MESSAGE FROM 
THE  ED I TOR 

 
Chair:  
John Chinneck  
Carleton University 
chinneck@sce.carleton.ca Ariela Sofer  

George Mason University Vice-Chair/Chair Elect:  
asofer@gmu.edu Robin Lougee-Heimer  

 IBM TJ Watson Research Center  
robinlh@us.ibm.com

 
Secretary/Treasurer: 
Jeff Linderoth  
Lehigh University 
t13@lehigh.edu It’s been another lengthy delivery but the Fall 06 volume is out.  I am happy to  

have served as the Acting Newsletter Editor, and even happier that I have 
passed this on to Harvey Greenberg, who will produce the issues in 2007.  
Harvey has already pulled up his sleeves and helped with the production of 
this issue.  Thank you Harvey!! 

 
   Newsletter Editor:  

Ariela Sofer  
George Mason University 
asofer@gmu.edu  

 I am excited to report the record-breaking 46 ICS sessions, organized by John 
Chinneck.  Our business meeting had 80 people attending  -- another record!  
Allen Holder organized a retirement party for Harvey.  (Harvey is retiring 
from CU Denver – but definitely not from ICS!)  Here are two of the pictures 
taken by Harlan Crowder.  For more pictures see 

 
 
ICS Board of Directors 
        http://picasaweb.google.com/hpcrowder/HarveySParty
Lou Hafer (-2007) 

  
 

   Simon Fraser University 
lou@cs.sfu.ca

 
Nick Sahinidis (-2007) 
University of Illinois  
nikos@uiuc.edu
 
Robert F. Dell (-2008) 
Naval Postgraduate School 
dell@nps.navy.mil

 
Pascal Van Hentenryck (-2008) 
Brown University 
pvh@cs.brown.edu
 
Steve Dirkse (-2009) 
GAMS Development Corp  
sdirkse@gams.com

 
Matt Saltzman (-2009) 
Clemson Univeristy  
mjs@clemson.edu
 
 
 
 
 

                              
 

Harvey and John  Allen Holder holding Memoirs Book 
presented to Harvey  

 
 
This issue features a terrific informal overview of the branch-and-reduce 
algorithm and its application to the solution of global optimization problems 
by Nick Sahinidis and Mohit Tawarmalami. The article illustrates the 
algorithm using pictures (where possible) for easy reading, and gives a brief 
description of the BARON global optimization software.   Nick and Mohit 
were recipients of the 2004 ICS Prize for their breakthrough advances in 
global optimization that is embodied in the BARON global optimization 
software.  Our issue also includes a feature article on Mary Fenelon, a long 
time ICS-er, and a true expert on the interface of OR and computing.  

  
Check out the enhanced ICS website at http://computing.society.informs.org/, 
thanks to webmasters Pascal Van Hentenryk and Laurent Michel.  Note the 
addition of the Mathematical Programming Glossary, originally created by 
Harvey Greenberg, now published by ICS under the Editorship of Allen 
Holder.  In addition, Harvey Greenberg and I co-organized a workshop on 
“OR in Biology and Medicine: Bridging the Gap,” which took place just prior  
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Branch & Reduce, continued from Page 1  

Our interest lies in the development of deterministic 
global optimization algorithms for problems involving 
discrete and continuous variables with nonlinearities, and, 
possibly, nonconvexities in the objective and/or the 
constraints.  This class of mixed-integer nonlinear 
programming subsumes well-known classes of NP-hard 
optimization problems, including indefinite quadratic 
programming and mixed-integer linear programming.  
The pervasive applications of nonconvex NLPs and 
MINLPs have generated a considerable amount of interest 

in algorithm design, despite the fact that it is universally 
accepted that these problems are extremely challenging to 
solve. 

 
select among competing process technologies.  Figures 1 
and 2 depict some common functions occurring in 
nonlinear models originating in these domains. 

 
This article provides an informal introduction to the 
branch-and-reduce algorithm and its application to 
solving global optimization problems.  Throughout the 
presentation, we assume that we are dealing with a 
nonlinear program posed in minimization form.  We have 
made an effort to limit the use of mathematical notation 
and equations.  Instead, wherever possible, we have used 
pictorial representations to convey the basic insights 
behind the underlying algorithms.  After a brief 
introduction to deterministic global optimization and 
branch-and-bound algorithms in Section 2, we illustrate 
the branch-and-reduce algorithm in Section 3.  Section 4 
provides a brief description of the BARON global 
optimization software system and highlights some of its 
capabilities.  Finally, Section 5 reviews applications and    
selected computational results. 

 

Figure 1: Common univariate functions used in modeling
 

 
 
2.  Deterministic global optimization and branch-
and-bound 
The first papers describing deterministic global 
optimization algorithms for nonlinear programs appeared 
in the works of Tuy (1964), Falk and Soland (1969), and 
McCormick (1976).  For the first couple of decades, 
publications in this area remained sporadic.  However, the 
1990s saw a strong surge in interest on the subject matter 
with the launch of the Journal of Global Optimization1 
and the book series on Nonconvex Optimization and Its 
Applications2.  Horst and Tuy (1996) provide a formal 
coverage of deterministic global optimization methods.  
Here, we summarize the key ideas, avoiding, as far as 
possible, the technical details involved.    xy        x/y 
 
The building blocks of algorithms for deterministic global 
optimization include: 

While some of the functions shown in Figures 1 and 2 
may be part of convex optimization problems, others are 
clearly nonconvex and, as a result, often lead to 
optimization problems with multiple local optima.  
Simultaneous combinatorial choices such as equipment 
selection decisions introduce additional challenges by 
requiring some of the variables to take integer values. 

Figure 2:  Common bivariate functions used in modeling
  

• Foster collaboration within the O.R. community. 
• The outer approximation of feasible sets by convex 

enclosures, occasionally convex hulls. 
• The under- and over-estimation of objective 

functions, occasionally by convex and concave 
envelopes. 

• The partitioning of the search space to sub-
domains.  

• The decomposition of the problem via projection 
on a subset of the variables. 

Branch-and-bound algorithms, in particular, use outer 
approximation of feasible sets and under- and over-
estimation of the objective function to compute lower 
bounds for the global minimum of a global optimization 
problem.  Upper bounds are computed via local search 

                                                 
1 http://www.wkap.nl/journalhome.htm/0925-5001 
2 http://www.wkap.nl/prod/s/NOIA 
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and other heuristic strategies.  The search space is 
partitioned primarily with the intention of improving the 
quality of the lower bounds generated by the algorithm.  
A secondary effect of the subdivision is that it often 
enables superior upper bounding by restricting the focus 
of the local search algorithms to the most attractive 
regions.  As the algorithm proceeds, each of the sub-
domains generated as a result of partitioning is placed on 
a list of open problems, from where it is subsequently 
fetched for further processing via lower bounding, upper 
bounding, and, possibly, further partitioning.  In the 
meanwhile, every time an improved upper bound is 
located, sub-domains whose lower and upper bounds are 
within a pre-specified tolerance are discarded. 
 
Well-known lower-bounding methods have relied on 
separable and factorable programming techniques, 
Lagrangian duality, Lipschitzian properties of the 
objective, interval arithmetic, and other techniques.  The 
rich and exciting work in convex optimization is often 
exploited in constructing and solving the lower-bounding 
problems. 
 
Partitioning methods can be rectangular, conical, or 
simplicial as illustrated in Figure 3.  A partitioning 
procedure is consistent as long as any open partition 
element can be further refined in the course of this 
algorithm, and, as refinement progresses, the lower 
bounding sequence over a successively refined 

subdivision sequence is guaranteed to converge to the 
nonconvex problem value. 
 
Subproblem selection in branch-and-bound in continuous 
spaces follows well-known rules applied to the more 
familiar mixed-integer linear programming case, 
including depth and breadth search and their 
combinations.  A subproblem selection rule is bound 
improving as long as it guarantees that a subproblem with 
the least lower bound will be selected within a finite 
number of steps.  It has been formally established that a 
 branch-and-bound algorithm with a consistent 
partitioning scheme and a bound improving subproblem 

 of the branch-and-
duce approach 

 into 
equires the specification of a 

thm can 

onsider the following separable program: 

s.t. 8

0 6
0 4
0 10.

x x x
x x x

x
x
x

selection rule is guaranteed to converge to a global 
optimum.  Termination is not necessarily finite unless one 
employs a strictly positive tolerance (difference between 
the lower and upper bounds) to eliminate subproblems 
from further consideration.  
 
3.  Algorithmic elements
re
Turning the prototypical branch-and-bound algorithm
a specific algorithm r
relaxation technique, a partitioning strategy, and a node 
selection rule.  This section describes, mostly via 
examples, the elements of the branch-and-reduce global 
optimization algorithm.  More details of the algori
be found in Tawarmalani and Sahinidis (2004, 2005). 
 
3.1  Bounding separable functions 
C
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Nonconvexities are due to the negative quadratic terms in 

e first constraint.  Each of these terms can be 

s.t. 6 4 8
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thBefore partitioning After partitioning

Rectangular 

Conical 
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underestimated by an affine function, which forms the 
convex envelope of the quadratic term over its domain of 
definition.  In this way, the following lower bounding 
program for the above separable NLP is obtained: 
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3.2 Bounding factorable functions 

actorable functions are bounded by introducing 
rable function to 

         Figure 3:  Partitioning methods 
F
additional variables that convert the facto
an equivalent system of almost-separable equations.  
Then, outer approximating the latter system is another 
way of under- and over-estimating the original function.  
For instance, the multivariate function 

3)lnexp(),,,( zwzxywzyxf +=  
can be decomposed iteratively to give the following 
system of equations: 
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At this point, the set of feasible solutions can be outer-
approximated by utilizing the convex and concave 
envelopes of the involved univariate functions , 

, , and 

)ln(w  
Figure 4:  Convex extensions (Figure 2.6, p. 31 of 
Tawarmalani and Sahinidis, 2002b, © Kluwer Academic 
Publishers, With kind permission of Springer Science and 
Business Media) 

7x)exp( 4x 3z  over their respective domains 
of usage.  On the other hand, bilinear terms, such as xy , 
can be relaxed by using their convex hull over a 
rectangular superset,  , of the 
domain (Al-Khayal and Falk, 1983): 

 ],[],[ ULUL yyxx × functions obtained by restricting the original function 
tofinitely many sets of points.  We refer to the union of 
these sets as the generating set.  The generating set is 
typically identified by using an exclusion theorem that 
excludes any point from consideration if it can be 
excluded recursively by using a simpler argument over a 
subset of the feasible space (Tawarmalani and Sahinidis, 
2002a).  As is typical, if the remaining graph of the 
function is a disjunctive union of convex functions, then 
classical disjunctive programming techniques 
(Rockafellar, 1970; Balas, 1998) easily provide the 
convex extension, or in this case the convex envelope, of 
the function over the concerned domain. 

 

ULUL
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3.3 Bounding via convex extensions 
The origins of the separable programming techniques 
described above are lost in the folklore of optimization, 
while the factorable programming technique was first 
proposed in McCormick (1976).  The variant we 
presented above is due to Ryoo and Sahinidis (1995).  As 
described above, separable and factorable programming 
techniques decompose functions to univariate or bivariate 
functions and rely on the convex and concave envelopes 
of the latter functions for outer-approximation of the 
feasible region. 

 
Consider, for instance, the function over the box 

 and assume, for simplicity, that 
both arguments are positive.  The generating set of the 
convex envelope can be obtained by considering 
neighborhoods of a point in  over 
which the exclusion theorem easily applies.  For instance, 
for a fixed value of y, the function under consideration 
can be considered concave in x.  Thus, only the points in 

yx /
],[],[ ULUL yyxx ×

],[],[ ULUL yyxx ×

 
The concept of convex extensions was developed by 
Tawarmalani and Sahinidis (2001, 2002a) as a systematic 
means of constructing convex and concave envelopes of 
nonconvex, possibly multivariate, functions.  In Figure 4, 
f(x) is a convex extension of g(x) restricted to {l, n, o, q}.  
As this figure illustrates, convex extensions are 
particularly useful for constructing tight relaxations for 
integer nonlinear functions.  They can also be used for the 
construction of convex and concave envelopes in 
continuous spaces. 

{ }, ,L U L Ux x y y⎡ ⎤× ⎣ ⎦  can belong to the generating set.  

Since the function is convex when x is fixed to a positive 
value, disjunctive programming allows one to easily 
construct the convex envelope. 
 
Similar arguments can be used to show that the generating 
set of a multilinear function (sum of weighted products of 
variables) over a box is the set of extreme points of the 
box. For instance, for the bilinear function xy, the 
generating set consists of four points.  The convex and 
concave envelope can then be obtained from simple 
polyhedral arguments. 

 
The key insight in using convex extensions for 
constructing convex envelopes in continuous spaces is 
that these envelopes are often generated by convex            
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3.4 Product disaggregation 
Constraint and variable disaggregation techniques have 
long been used in the integer programming literature in 
order to devise tighter linear programming relaxations.  A 
technique, reminiscent of these constraint and variable 
disaggregation techniques, was proposed by Tawarmalani 
et al. (2002) to distribute the product over a summation in 
order to obtain the convex hull of the product of a 
variable and the weighted sum of some other variables.  
In particular, it was shown that the convex hull of 

 can be obtained by rewriting this function as 

 and then summing up the convex hulls of the n 

bilinear terms , , if no separate bound is 

available for .  Interestingly, this product 

disaggregation is detrimental in interval arithmetic 
bounding schemes due to the dependency problem. 

∑=

n

i iyx
1

∑=

n

i ixy
1

ixy ni ,,1 K=

∑=

n

i iy
1

  
3.5 Polyhedral outer approximation 
Once a convex NLP has been derived as a relaxation of a 
nonconvex program, we prefer to further relax the NLP to 
an outer approximating LP.  This facilitates the use of 
efficient and robust LP technology for the solution of the 
lower bounding problems.  For univariate functions, such 
relaxations can be derived through a prototypical 
sandwich algorithm developed by Burkard et al. (1992) to 
solve convex programs.  The approximation error for 
many types of sandwich algorithms is known to reduce 
quadratically in the number of supporting hyperplanes 
that one uses to outer approximate the nonlinear function.  
For multivariate functions, Tawarmalani and Sahinidis 
(2005) proposed the recursive functional decomposition 
of Section 3.2, followed by a sandwich algorithm on the 
univariate intermediates, in order to obtain a polyhedral 
relaxation of a nonconvex NLP.  The end result is a 
polyhedral outer approximation of the nonconvex 
problem constraints  (Figure 5).  Somewhat counter 
 

 

 

Figure 5:  Polyhedral outer approximation of nonlinear 
relaxation 
 
intuitively, it was shown that this procedure provides a 
tighter relaxation than directly outer approximating a 
convex multivariate function.  Furthermore, it was shown 
that the presence of convexity in intermediate functions or 
the composite function is naturally exploited in many 

cases by this procedure, even when the final composition 
is nonconvex. 
 
3.6 Generation of cutting planes 
We begin the solution of a node of the search tree by 
solving a rough polyhedral outer approximation of the 
problem.  Subsequently, cutting planes are generated to 
strengthen the quality of the relaxation.  These cutting 
planes are supporting hyperplanes of convex problem 
constraints, convex univariate expressions that appear in 
the functional decomposition of the problem constraints, 
and convex envelopes of fractional terms. 
 
3.7 Reduction using Lagrange multipliers 
Assume that, in the course of branch-and-bound, a 
feasible solution has been identified with an objective 
function value of U and that, at a node of the search tree, 
a lower bound with the value of L has been obtained and 
that, at the relaxation solution, variable x has hit its upper 
bound  with a corresponding Lagrange multiplier 
(reduced cost) of λ.   

Ux

 

z

U

L

x

 UxLx τκ

Figure 6:  Range reduction via marginals 
 
Under the circumstances, as Figure 6 illustrates, λ 
provides the slope of z, the first-order underestimator of 
the value function of the relaxed problem (blue line), 
which, in turn, underestimates the value function of the 
nonconvex problem (red line).  A simple argument, then, 
shows that  may be reduced to , albeit 

a tighter reduction to  would have been possible 
if the value function of the relaxation were available.  
Several other variants of this range reduction technique 
were developed by Ryoo and Sahinidis (1995). 

],[ UL xx ],[ Uxκ
],[ Uxτ

 
3.8 Reduction using constraints 
Parts of the search space can also be reduced via 
feasibility arguments using problem constraints.  With 
linear constraints, this reduction may be done by 
considering one constraint and one variable at a time, 
much like it is routinely done by integer programming 
software.  Interval analysis and constraint propagation 
using the nonlinear problem constraints can achieve 
similar reductions.  Figure 7 illustrates the effect of this 
reduction process on the bounding box when it is applied 
to certain two-dimensional cases of linear constraints  
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Figure 7: Range reduction using constraints 

 
 
 
 
 
 
 
 
 
 
 

  
this reason, branch-and-bound in integer programming is 
finite but, in general, only convergent in the case of 
continuous programs.  The branch-and-reduce algorithm 
utilizes a composite rectangular partitioning rule that 
guarantees finiteness for certain special cases (Shectman 
and Sahinidis, 1998; Ahmed, Tawarmalani and Sahinidis, 
2004).  Normally, the violation transfer scheme of 
Tawarmalani and Sahinidis (2004) is used to pick a 
branching variable in a way that accounts for the 
deviations of the nonconvex problem constraints and the 
corresponding relaxation constraints at the solution of the 
relaxed problem.  Occasionally, though, the variable 
corresponding to the longest edge of the current partition 
element is chosen for branching.  Once the branching 
variable has been selected, partitioning takes place at a 
convex combination of the relaxed problem solution and 
midpoint.  However, branching is done at the incumbent, 
whenever the latter is within the current partition element.  
The left part of Figure 8 shows the rectangle generated by 
branch-and-bound in the course of the search.  Because of 
occasional partitioning on the longest edge, as the 
algorithm converges toward a globally optimal solution 

, it generates, in a finite number of iterations, a 
rectangular partition element that includes the global 
optimal solution and is arbitrarily small in each direction.  
For a suitably small partition, the right part of Figure 8 
illustrates that ascend directions of an underestimating 
linear function of a concave function coincide with the 
ascend directions of the concave function itself (over the 
green partition element), contrary to the situation over a 

(black solid lines).  The initial bounding box is shown in 
blue and the final bounding box is depicted in red.  The 
dotted lines show valid bounds on variables that could 
have been obtained by solving optimization problems 
over the constraints to minimize and maximize each 
variable separately.  In the left-most case of the figure, 
using one constraint and one variable at a time leads to 
the maximum possible range reduction for both variables.  
In the center case, both variable ranges are reduced, even 
though neither to the maximum possible extent.  In the 
right-most case of the figure, neither variable range is 
reduced.  Clearly, the effectiveness of such a technique 
depends on the nature of the problem and can be 
improved when it is combined with solving a carefully 
selected set of optimization problems over the problem 
constraints. 
 
Reduction based on marginals as well as reduction based 
on constraints can be viewed under an optimization 
framework (Tawarmalani and Sahinidis, 2004).  Within 
this framework, the reduction arguments using marginals 
and the ones that employ feasibility arguments can be 
studied in a unified manner.  In addition, the framework 
suggests new potentially useful reduction rules that have 
not yet been implemented. 

*x

 
3.9 Finite branching rules 
While branching on binary variables is a finite process, 
branching on continuous variables may never be able to 
make the lower and upper bounds precisely equal.  For  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Figure 8: Finite branching scheme  

 

x
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larger partition (red partition element).  As a consequence, 
e relaxation will produce  as its solution over a 
fficiently small partition element.  Branching at the 
cumbent guarantees that the underestimators will 

ecome exact at the incumbent and the relaxation value 
ill equal that of the upper bound, thus leading to finite 
rmination. 

. The BARON global optimization software 

.1 Software components 
he implementation of the branch-and-reduce global 
ptimization algorithm in the BARON software is 
odular in that specialized modules tackling various 

ts own sparse matrix manipulation routines, 
utomatic differentiation routines, debugging facilities, 

P and 

 language permits the user to specify 
hich problem constraints are convex, should that type of 

er.  This convexity 

option works for combinatorial as 
ell as continuous problems where the solutions are 

y a prespecified tolerance. 

th *x
su
in
b
w
te
 
4
4
T
o
m
problem classes are written using a general-purpose 
branch-and-bound framework.  This framework performs 
a generic branch-and-bound search, while the modules 
provide lower and upper bounding functions, range 
reduction procedures, partitioning rules, etc.  To facilitate 
the input of optimization problems, a simple modeling 
language has also been developed.  The system is 
supported by i
a
and links to commercial solvers for the solution of L
NLP subproblems. 
 
4.2 Relaxation-only equations 
In addition to a nonconvex optimization model for 
solution, BARON is capable of accepting a separate set of 
constraints to be used only for the purpose of constructing 
a relaxation.  This feature is particularly useful for 
experimenting with necessary optimality conditions, as 
well as different forms of the reformulation-linearization 
technique (Sherali and Adams, 1999) in a way that 
strengthens the quality of the relaxation without making 
local search difficult. 
 
4.3 Convex equations 
BARON’s modeling
w
knowledge be available to the us
information is subsequently exploited in the context of the 
algorithm to strengthen the relaxation bounds by 
generating supporting hyperplanes of the convex 
functions in the form of cutting planes of the problem. 
 
4.4 Finding the K-best or all feasible solutions 
BARON provides an option for the automatic 
identification of some of the best, or all, feasible solutions 
of a problem.  This 
w
separated from each other b
 
4.5 Availability under GAMS, AIMMS, and the 
NEOS server for optimization 
To facilitate widespread access, BARON is available as a 
solver under the GAMS3 and AIMMS4 modeling 

                                                 
ttp://www.gams.com 

 is 

for 
xtensive computational results with BARON 7.2 

al optimization and 

n of the above-mentioned polyhedral 
utting planes resulted in an up to two orders of 

 

d design of metabolic pathways 

Referen
Ahm , 

bran ound algorithm for two-stage stochastic 
e

100, , 2004. 
Al-K y ned 

Res
Bala

hull 
Mathematics, 89 (1-3): 3—44, 1998. 

, H. Hamacher and G. Rote, Sandwich 

Cab H. Önal, S. H. Irwin, D. L. 
f 

pproach, 
Manufacturing & Service Operations Management, 
6, 237-252, 2004. 

                                             

languages. The full-blown version of GAMS/BARON
available entirely for free under the NEOS5 server for 
optimization. 
 
5. Applications and computational experience 
We refer the reader to Neumaier et al. (2005) 
e
(released July 2004) and other global optimization solvers 
on over 1000 continuous glob
constraint satisfaction problems.  Computational results 
for mixed-integer nonlinear programs can be found in 
Tawarmalani and Sahinidis (2004) and Tawarmalani and 
Sahinidis (2005).  The latter paper demonstrates that the 
implementatio
c
magnitude more efficient algorithm than previous
versions of BARON. 
 
We refer the reader to the following references for details 
on some of the applications where the software has been 
recently used: 

• design of refrigerants (Sahinidis et al., 2003), 
• energy policy making (Manne and Barreto, 

2004),  
• agricultural advisory services (Cabrini et al., 

2004),  
• process estimation (Roll et al., 2004),   
• modeling an

(Ghosh et al., 2005), and 
• development of new Runge-Kutta methods for 

partial differential equations (Ruuth, 2006). 
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4 http://www.aimms.com 
5http://neos.mcs.anl.gov/neos/solvers/go:BARON/GAMS.
html 3 h
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ICS Student Paper Award 

John Chinneck and Janos Pinter with some terrific TSP Paintings 



Member Profile:  MaryFenelon 

Mary Fenelon is a Principal Architect 
on the CPLEX development team at 
ILOG.  She has contributed to CPLEX 
from the 1.2 release to the just-
announced 10.0 release and was the first 
permanent technical employee of 
CPLEX Optimization, Inc. (later bought 
by ILOG).  Mary is a long-time member 
of the Computing Society and its 
predecessor, the ORSA Computer 
Science Technical Section. 
 
Mary grew up in Chicago.  She started 
her programming career in high school 
on the school district’s mainframe with punched cards 
submitted over a telephone line—probably a speedy 300 
baud modem!  Miss Lorraine Kelly, the Taft High School 
geometry teacher, taught Fortran to some of her students 
every year and many, including Mary, went on to technical 
careers. 
 
Mary attended Mundelein College and received a degree in 
mathematics, also taking some computer science classes at 
the next door Loyola University of Chicago.  Along the 
way, she became acquainted with the manager of Loyola’s 
Academic Computing Center, and was soon working there 
as a student consultant, helping beginning programming 
students with Fortran, and psychology and sociology 
graduate students struggling with the double burden of 
learning IBM JCL and the SPSS statistics package.  Among 
the skills Mary developed were coding drum cards for the 
key punch machines and coding master sheets for the optical 
scanner.   
 

Mary was introduced to operations research when a couple 
of her mathematics professors took up the subject in 
preparation for the introduction of a business major at 
Mundelein.  They studied from the classic Hillier and 

graduate school, Stanford was at the top of 
her list.  It didn’t hurt that Stanford was in 
sunny California and admissions decisions 
were announced at the end of a long 
Chicago winter! 
 

Lieberman text and so when Mary was deciding on a 

ary’s first computing experience in M
Stanford’s Department of Operations 
Research was to implement a GUB 
simplex linear programming algorithm 
with George Dantzig’s specialized 
programming language for math 
programming.  Mary’s Ph.D. research area 
was nonlinear programming, where she 

worked with Walter Murray and Philip Gill on conjugate 
gradient methods and learned numerical analysis from 
Gene Golub in the Stanford Computer Science 
Department. 

 
Mary then went to work at Sperry Univac, later Unisys, on 
their mathematical programming package, FMPS.  In those 
days all of the mainframe hardware vendors had their own 
math programming packages because math programming 
was an application that sold hardware, and to get good 
performance it was necessary to take advantage of the 
hardware by coding in assembler.  Mary worked with the 
team at Unisys to solve some very large linear programming 
models on the very limited hardware of those days—the 
maximum data available at any one time was 262000 words, 
and they were able to solve linear programs with one to two 
million variables!  Needless to say, there was a lot of 
manual paging to disk. 
 
Once at CPLEX Optimization, Mary left behind assembler 
coding and learned the C language.  CPLEX, written in C, 
showed that it was no longer necessary to write assembler 
code to get great performance.  The CPLEX algorithms 
remain in C but interfaces in C++, Java, and .NET are also 
provided through the ILOG Concert modeling layer. 

 
As at any small company, Mary did many jobs in the early 
days of CPLEX, from tech support to documentation 
writing, but mainly focused on developing the CPLEX 
mixed integer programming facility.  Her work provided the 
foundation for the improvements made over the years by 
Mary and the rest of the CPLEX development team.  The 
team continues to work to improve all the CPLEX 
algorithms, for there are still plenty of hard problems to 
solve.  Mary enjoys hearing of all the varied applications in 
which CPLEX is used and knowing that these applications 
help the world run a little smoother. 

 
Mary is married to John Gregory, also a member of the 
CPLEX team.  Together they are raising three children, one 
each in college, high school and middle school 
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DREW,  EVAN S,  GLE N,  AND 
LEEMIS  ARE  AWARDED TH E  
2006 ICS PR IZE  
The 2006 ICS Prize was awarded to John Drew, Diane 
L. Evans, Andrew G. Glen, and Lawrence Leemis. The 
winning team was awarded the Prize for their body of 
work in five papers: 
 
• APPL: A Probability Programming Language 
• The Distribution of Order Statistics for Discrete 

Random Variables with Applications to 
Bootstrapping 

• Computing the Distribution of the Product of Two 
Continuous Random Variables 

• Computing the Cumulative Distribution Function of 
the Kolmogorov-Smirnov Statistic 

• A Generalized Univariate Change-of-Variable 
Transformation Technique  

In awarding the prize the committee gave the following 
citation: "These papers form the core of an innovative 
body of work on computation in applied probability with 
operations research applications. The authors have 
introduced a probability programming language and 
demonstrated how to use it with applications at several 
corporations, government agencies, and academic 
institutions. These publications contribute significantly to 
computational probability and its practice at the interface 
of operations research and computer science." 

Jerry Brown awards 2006 ICS Prize to Diane Evans at the 
ICS Business Meeting in Pittsburgh

 
The 2006 ICS Prize Committee members were Gerald 
Brown (Chair), Michael Ball, and Pierre L'Ecuyer.  
Congratulations to the winning team! 
 
For further information regarding the ICS Prize, see the 
ICS home page at: http://www.informs.org/ics

  

First ICS Student Paper 
Award Given in Pittsburgh  

 

 
The first ICS Student Paper Award was given at the ICS 
Business Meeting at Pittsburgh.  The winner was Geng 
Deng of the University of Wisconsin at Madison, for his 
paper "Variable-Number Sample-Path Optimization." 
Geng’s advisor was Michael Ferris. The Student Paper 
Award was established by the ICS membership in 2005.  
 
The Prize Committee gave note to two runner-ups: 
• Jiaqiao Hu, University of Maryland, College Park, 

for the paper "A Model Reference Adaptive Search 
Method for Global Optimization.”  Adviors Steven 
Marcus and Michael Fu. 

• Laura A. McLay, University of Illinois, for the 
paper "An Analysis of Knapsack Problems with 
Set-Up Weight.   Advisor Sheldon H. Jacobson.  

 
Student Paper Award winner Geng Deng with       Members of the Student Paper Award Committee were 

David Woodruff (Chair), David Gay and David Shanno.
  David Woodruff, Chair of the Award Committee 
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The new ICS "Leading Edge Tutorials" series was 
introduced by organizer Rob Dell.  Work is already 
underway on establishing tutorials for next year's 
INFORMS meeting in Seattle.  Watch for developments 
on at 

Pittsburgh, continued from Page 1 
Andrew Kusiak, and John Chinneck.  A unique feature of 
our tracks is that several were co-sponsored with other 
subdivisions: 10 sessions with the Optimization Society, 6 
sessions with the Data Mining Section, 13 with the invited 
track on "Open-Source Software: Open Source, Open 
Standards, Open Data". This is in addition to our own ICS 
tracks on Constraint Programming (5 sessions), Heuristics 
(9 sessions), and topics of general interest to ICS (3 
sessions). A personal highlight for me was an ICS session 
on High-Throughput Optimization that attracted interest 
from a publisher for an edited volume on the subject.  This 
has now morphed into a Special Issue for the INFORMS 
Journal on Computing (details of the call are at available at 

http://computing.society.informs.org/lEdge.php as 
Rob develops an online system for suggesting and voting 
on tutorial topics. 
 
Finally, Harvey Greenberg proposed a new "ICS Service 
Award". This was subsequently approved by an email 
vote, and later renamed the "Harvey J. Greenberg Award 
for Service to ICS" by unanimous vote of the ICS Board 
(see http://computing.society.informs.org/service.php for 
details) in recognition of his many contributions to our 
Society. 

http://joc.pubs.informs.org/CFP_High_Throughput_Optimiz  
ation.html. Speaking of Harvey Greenberg, he is retiring, so his 

former student Al Holder organized a dinner for him in 
Pittsburgh.  For those who couldn't make it, see the 
photos that Harlan Crowder took at 

The Pittsburgh meeting also saw the awarding of the first-
ever ICS Student Paper Award to Geng Deng for the paper 
"Variable-Number Sample-Path Optimization"   The 2006 
ICS Prize was awarded to John Drew, Diane L. Evans, 
Andrew G. Glen, and Lawrence Leemis  for their innovative 
body of work on computation in applied probability with 
operations research applications. See details on the awards 
on  Page 11.  

http://picasaweb.google.com/hpcrowder/HarveySParty

EVERYBODY knows Harvey, but in case you don't, he 
has been a major figure in ICS: see a few details online at 
 http://computing.society.informs.org/news.php?bite=9  A 
nice feature of the dinner was a booklet of stories about 
Harvey that Al collected and bound. A colorful character 
indeed!

 
 
 
 
 
Editor’s Message, continued from Page 2 
 
to the meeting.   For details see 
http://meetings.informs.org/Pittsburgh06/nsfworkshop.html   
 
We have a new editor of our INFORMS Journal of 
Computing:  Prakash Mirchandani, Katz Graduate School of 
Business, University of Pittsburgh.  He succeeds David 
Kelton, who now serves on the JoC Advisory Board.  The 
transition has been smooth, and Prakash urges you to 
consider JoC as an outlet for your work, and that you let 
others know of its highly rated contents. 

  
Finally, I would like to wish you all a great 2007!   I look 
forward to seeing you in our many exciting activities!! 
 
 

 
Copyright © 2006 by the Institute for Operations Research 
and the Management Sciences. Permission to make 
digital/hard copy of part or all of this work for personal or 
classroom use is granted provided that copies are not made 
or distributed for profit or commercial advantage, the 
copyright notice, the title of the publication and its date 
appear, and notice is given that copying is by permission 
of the Institute for Operations Research and the 
Management Sciences (INFORMS). Distribution through 
course packs is permitted provided that permission is 
obtained from INFORMS. To republish, post on servers, 
or redistribute to lists requires specific permission. 
Address requests regarding reprint permission to 
permissions@informs.org, or to INFORMS, 7240 
Parkway Drive, Suite 310, Hanover, MD 21076.  
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